Proceedings of the World Congress on Engineering 2007 Vol 11

WCE 2007, July 2 - 4, 2007, London, U.K.
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Cavity by the Boundary Element - Rayleigh
Integral Method (BERIM)
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Abstract—This paper describes the Fortran subrou-
tine BERIMS3 that delivers a computational solution
to the acoustic field both within and outside of a cav-
ity with one opening into the exterior domain. The
mathematical model is based on coupling the usual di-
rect boundary integral equation for the interior region
to the Rayleigh integral for the mouth of the domain
and the exterior region. The usual boundary element
method (BEM) and Rayleigh integral method (RIM)
systems of equations are coupled through the appli-
cation of continuity at the mouth of the cavity. The
method is applied to a horn loudspeaker.

Keywords: boundary element method, loudspeaker,

acoustics, sound, vibration, cavity

1 Introduction

Methods based on integral equations, or boundary ele-
ment methods (BEMs) have played an important role in
many areas of science and engineering. Boundary Ele-
ment Methods have been applied in acoustics for many
decades. In this manual, a method and computer code
(BERIM3) are developed for solving the acoustics of an
open cavity. The acoustic domain is the connected region
both within and exterior to the cavity. There are at least
three approaches to solving the open cavity problem us-
ing integral equation techniques. One method is to treat
it as an exterior problem and apply the BEM by wrap-
ping elements both around the exterior and the interior
cavity walls, for example by using the AEBEM* meth-
ods Kirkup [9]. A second method is to close the cavity
and couple boundary integral equation reformulations of
the interior and exterior regions across the openings (eg
coupling the AIBEM* and AEBEM* programs of Kirkup
[9]). An alternative method is to close the (one) open-
ing of the cavity and couple the interior boundary inte-
gral equation with the Rayleigh integral (ie coupling the
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AIBEM* and ARIM* methods of Kirkup [9], [8]) . It is
this this third method that is considered in this paper.

Boundary element methods can be applied to acoustic
problems in their generality [9]. They can be applied to
either of the areas of engine or machine noise (for example
[2]) or to audio [1], [11]. In this paper we will briefly
consider audio applications.
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Figure 1. The cavity opening on to a baffle.

The physical problem is illustrated by Figure 1. The
acoustic domain is the cavity and the half-space beyond
the mouth. The baffle is rigid and perfectly reflecting.
This model can be applied to a range of acoustic cavity
problems. In any practical problem the baffle must be
finite. Even if there is no baffle, at least the continuity in
the acoustic field is maintained across the mouth and the
model can still be applied with due care. The BERIM
method can be applied in the usual two dimensional,
three dimensional and axisymmetric domains. BERIM3
is an implementation of the methods required for general
three dimensional problem.

Although the Rayleigh integral is not strictly a bound-
ary integral equation, it contains the same components;
the potential (sound pressure) and its derivative as well
as one of the same integral operators. The Rayleigh in-
tegral relates the vibration of a flat surface lying in an
infinite baffle to the sound pressure (potential) in the do-
main. Through applying an integral equation solution
method, such as collocation, a computational solution to
this model can be obtained [5]. The Rayleigh integral
method is developed for general problems in Kirkup [8].
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In this paper the integral equation formulations that form
the basis of the BERIM method are stated. The meth-
ods are developed through applying collocation to the
integral equations and coupling them across the open-
ing. The resulting linear systems of equations are stated.
The BERIM method for solving general three dimen-
sional problems is implemented in the Fortran subroutine
BERIMS3. This subroutine is described and results from
its typical application to a horn loudspeaker are validated
through comparison with measurement.

2 Modelling

The acoustic radiation model consists of a cavity with
interior surface S’. In order to work towards a solution,
the surface S’ is completed using a flat fictitious surface
over the opening II, giving an interior region D and an
exterior region E. The interior field and the exterior field
are then reformulated as integral equations and the for-
mulae are coupled. The acoustic domain is modelled as
shown in figure 1, however the baffle is now presumed
to be infinite and perfectly reflecting. The two formula-
tions are coupled across II through presuming continuity
of potential (sound pressure) and its derivative.

2.1 Mathematical Model

The equation that we need to solve at each wavenumber
(or frequency) is the Helmholtz (reduced wave) equation

V2e(p) + k¢(p) =0 .

where ¢ is the (time-independent) velocity potential. See
Kirkup [7] for the derivation of this method. In general,
let it be assumed that we have a Robin condition on the
cavity surface of the form

a(p)e(p) +b(p)v(p) = f(p) (P S) (1)
9p

5 with f(p) given for p € II and n,
P
is the unit normal to the surface at p. (In this report

we will be mainly concerned with the Neumann problem
(a(p) =0, b(p) =1 for p € I).

The time-independent sound pressure can easily be found
from the velocity potential:

where v(p) =

P(p) =ipwp(p) (PEeHUE). (2)

2.2 Rayleigh Integral Formulation

The Rayleigh integral formulation is used in the exterior
region. In brief, it relates the velocity potential ¢(p) at
a point p in the exterior F, on the opening II, or on the
baffle to the normal velocity v on the opening II. (Note
that in the standard method the opening is a vibrating
panel.)
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In the standard integral operator notation used in inte-
gral equation methods (see Kirkup [6] for example) the
Rayleigh integral is as follows,

¢(p) = —2{Lrviu(p) (pe€lUE). 3)

In equation (3) the operator Ly is defined by

{LiCh(p) = / Gi(p,a) ((a) dS, (pETUE), (4)

where Gi(p,q) is a free-space Greens function for the
Helmholtz equation and T' represents the whole or part
of the opening. In this document the Green’s function is
defined as follows

eik:r

Gr(p,q) = — "

-5 (heRY), )

where r = |r|, r = p — q, RT is the set of positive real
numbers and 7 is the unit imaginary number. The Green’s
function (5) also satisfies the Sommerfeld radiation con-
dition, ensuring that all scattered and radiated waves are
outgoing in the farfield.

2.3 Interior Helmholtz Integral Equation
Formulation

The application of Green’s second theorem to the
Helmholtz equation gives the following equations:

(peD),
(6)

{Mipts | yn(P) +¢(P) = {Lvtg | jn(P)

Mighg | nlP) + 50(p) =

(pesJm. (7)

The operator Ly is defined by (4), but with I" respre-
senting the whole or part of S’ JII. The operator My, is
defined as follows

{Lkv}s/ U n(p)

0G|,

——(p;a) ¢(q) dS, . (8)

{MkC}F(P) = ong
r

Note that the normals to the boundary are taken to be
in the outward direction.

Dividing the inner surface from the mouth allows us to
write (9) and (7) as follows:

{Miphs (p) + {Mirotn(p) + o(p) =
{Liv}s (p) +{Lrvin(p) (pe D), (9)
{Mip)s (p) + {Meghn(p) + 3 o(p) =
(pesJm,

{Lrvts (p) + {Lxv}n(p) (10)
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3 Boundary Element - Rayleigh Integral
Method

Approximations to the properties of the acoustic medium
can be found through applying collocation to the integral
equations (7) and (3). This requires us to represent the
surface S’ and the opening IT by a set of panels and the
functions ¢ and v on S’ and II by constants on each
panel. The equations (7) and (3) can now be written as
linear systems of equations and through applying conti-
nuity in ¢ and v on II the system can be represented by
one matrix-vector equation where the matrix is square.
Through solving this equation, approximations to ¢ and
v are obtained on S’ and II. By substituting the approx-
imations for ¢ and v into the relevant equation above,
acoustic properties can be obtained in the interior cavity
or in the exterior field.

3.1 Representation of the Interior Surface
and the Opening

In order that the resulting computational method is ap-
plicable to a class or arbitrary openings there must be a
facility for representing the interior surface and the open-
ing as a set of panels. For example a set of triangles can be
used to approximate a the interior surface and an opening
of arbitrary shape. Thus we may write

H%ﬁ:iA]ﬁ,

NS/_ZAS/

where each A;S’ and A;IT is a triangle.
3.2 Collocation

Let us first apply collocation in the most general sense.
The normal velocity on S’ and 1T is expressed in the form

m—+n

o(q) ~ Z v(p;) XJ
J=1

m—+n

Z v;X;(a

(qell) (13)

where X1, X2, ---, Xm+n are basis functions with the usual
properties:
)22(pj> = 52] ,
m—+n ~
Xi(@)=1 (qell)
j=1

th

and v; = v(p;), the velocity at the j*" collocation point.

The replacement of (part of) the true surface or opening
T by I' and the substitution of the approximation (13)
allows us to write

{Lepir = {Lpfi}s =
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m—+n

{Ly Z 1(P;j)X;}r (P

j=1

m—+n

Z wi{LeXite(p) - (14)

A similar discretisation can be applied to the M} opera-
tor.

In the BERIM3 method, the surface functions are approx-
imated by a constant on each triangle. Hence the basis
functions are the sequence of functions that are zero on
all but one triangle in turn. In summary the relevant
operators can be written as follows:

m+n

{Leptr(®) ~ Y mi{Lil}a, (p) - (15)
j=1
m+n

{Myptr(p Z pi{Mi1}a,(p) - (16)

where 1 represents the unit function and Aj represents
the jth triangle. Details on the methods employed for
evaluating the {L,1}a,(p) and {M;1}a,(p) values are
given in Kirkup [6], [9].

If in equations (15) and (16) p takes the value of the
collocation points then for example for (15):

m—+n

Z ,L"]{Lkl}A (pz) ) (17)

{Lrp}r(pi)

and similarly for (16). For each triangle A; and each col-
location point p; in (17) {Lx1}a,(p:) can be evaluated,
so that we have a matrix of values. Let us define the

[Lklij

and similarly for M.

matrix

= {L1}a,(pi), (18)

3.3 Equivalent Linear System of Equations

Making substitutions of the form (17), (18) in the integral
equations (3) and (10) gives

o = —2[Lg]nnon (19)

where the subscript II indicates that the discrete operator
and functions are considered on the approximate opening
IT" (the prime is dropped for clarity). For the integral
equation (10) the following equation is obtained for p €
S/

(MiJss+

5 [Lk]ssug+[Lklsnvn

(20)

M]ss)eg+Milsney, =
and the following for p € II’

(L] stivg+[Le]mmon -
(21)

[M;@]Hsfs‘i‘([Mk]HH""‘%[I]HH)EH =
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Bringing together equations (19)-(21) along with the dis-
crete form of the boundary condition (1),

[Dylsspg + [Mi]ssvg = 0g

gives the following linear system of equations:

[Dalss [Ds]ss [0] st [0] st
Mi]ss + 3[]ss  —[Lk]ss [Mg]sm —[L]sm
[My]ms —[Lklns  [Mg]mom + %[I]HH —[Lk]on
[O]is [O)is 2[Li]nn [
Vg iS
X fi - gf[ (22)
fr[ Ql‘[

The linear system of equations is (2n+2m)x(2n+2m) and
it can be solved using standard direct or iterative meth-
ods. The matrix can be simplified in the case of a Neu-
mann or Dirichlet boundary condition, in which cases the
matrix is (n+2m)x(n+2m).

4 Implementation of BERIM3

In this section an implementation of the boundary ele-
ment - Rayleigh Integral method in 3D (BERIMS3) is de-
scribed. The cavity and opening may be of any shape and
is assumed to be discretised into a set of planar triangles.
The boundary condition distribution on the opening is
described simply by its value at the centroids of the tri-
angles, the interpolation points. The basis functions x1,
X2, ---» Xn are the constant functions; x;, taking the value

of unity on the jth panel and zero on the remainder of
the opening. The points p1, p2, ... P, are the centroids
of the triangular elements;

{Lex;ti = {Lretag,
where e is the unit function e(p) = 1.

As input, the subroutine accepts a description of the ge-
ometry of the opening (made up of triangles), the co-
ordinates of selected points in the exterior (where the
sound pressure is required), the wavenumbers under con-
sideration and a description of the boundary condition at
each wavenumber. As output, the subroutine gives, for
each wavenumber, the acoustic intensity at the vertices of
the triangles that make up the approximate opening, the
sound power, the radiation ratio and the sound pressure
at the prescribed exterior points.

5 Application to a horn loudspeaker

In this section we compare the computed with measured
results for a typical horn loudspeaker.

In order to apply BERIM3 to the horn loudspeaker first
the 3D solid model is generated automatically from a set
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of around 10 parameters. This is then introduced into the
popular GID pre/post processor where a triangulation of
the interior surface and mouth is made and subsequently
solved. A typical GID post process mesh is shown in fig-
ure 2. A velocity of 1m/s was set at the throat (assumed
to be flat) and zero everywhere else. In order to mitigate
the numerical effects of the sudden change in boundary
conditions where the cavity surface meets the mouth, a
small flange was added. A description of each calculation
can be found in Table 1, where number of elements and
approximate running time on a AMD2200 PC platform
are given.

i

v
S

i
‘

v
2

Figure 2. Typical BERIM3 mesh showing surface SPL

at 3kHz.
Calculation| Solver Freq | Element Size [Num Elements|  Time
1 AEBEM 3kHz 12mm 2189 23min
2 BERIM 3kHz 12mm 994 2min
3 BERIM 6kHz 12mm 994 2min
4 BERIM 9kHz 12mm 994 2min
5 BERIM | 12kHz Smm 2035 25min
6 BERIM 12kHz Tmm 2600 S6min
7 BERIM 15kHz Tmm 2600 56min

Table 1. Timing of Computations

The sound pressure is observed on polar paths of 1m ra-
dius. The results from BERIM3 are compared with mea-
sured results in Figure 3, showing polar plots of the sound
pressure level (spl) in the vertical and horizontal polar
plane and an illustration of the mouth velocity ampli-
tude for 3,6,9,12,and 15kHz. The popular GID pre/post
processor was used to mesh and display the results.

6 Test Problem

By way of comparison and further validation, the appli-
cation of BERIMS3 is compared with the application of
the boundary element method (AEBEMS3) to the same
problem, but at 3kHz only. In order to apply the BEM,
the mesh in Figure 4 is used. The horizontal and vertical
polar plots of the SPL at 1m is shown in figure 5.
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Figure 3a. Polar plots of the sound pressure level (spl)
in the vertical and horizontal polar plane 3,6,9,12,and Figure 3b. An illustration of the mouth velocity
15kHz. amplitude for 3,6,9,12,and 15kHz.
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Fig 5. Mesh, showing SPL values at 3kHz.
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Fig 6. Horizontal and vertical polar plots at 3kHz.

7 Concluding Discussion

For a structure such as a horn loudspeaker, which con-
sists of a cavity (the horn) opening out on to a plane, the
Boundary Element Rayleigh Integral Method (BERIM)
seems most applicable. In Figure 2 it is shown that
BERIM requires a mesh of the interior surface and open-
ing plane alone whereas the application of the bound-
ary element method (BEM) to the same problem requires
considerably more elements. BERIM3 can be compared
with the BEM by considering the results in Figure 6, the
3KHz plot in figure 3 and table la; similare results are
obtained but BERIM3 reduces the meshing required and
typically uses an order of magnitude less computer time
than the straightforward BEM.

The results in Figure 3 generally show good agreement
between computed and measured results, there are a
number of other points. BERIM3 seems to give better
agreement with measured than the BEM in the forward
field, however, near the baffle the BEM has more agree-
ment. The proposed reason for this is that the BEM ac-
curately meshes the baffle whereas BERIM assumes and
infinite baffle;, BERIM3 gives more support to the wider
field than the true finite baffle.
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In general the lobes in the sound field are captured in
the results from BERIM3. There is only significant drift
in the horizontal polar at 15kHz: this would probably
benefit from a further refinement in the mesh. In general
BERIMS is a powerful tool for the simulation of the sound
field of a horn loudspeaker; returning results for a given
problem and given frequency within a few minutes at low
and medium frequencies on a typical modern PC.
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