

Abstract—The sequence design is a crucial problem in DNA

based computation. We present results about tests carried on sets
of DNA strands proposed in DNA computing papers since 1994.
Our goal is to direct attention on the necessity of a
middle-process between logical designing of input and practical
computation in laboratory. The analysis shows that many input
sets should not be used for a real DNA computation because they
lead to a high probability of incurring in biological faults which
result to be very unsafe for a reliable computation.

Index Terms—DNA Computing, in-vitro computations,
sequence design.

I. INTRODUCTION
 Many theoretical models of DNA Computing assume that the
computation is errorless. Adleman [1] and Lipton [19-20], for
instance, in their experiments used an input constituted by
random strands supposing that the probability of errors due to
undesired and unexpected behaviors of filaments during
computation was negligible. However, it was empirically
proved [25] that random sequences are inappropriate for an
efficient computation, especially when the input solution size
increases. The codeword design problem, defined in 2004 by
Garzon and Deaton [9] consists in mapping the input instance
of a problem in DNA strands that might ensure, with a high
reliability level, that chemical reactions such as mismatched
hybridization, shift hybridization and hairpin are avoided.
Unfortunately, the codeword design problem has been proved
to be NP-Complete [9], and, thus, many scientists use
evolutionary and probabilistic approaches, or genetics
algorithms in order to obtain nearly optimal sequences. In 1998
Deaton et al. used the Hamming distance to avoid hybridization
errors. In 2000, Arita et al. [2] developed a design system based
on a genetic algorithm applying four specific fitness criteria.
In 2001, Tanaka et al. [28] proposed a list of design criterions
to be satisfied, and a sequence origination technique based on
simulated annealing. In the same year, Ruben et al. [24] build

Manuscript received March 22, 2007.

F. de Santis is with ISISLab - Dipartimento di Informatica ed Applicazioni
“R.M. Capocelli” - Università degli Studi di Salerno. Via Ponte don Melillo,
84084 Fisciano (SA) - Italy (phone: 0039089969724; fax: 0039089969600;
e-mail: fds@dia.unisa.it).

N. Di Luca is with Dipartimento di Informatica ed Applicazioni “R.M.
Capocelli” - Università degli Studi di Salerno. Via Ponte don Melillo, 84084
Fisciano (SA) - Italy (e-mail: nicola.diluca@gmail.com).

G. Iaccarino is with ISISLab - Dipartimento di Informatica ed Applicazioni
“R.M. Capocelli” - Università degli Studi di Salerno. Via Ponte don Melillo,
84084 Fisciano (SA) - Italy (e-mail: iaccarino@dia.unisa.it).

up PUNCH (Princeton University Nucleotide Computing
Heuristic), a system for the optimization of DNA input
solutions applying genetic algorithms on a simple
two-dimensional matrix. In 2002, Tuplan et al. [29] used a
stochastic method in order to generate automatically good
DNA strands. More recently, Shin et al [14] formulated the
DNA sequence design as a multiobjective optimization
problem and solved it using a constrained multiobjective
evolutionary algorithm. Real-word DNA sequence design is
today an open question for in vitro computation, and all kinds
of sequence generators only improve input design, without
considering whether it complies with the instance of the
problem.

In this paper we present a set of tests carried on DNA
sequences which were used in the literature as input to
molecular algorithms starting from 1994. The aim is to analyze
how strong can be the influence of a set of well defined
biological constraints on the input choice with respect to the
outcome of the computations. The tests were done by means of
DNAEdit, a Java application [43] specifically devised for
helping in the codeword design problem.

II. DNA SEQUENCE DESIGN
The DNA computing uses short DNA single strands

(oligonucleotides) as memorization and processing unities.
The aim of the computing course is simply that of allowing the
assembly of single strands in longer DNA molecules by means
of the hybridization process: the solution to a problem may be
seen, indeed, as an extended DNA strand whose chain depends
on the input filaments. However, the hybridization process
requires that the oligonucleotides combine themselves in a
selective mode well-suited to the computation goals. The
hybridization between a DNA sequence and its base-pair
complement is, indeed, the most important factor to retrieve
the information stored in the DNA sequences and operate
correctly the computation processes. For this reason, DNA
computations need a set of DNA sequences which form stable
double strands on one side, and ensure, on the other, that two
no complementary sequences do not interact. Non interacting
or unstable sequences should be even forbidden to advantage
any perfectly matched double strand arising from a DNA
sequence and its complement [5]. Thus, partially
complementary sequences (mismatched hybridization),
sequences matching as result of a shift (shifted hybridization),
and sequences interacting with themselves up to form a
secondary structure (hairpin) should be avoided, as well as

Exploiting Constraints in the Codeword Design
Filomena de Santis, Nicola Di Luca, Gennaro Iaccarino

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

mailto:fds@dia.unisa.it)
mailto:nicola.diluca@gmail.com)
mailto:iaccarino@dia.unisa.it)

sequences that do not present uniform chemical attributes.
Since the sequence design is an essential prerequisite for a

successful DNA computing, some project constraints have
been introduced with the aim of forcing oligonucleotides to
exhibit features which can avoid, or at least reduce, the
occurrence of computation errors, such as wrong
hybridizations, undesired secondary structures, and
inconsistency among sequences. As shown in [14], project
constraints can be classified with respect to four evaluation
criterions: I. preventing undesired reactions; II. controlling
secondary structures; III. controlling the chemical attributes of
DNA sequences; and IV. restricting DNA sequences. Although
a high-quality system should deal with all the previous
constraints at the same time, it is worthy noticing that such an
implementation is a very difficult task because of the large
variety of requirements of each computational architecture.

Before surveying the features of the DNA sequence
constraints, let us recall a few of useful definitions.
Let ∑*, with ∑ = { A, C, G, T}, be the alphabet of the four
nucleotide bases making up DNA strands and ¬x∈∑ the
complementary base of x∈∑ (A is the complement of T, C is
the complement of G and vice versa, as in the Watson-Crick
scheme). Then, X∈∑*, X=x1,x2,…, xn-1,xn. is a generic DNA
sequence of n nucleotides, XR∈∑* is the reverse of X, and
XC∈∑* is the complement of X:

XR=xn,xn-1,xn-2,…,x2,x1 and XC=¬x1,¬x1,…¬xn-1,¬xn,

The Watson-Crick (WC) complement of a sequence X is :
CRXX)(=

III. PREVENTING UNDESIRED REACTIONS
This criterion forces the set of sequences to form the

duplexes (i.e. double helix) between a given DNA sequence and
its complement, only. It includes a remarkable part of the
design constraints: Hamming distance [14], H-measure,
Similarity and Complementarity to 3’-end. We briefly describe
each of such constraints in the sequel.

A. Hamming Distance
The Hamming Distance between two DNA sequences is the

number of corresponding places where two bases are
complementary [2]. For oligonucleotides x and y the Hamming
distance H(x, y) is given by lining up x, the reverse complement
of y, and subtracting from their common length the number of
identical matches. Under appropriate reaction conditions, all
the oligonucleotides falling within a certain Hamming distance
can hybridize.

B. H-Measure
Let x and y be two DNA strands of any length. The

H-measure is defined as follows:
()()yxHyx k

nkn
σ,min,

<<−
= (1)

where H(*,*) denotes the Hamming distance, σk the right (left)
shift in case of k > 0 (k < 0), k the number of shifts, and y the
complementary pair. The H-measure returns the minimum of
all Hamming distances obtained by successively shifting and
lining up the WC-complement of y against x. So a large
H-measure indicates a good probability that y anneals with x,
provided appropriate chemical conditions do hold.

C. Similarity
It derives from the H-measure and identifies subsequences

with the same structure. To the contrary of H-measure, that
compares sequences in opposite directions 3’-5’ and 5-3, the
similarity compares sequences in the same direction 3’-5’ or
5’-3’. In [28], the similarity measure is defined as:

()()}{ j

k

nknjiji
xxHnSim σ,maxmax

,,
−=

<<−<
 (2)

where xj is a DNA sequence.

D. 3’-end complementarity
In a sticky-end computation, the 3’-end is the most

important constraint for miss-hybridization (i.e. mismatched
hybridization). The 3’-end complementarity imposes that only
logical complementary strands can hybridize with physical too.
A 3’-end miss-hybridization can break the whole computation.

IV. CONTROLLING SECONDARY STRUCTURES
Secondary structures are usually formed by the interaction of

single DNA strands. They include hairpin loops derived from
self complementarity and continuity.

A. Self complementarity
When x and y are subsequences of the same DNA strand, self

complementarity occurs. This is a crucial fact that directly
derives from the H-measure definition, since self
complementarity induces a single DNA strand to anneal itself
making unfeasible the sequence. Thus, a good design must
avoid self complementarity, and each single strand must have
the property that any subsequence is not complementary to any
other ensuring that the H-measure will be always smaller than
the minimal allowed one. Self Complementarity is defined as:

()()}{ i

k

nkni
xxHnSelf σ,maxmax −=

<<−
 (3)

B. Continuity
A reaction can not be well controlled if a nucleotide

contiguous occurrence in a strand is high: the structure of the
sequence, indeed, becomes unstable, and the probability of self
complementarity or accidental hybridization increases.
Continuity is defined as:

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

∑∑
= =

−=
m

i

n

j

i
jNjCont

1 1
)1((4)

where Ni denotes the number of times the same base appears
j-times contiguously in the DNA sequence xi.

V. CONTROLLING CHEMICAL ATTRIBUTES
In many cases, it is desirable to control DNA sequences to

have similar chemical characteristics. Measures for this
criterion includes GC content and temperature of melting.

A. GC content
GC content is the indicator of the melting temperature.

Biological procedures of annealing and melting are just
realized by means of a change in the solution temperature. GC
di-nucleotide provide a rise of the molecular break temperature
allowing the procedure success. DNA strands with largely
different GC contents have different melting temperature.
Therefore, it is more appropriate to have an identical GC
content for all sequences. Moreover, it is better to prefer C with
respect to G, since G can form a base-pair with T, even though
it is not T-complementary. GC content is defined as:

∑
=

−=
m

i

i
defineduser

i
Content GCGCGC

1

)(
_

)()((5)

where GCuser_defined is the target value of GC content of
sequence xi. Usually it is chosen as the 50% of strands in
solution.

B. Melting Temperature
It is defined as the temperature at which the 50% of the

oligonucleotides and their perfect complements couple
themselves, whereas the remaining 50% split themselves.
Different compositions or sizes of DNA strands can affect the
melting temperature in the solution. At the same way of GC
content, the Melting Temperature depends on the computation
strategy. It is defined as [28]:

∑
=

−=
m

i

i
defineduser

i TmTmTM
1

)(
_

)()((6)

where Tmuser_defined is the target value of TM for the DNA
sequence xi that biologists can set with respect to the
computation.

VI. RESTRICTING DNA SEQUENCES
This criterion restricts the composition of a DNA sequence.

In some cases a word can be used for special purposes [14]. For
example, restriction sites can be used for cut and paste
operations on sequences by using nuclease and ligase biological
steps. In order to understand what kind of subsequences can be
used as special purpose word, some enzyme restriction sites are

listed in the Table 1.

VII. TESTING DNA SEQUENCES
We have tested the use of above described constraints on a

variety of DNA sequence sets, which were proposed as input
in scientific works in two different period of time: from 1994 to
2000, and from 2000 to nowadays. The year 2000, indeed,
marks time when studies on the codeword design problem were
born.

Enzyme Living organism Restriction site Nuclease/Ligase

BamHI Bacillus
amyloliquefaciens H

---GGATCC---
---CCTAGG---

---G 3’ 5’ GATCC---
---CCTAG 5’ 3’ G---

BglII Bacillus globigi

---AGATCT---
---TCTAGA---

---A 3’ 5’ GATCT---
---TCTAG 5’ 3’ A---

EcoRI E.coli RY13 ---GAATTC---
---CTTAAG---

---G 3’ 5’ AATTC---
---CTTAA 5’ 3’ G---

HaeII Haemophilus aegyptius

---RGCGCY---
---YCGCGR---

---R 3’ 5’ GCGCY---
---YCGCG 5’ 3’ R---

HindIII Haemophilus influenzae
R

---AAGCTT---
---TTCGAA---

---A 3’ 5’ AGCTT---
---TTCGA 5’ 3’ A---

PstI Providencia

---CTGCAG---
---GACGTC---

---C 3’ 5’ TGCAG---
---GACGT 5’ 3’ C---

SalI Streptomyces albus G

---GTCGAC---
---CAGCTG---

---G 3’ 5’ TCGAC---
---CAGCT 5’ 3’ G---

SmaI Serratia marcescens

---CCCGGG---
---GGGCCC---

---CCC 3’ 5’ GGG---
---GGG 5’ 3’ CCC---

HaeIII Haemophilus egyptius

---GGCC---
---CCGG---

---GG 3’ 5’ CC---
---CC 5’ 3’ GG---

HhaI
Haemophilus
hemolyticus

---GCGC---
---CGCG---

---G 3’ 5’ CGC---
---CGC5’ 3’ G---

HpaII
Haemophilus
parainfluenzae

---CCGG---
---GGCC---

---C 3’ 5’ CGG---
---GGC 5’ 3’ C---

Sau3A

Staphylococcus aureus
3A

---GATC---
---CTAG---

--- 3’ 5’ GATC---
---CTAG 5’ 3’ ---

NotI
Nocardia
otitidis-caviarum

---GCGGCCGC---
---CGCCGGCG---

---GC 3’ 5’ GGCCGC--
---CGCCGGC 5’ 3’ G--

Table 1. Restriction sites of the most used enzymes.

In order to accomplish the test, we have used DNAEdit, that

is to say a Java application specifically devised and
implemented with the aim to help scientists to choose a good
set a codewords. DNAEdit makes use of string matching
algorithms to verify whether or not a given set of input DNA
sequences comply with any of the constrains, and returns a
report containing information about compliance, as well as
error probability which it is possible to fall into during real
computation.

In the two following tables we show the results obtained by
using DNAEdit. The first row of each table contains the
references to works where sequences were taken on, whereas
the first column contains the constraints we looked upon. For
each DNA input set we marked in black the constraints which

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

were not complied with.

Table II shows results of our experiments on sets of DNA

strands belonging to the period 1994 - 2000. Table III shows
results of our experiments on sets of DNA strands belonging to
the period next to 2000. They clearly show that, after 2000, the
codeword choice has been more accurate in compliance with
constraints and the error probability decrease in computation.

[4] [19] [10] [11] [13] [31] [18] [22] [23] [30]

Hamming D. ● ● ● ● ● ●

H-measure ● ● ● ● ●

Similarity ● ● ● ● ●

3’-end C. ● ● ● ● ●

Self comp. ● ● ● ●

Continuity ● ● ● ● ● ●

GC Content ● ● ● ● ● ●

TM ● ● ● ●

Table II. Constraints evaluation on DNA strands from 1994 to 2000 .

[21] [3] [15] [27] [26] [17] [12] [6] [7] [16]

Hamming D. ● ●

H-measure ● ● ●

Similarity ● ● ● ●

3’-end C. ● ● ●

Self comp. ● ●

Continuity ● ● ● ●

GC Content ● ●

TM ● ●

Table III. Constraints evaluation on DNA strands after 2000 .

Figure 1 shows the percentage of computational errors for

each constraints in works pre and post 2000; it also shows a
remarkable difference among physical constraints such as
Hamming distance, H-measure etc., and the chemical ones

such as GC content, MT, etc.

VIII. CONCLUSIONS
In this paper we present results concerning tests about
biological constraints on sets of DNA sequences involved in
in-vitro computations since 1994. Tests show that many
experiments should be executed in laboratory before choosing a
data set as input, because the probability of biological fault is
very high, and, consequently, the probability of erroneous
computations is very high, too.

0
10
20
30
40
50
60
70
80
90

er
ro

rs
 (%

)

1 2 3 4 5 6 7 8
constrains

sice 1994-2000 after 2000

Figure 1. A graphical representation of biological faults in
DNA computations sice 1994. The constrains order is:
1)Hamming Distance, 2) H-measure, 3) Similarity 4)3’-end
Complementarity, 5)Self Complementarity, 6) Continuity,
7)GC Content, 8) Melting Temperature.

Our goal was that of underlining the importance of the

biological constraints when the input is chosen for DNA
computations, and the influence they have in the step of design
and implementation of molecular algorithms.

Eventually, we longed for remarking the value of support
tools, such as DNAEdit, for the help in the design of molecular
algorithms: they can assume, indeed, the role of “middle-man”
instruments between the theoretical realization and the
practical laboratory implementation for any DNA computing
procedure.

REFERENCES
[1] L. Adleman, “Molecular Computation of Solutions to

Combinatorial Problems”. Science vol. 266: pp 1021-1024, Nov.
11, 1994.

[2] M. Arita, A. Nishikawa, M. Hagiya, K. Komiya, H. Gouzu, K.
Sakamoto,,“Improving Sequence Design for DNA Computing,”
in Proceedings of Genetic and Evolutionary Computation
Conference 2000, pp. 875-882, 2000.

[3] R.Barua, J. Misra, “Binary Arithmetic for DNA Computers”.
Lecture Notes In Computer Science; Vol. 2568, pp. 124-132,
2002.

[4] D. Boneh, C. Dunworth, R. J. Lipton. “Breaking DES Using a
Molecular Computer”. Technical Report CS-TR-489-95.
Department of Computer Science, Princeton University, 1995.

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

[5] A. Brenneman and A. Condon, “Strand design for biomolecular
computation,” Theor. Comput. Sci., vol. 287, pp. 39–58, 2002.

[6] W.L. Chang, M. Guo, “Fast Parallel Molecular Algoriths for
DNA-Based Computation: Factoring Integers”. IEE
Transactions on Nanobioscience, vol. 4, n. 2, June 2005.

[7] J. Chen et al. “A DNA-based Memory with in-vitro learning and
associative recall”. Natural Computing (4), pp. 83-101, 2005.

[8] R. Deaton, M. Garzon, R. Murphy, J. A. Rose, D. R.
Franceschetti, S. E. Stevens, “Reliability and Efficience of a
DNA-based Computation”. Physical Review Letters, vol. 80, no.
2, pp. 417–420, 1998.

[9] M. Garzon, R. Deaton. “Codeword design and information
encoding in DNA ensembles”. Natural Computing, vol. 3, pp.
253-292. 2004

[10] F. Guarnieri, M. Fliss, C. Bancroft. “Making DNA Add”,
Science, vol. 273, pp. 220-223, July 1996.

[11] M. Hagiya, “Perspectives on molecular computing” New
Generation Computing. 17(2), 131-140, 1999.

[12] Z. Ibrahim, Y. Tsuboi, 0. Ono, M. Khalid, “Molecular
Computation Approach to Compete Dijakstra’s Algorith”. In
Proc. of 5th Asian Control Conference, 2005.

[13] P. Janczak, T. Mulawka, J.J. Plucienniczak, A “Inference Via
DNA Computing”, Proc. Congress on Evolutionary.
Computation (CEC’99), 2, Washington, USA, pp. 988-393,
1999.

[14] D. Kim, S.-Y. Shin, I.-H. Lee, , B.-T. Zhang, “Multi-objective
Evolutionary Optimization of DNA Sequences for Reliable DNA
Computing,” IEEE Transaction on Evolutionary Computation,
vol. 9, n.2, April 2005.

[15] C. Lampasona. “DNA Computers Applications: Cryptography”.
Innovative Computer Architectures and Concepts, June 2002.

[16] H. Lederman, Joanne Macdonald, Darko Stefanovic, and Milan
N. Stojanovic, “Deoxyribozyme-Based Three-Input Logic Gates
and Construction of a Molecular”. Biochemistry (45),
pp.1194-1199, 2006.

[17] J.Y. Lee et al. “Solving Traveling Salesman Problems with DNA
Molecules Encoding Numerical Values”, Biosystems (78), pp.
39-47, 2004.

[18] A. Leier, C. Richter, W. Banzhaf, H. Rauhe. “Cryptography with
DNA binary strands”. Biosystems , 2000.

[19] [lip2]R. Lipton. “Using DNA to solve NP Complete Problems”.
Science, vol. 268, pp. 542-545, April 1995.

[20] R. Lipton. “DNA Solution of Hard Computational Problems”,
Science, vol. 268, pp. 542-545, April 1995.

[21] M. Mehta. “Evalution of Two Alternative Solutions for
Improving Computer Security”. Technical Report, August 2001.

[22] H. Rauhe, G. Vopper, U. Feldkamp, W. Banzhaf, J. C. Howard.
“Digital DNA Molecules”. Proceedings 6th DIMACS Workshop
on DNA Based Computers, Leiden, The Netherlands, 13 - 17
June 2000.

[23] C. Richter, A. Leier, W. Banzhaf, H. Rauhe, “Private and Public
Key DNA steganography”. Proceedings 6th DIMACS Workshop
on DNA Based Computers, Leiden, The Netherlands, 13 - 17
June 2000.

[24] A. J. Ruben, S. J. Freeland, L. Landweber, “PUNCH: an
Evolutionary Algorithm for Optimizing Bit Set Selection,” in
Proceedings of the 7th International Workshop on DNA-Based
Computers, pp. 260-270, 2001.

[25] J. Sager, D. Stefanovic. “Designing Nucleotide Sequences for
Computation: A Survey of Constraints”. DNA computing: 11th
International Workshop on DNA Computing, pp. 275-289, 2005.

[26] G. Smith et al. “Some Possible Codes for Encrypting Data in
DNA”. Biotechnology Letters (25), pp. 1125-1130, 2003.

[27] M. N. Stojanovic, D. Stefanovic, “Deoxyribozyme-Based
Half-Adder”. JACS 2002.

[28] F. Tanaka, M. Nakatsugawa, M. Yamamoto, T. Shiba, A.
Ohuchi, “Developing Support System for Sequence Design in
DNA Computing,” in Proceedings of the 7th International
Workshop on DNA-Based Computers, pp. 340-349, 2001.

[29] D. C. Tuplan, H. Hoose, A. Condon, “Stochastic Local Search
Algorithm for DNA Word Design,” in Proceedings of 8th
International Workshop on DNA-Based Computers, pp. 229-241,
2002.

[30] P. Wasiewicz, R. Rudnicki, J.J. Mulawka, B. Lesyng. “Adding
Numbers with DNA”. In Proceedings 2000 IEEE International
Conference on Systems, Man & Cybernetics - SMC2000,
Nashville, USA, 265-270.

[31] P. Wąsiewicz et al. “Implementation of Data Flow Logical
Operations via Self–Assembly of DNA”. Lecture Notes in
Computer Science 1586, 1999, Springer, pp. 174–182.

[32] R. B. Wallace et al. “Hybridization of synthetic
oligodeoxyribonucleotides to phi chi 174 DNA : The effect of
single base pair mismatch”. Nucleic Acid Research, vol. 6, n. 11,
pp. 3543-3557, 1979.

[33] Weiss R., Basu S. The Device Physics of Cellular Logic Gates,
First Workshop on Non-Silicon Computing, Cambridge, 2002,
Mass.

[34] J. G. Wetmur. “DNA probes: Applications of the principles of
nucleic acid hybridization”. Critical Rev.Biochem. Molecular
Bio., vol. 26 pp. 227-259, 1991.

[35] J. Santa Lucia. “A unified view of polymer, dumbbell, and
oligonucleotide DNA nearest-neighbor thermodynamics”. In
Proc. of National Acad. Sci. U.S.A, vol. 95, pp. 1460-1465, 1998.

[36] B. Wang et al. “A framework for Modeling DNA Based
Molecular Systems”. Lecture Notes in Computer Science n.
4287, pp. 250-256.

[37] S. Yaegashi et al. “Experimental Validation of the Statistical
Thermodynamic Model for Prediction of the Behaviour of
Autonomous Molecular Computers Based on DNA Hairpin
Formation”. Lecture Notes in Computer Science n. 4287, pp.
428-438, 2006.

[38] M. Yamamoto et al. “Aqueous Computing with DNA
Hairpin-Based RAM”. 10th International Workshop on DNA
Computing 2005. Milan, June 7-10, 2005. LNCS n. 3384, pp.
355-364, 2005.

[39] M. Yamamoto et al. “Conformational Addressing Using the
Hairpin Structure of Single-Strand DNA”. 9th International
Workshop on DNA Based Computers, DNA9, Madison, WI,
USA, June 1-3, 2003,

[40] M. Yamamoto et al. “Sequence Design for Stable DNA Tiles”.
Lecture Notes in Computer Science (DNA 2006), n.4287, pp.
172-181, 2006.

[41] M. Yamamoto et al. “Unravel Four Hairpins!”. Lecture Notes in
Computer Science (DNA06), n. 4287, pp. 381-392, 2006.

[42] X. Zhu, W. Liu. “Template Frame for DNA Computing”. Poster
Proc. of The 12th International Meeting on DNA Computing 2006
(DNA12). June 5-9, 2006, Seoul – Korea.

[43] F. de Santis, N. Di Luca, G. Iaccarino. “DNAEdit: a Java Tool for
the Codeword Problem”. Submitted to 2007 Summer Computer
Simulation Conference (SCSC’07). July 15-18, 2007. San Diego,
CA, USA.

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

