
 
 

 

  
Abstract—The sequence design is a crucial problem in DNA 

based computation. We present results about tests carried on sets 
of  DNA strands proposed in DNA computing papers since 1994. 
Our goal is to direct attention on the necessity of a 
middle-process between logical designing of input and practical 
computation in laboratory. The analysis shows that many input 
sets should not  be used for a real DNA computation because they 
lead to a high probability of incurring in biological faults which 
result to be very unsafe for a reliable computation. 
 

Index Terms—DNA Computing, in-vitro computations, 
sequence  design.   
 

I. INTRODUCTION 
 Many theoretical models of DNA Computing assume that the 
computation is errorless. Adleman [1] and Lipton [19-20], for 
instance, in their experiments used  an input constituted by 
random strands supposing that the probability of errors due to 
undesired and unexpected behaviors of filaments during 
computation was negligible. However, it was empirically 
proved [25] that random sequences are inappropriate for an 
efficient computation, especially when the input solution size 
increases. The codeword design problem, defined in 2004 by 
Garzon and Deaton [9] consists in mapping  the input instance 
of a problem in DNA strands that might ensure, with a high 
reliability level, that chemical reactions such as mismatched 
hybridization, shift hybridization and hairpin are avoided. 
Unfortunately, the codeword design problem has been proved 
to be NP-Complete [9], and, thus,  many scientists use 
evolutionary and probabilistic approaches, or genetics 
algorithms in order to obtain nearly optimal sequences. In 1998 
Deaton et al. used the Hamming distance to avoid hybridization 
errors. In 2000, Arita et al. [2] developed a design system based 
on a genetic algorithm  applying  four specific fitness criteria. 
In 2001, Tanaka et al. [28] proposed a list of design criterions 
to be satisfied, and a sequence origination technique based on 
simulated annealing. In the same year, Ruben et al. [24] build 
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up PUNCH (Princeton University Nucleotide Computing 
Heuristic), a system for the optimization  of  DNA input 
solutions  applying genetic algorithms on a simple 
two-dimensional matrix. In 2002, Tuplan et al. [29] used a 
stochastic method in order to generate automatically good 
DNA strands. More recently, Shin et al [14] formulated the 
DNA sequence design as a multiobjective optimization 
problem and solved it using a constrained multiobjective 
evolutionary algorithm. Real-word DNA sequence design is 
today an open question for in vitro computation, and all kinds 
of sequence generators only improve input design, without 
considering whether  it complies with the instance of the 
problem. 

In this paper we present a set of tests carried on DNA 
sequences which were used in the literature as input to 
molecular algorithms starting from 1994. The aim is to analyze 
how strong can be the influence of a set of well defined 
biological constraints on the input choice with respect to the 
outcome of the computations. The tests were done by means of  
DNAEdit, a Java application [43] specifically devised for 
helping in the codeword design problem. 

 

II. DNA SEQUENCE DESIGN  
The DNA computing uses short  DNA single strands 

(oligonucleotides) as memorization and processing unities. 
The aim of the computing course is simply that of allowing the  
assembly of single strands in longer DNA molecules by means 
of the hybridization process: the solution to a problem may be 
seen, indeed, as an extended DNA strand whose chain depends 
on the input filaments. However, the hybridization process 
requires that the oligonucleotides combine themselves in a 
selective mode well-suited to the computation goals. The 
hybridization between a DNA sequence and its base-pair 
complement is, indeed,  the most important factor to retrieve 
the information stored in  the DNA sequences and operate 
correctly the computation processes. For this reason, DNA 
computations need a set of  DNA sequences which form stable 
double strands on one side, and ensure, on the other, that two 
no complementary sequences do not interact. Non interacting 
or unstable sequences should be even forbidden  to advantage  
any perfectly matched double strand arising from a DNA 
sequence and its complement [5]. Thus, partially 
complementary sequences (mismatched hybridization), 
sequences matching as result of a shift (shifted hybridization), 
and sequences interacting with themselves up to form a 
secondary structure (hairpin) should be avoided, as well as 
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sequences that do not present uniform chemical attributes. 
Since the sequence design is an essential prerequisite for a 

successful  DNA computing, some project constraints have 
been introduced with the aim of  forcing  oligonucleotides to 
exhibit   features  which can avoid, or at least reduce,  the 
occurrence of computation errors, such as wrong 
hybridizations, undesired secondary structures, and 
inconsistency among sequences. As shown in [14], project 
constraints can be classified with respect to four evaluation 
criterions: I. preventing undesired reactions; II. controlling 
secondary structures; III. controlling the chemical attributes of 
DNA sequences; and IV. restricting DNA sequences. Although 
a  high-quality system should deal with all the previous 
constraints at the same time, it is worthy noticing  that such an  
implementation is a very difficult task because of the large 
variety of requirements of each computational architecture. 

Before surveying the features of the DNA sequence 
constraints, let us recall a few of  useful definitions. 
Let ∑*, with  ∑ = { A, C, G, T}, be the alphabet of the four  
nucleotide bases making up DNA strands and ¬x∈∑ the 
complementary  base of x∈∑ (A is the complement of T, C is 
the complement of G and vice versa, as in the Watson-Crick 
scheme). Then,  X∈∑*, X=x1,x2,…, xn-1,xn. is a generic DNA 
sequence of  n nucleotides,  XR∈∑* is the reverse of X, and 
XC∈∑* is the complement of X: 
 

XR=xn,xn-1,xn-2,…,x2,x1 and  XC=¬x1,¬x1,…¬xn-1,¬xn, 
 

The Watson-Crick (WC) complement of a sequence X is :  
CRXX )(=  

III. PREVENTING UNDESIRED REACTIONS 
This criterion forces the set of sequences to form the 

duplexes (i.e. double helix) between a given DNA sequence and 
its complement, only. It includes a remarkable part of the 
design constraints: Hamming distance [14], H-measure, 
Similarity and Complementarity to 3’-end.  We briefly describe 
each of such constraints in the sequel.   

A. Hamming Distance 
The Hamming Distance between two DNA sequences is the 

number of corresponding places where two bases are 
complementary [2]. For oligonucleotides x and y the Hamming 
distance H(x, y) is given by lining up x, the reverse complement 
of y, and subtracting from their common length the number of 
identical matches. Under appropriate reaction conditions, all 
the oligonucleotides falling within a certain Hamming distance 
can hybridize.  

B. H-Measure 
Let x and y be two DNA strands of any length. The 

H-measure is defined as follows:  
( )( )yxHyx k

nkn
σ,min,

<<−
=  (1) 

where H(*,*) denotes the Hamming distance, σk the right (left) 
shift in case of k > 0 ( k < 0), k the number of shifts, and y  the 
complementary pair. The H-measure returns the minimum of 
all Hamming distances obtained by successively shifting and 
lining up the WC-complement of y against x. So a large 
H-measure indicates a good probability that y anneals with x, 
provided appropriate chemical conditions do hold.  

C. Similarity 
It derives from the H-measure and identifies subsequences 

with the same structure. To the contrary of H-measure, that 
compares sequences in opposite directions 3’-5’ and 5-3, the 
similarity compares sequences in the same direction 3’-5’ or 
5’-3’. In [28], the similarity measure is defined as: 
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where xj is a DNA sequence. 
 

D. 3’-end complementarity 
In a sticky-end computation, the 3’-end is the most 

important constraint for miss-hybridization (i.e. mismatched 
hybridization). The 3’-end complementarity imposes that only 
logical complementary strands can hybridize with physical too. 
A 3’-end miss-hybridization can break the whole computation. 

 

IV. CONTROLLING SECONDARY STRUCTURES 
Secondary structures are usually formed by the interaction of 

single DNA strands. They include hairpin loops derived from 
self complementarity and continuity. 

 

A. Self complementarity 
When x and y are subsequences of the same DNA strand, self 

complementarity occurs. This is a crucial fact that directly 
derives from the H-measure definition, since self 
complementarity induces a single DNA strand to anneal itself 
making unfeasible the sequence. Thus, a good design must 
avoid self complementarity, and each single strand must have 
the property that any subsequence is not complementary to any  
other ensuring  that the H-measure will be always smaller than 
the minimal allowed one. Self Complementarity is defined as: 

 
( )( )}{ i

k

nkni
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<<−
 (3) 

 

B. Continuity 
A reaction can not be well controlled if  a nucleotide 

contiguous occurrence in a strand is high: the structure of the 
sequence, indeed, becomes unstable, and the probability of self 
complementarity or accidental hybridization increases. 
Continuity is defined as: 
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where Ni denotes the number of times the same base appears 
j-times contiguously in the DNA sequence xi.   

V. CONTROLLING CHEMICAL ATTRIBUTES 
In many cases, it is desirable to control DNA sequences to 

have similar chemical characteristics. Measures for this 
criterion includes GC content and temperature of melting. 

 

A. GC content 
GC content is the indicator of the melting temperature. 

Biological procedures of annealing and melting are just 
realized by means of a change in the solution temperature. GC 
di-nucleotide provide a rise of the molecular break temperature 
allowing the procedure success. DNA strands with largely  
different GC contents have different melting temperature. 
Therefore, it is more appropriate to have  an identical GC 
content for all sequences. Moreover, it is better to prefer C with 
respect to G, since G can form a base-pair with T, even though 
it is not T-complementary. GC content is defined as: 
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where GCuser_defined is the target value of GC content of 
sequence xi. Usually it is chosen as the 50% of strands in 
solution. 

 

B. Melting Temperature  
It is defined as the temperature at which the 50% of the 

oligonucleotides and their perfect complements couple 
themselves, whereas the remaining 50% split themselves. 
Different compositions or sizes of DNA strands can affect the 
melting temperature in the solution.   At the same way of GC 
content, the Melting Temperature depends on the computation 
strategy. It is defined as  [28]:    
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where Tmuser_defined is the target value of TM for the DNA 
sequence xi  that biologists can set with respect to the 
computation.  
 

VI. RESTRICTING DNA SEQUENCES 
This criterion restricts the composition of a DNA sequence. 

In some cases a word can be used  for special purposes [14]. For 
example, restriction sites can be used for cut and paste 
operations on sequences by using nuclease and ligase biological 
steps. In order to understand what kind of subsequences can be 
used as special purpose word, some enzyme restriction sites are 

listed in the Table 1. 
 
 

VII. TESTING DNA SEQUENCES 
We have tested the use of above described constraints on a 

variety of  DNA sequence sets, which were proposed as input   
in scientific works in two different period of time:  from 1994 to 
2000, and from 2000 to nowadays. The year 2000, indeed, 
marks time when studies on the codeword design problem were 
born. 

  
Enzyme Living organism  Restriction site Nuclease/Ligase 

BamHI Bacillus 
amyloliquefaciens H 

 
---GGATCC--- 
---CCTAGG--- 

---G          3’   5’ GATCC--- 
---CCTAG 5’   3’          G--- 

BglII Bacillus globigi 
 
---AGATCT--- 
---TCTAGA--- 

---A          3’   5’ GATCT--- 
---TCTAG 5’   3’          A--- 

EcoRI E.coli RY13 ---GAATTC--- 
---CTTAAG--- 

---G         3’   5’ AATTC--- 
---CTTAA 5’   3’         G--- 

HaeII Haemophilus aegyptius 
 
---RGCGCY--- 
---YCGCGR--- 

 
---R           3’   5’ GCGCY--- 
---YCGCG 5’    3’          R--- 

HindIII Haemophilus influenzae 
R 

 
---AAGCTT--- 
---TTCGAA--- 

 
---A           3’    5’ AGCTT--- 
---TTCGA  5’    3’          A--- 

PstI Providencia 
 
---CTGCAG--- 
---GACGTC--- 

 
---C          3’    5’ TGCAG--- 
---GACGT 5’    3’          C--- 

SalI Streptomyces albus G 
 
---GTCGAC--- 
---CAGCTG--- 

 
---G          3’    5’ TCGAC--- 
---CAGCT 5’    3’          G--- 

SmaI Serratia marcescens 
 
---CCCGGG--- 
---GGGCCC--- 

 
---CCC 3’    5’ GGG--- 
---GGG 5’   3’ CCC--- 

HaeIII Haemophilus  egyptius 
 
---GGCC--- 
---CCGG--- 

 
---GG 3’    5’ CC--- 
---CC 5’     3’ GG--- 

HhaI 
Haemophilus 
hemolyticus 

 
---GCGC--- 
---CGCG--- 

 
---G     3’   5’ CGC--- 
---CGC5’   3’      G--- 

HpaII 
Haemophilus 
parainfluenzae 

 
---CCGG--- 
---GGCC--- 

 
---C      3’   5’ CGG--- 
---GGC 5’   3’      C--- 

Sau3A 
 

Staphylococcus aureus 
3A 

 
---GATC--- 
---CTAG--- 

 
---          3’  5’ GATC--- 
---CTAG 5’  3’          --- 

NotI 
Nocardia 
otitidis-caviarum 

 
---GCGGCCGC--- 
---CGCCGGCG--- 

 
---GC             3’   5’ GGCCGC-- 
---CGCCGGC 5’   3’             G-- 

Table 1. Restriction sites of the most used enzymes.  
 

 
In order to accomplish the test,  we have used DNAEdit, that 

is to say a Java application specifically devised and 
implemented with the aim to help scientists to choose a good 
set a codewords. DNAEdit makes use of string matching 
algorithms to verify whether or not a given set of input DNA 
sequences comply with any of the constrains, and returns a 
report containing information about compliance, as well as 
error probability which  it is possible to fall into during real 
computation.  

In the two following tables we show the results obtained  by 
using DNAEdit. The first row of each table contains the 
references to works where sequences were taken on, whereas 
the first column contains the constraints we looked upon. For 
each DNA input set we marked in black the constraints which 
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were not complied with.  
 
Table II shows results of our experiments on sets of DNA 

strands  belonging to the period 1994 - 2000. Table III shows  
results of our experiments on sets of DNA strands  belonging to 
the period  next to 2000.  They clearly show that, after 2000, the 
codeword choice has been more accurate in compliance with 
constraints and the error probability decrease in computation. 

  

 

 
[4] [19] [10] [11] [13] [31] [18] [22] [23] [30] 

Hamming D. ●  ●  ● ●  ●  ● 

H-measure  ●  ●   ●  ● ● 

Similarity ● ●   ● ●  ●   

3’-end C.  ● ● ●   ●  ●  

Self comp. ●     ●  ●  ● 

Continuity ●  ●  ●  ●  ● ● 

GC Content  ●  ● ●  ● ●  ● 

TM ●  ●   ●   ●  

Table II. Constraints evaluation on DNA strands from 1994 to 2000 . 
 

   
 

 

 
[21] [3] [15] [27] [26] [17] [12] [6] [7] [16] 

Hamming D. ●     ●     

H-measure    ●    ●  ● 

Similarity ●  ●   ●   ●  

3’-end C. ● ●     ●    

Self comp.    ●      ● 

Continuity   ●  ●  ● ●   

GC Content      ●   ●  

TM  ●        ● 

Table III. Constraints evaluation on DNA strands after 2000 .  
 
Figure 1 shows the percentage of computational errors for 

each constraints in works pre and post 2000; it also shows a 
remarkable difference among physical constraints such as 
Hamming distance, H-measure etc., and the chemical ones 

such as GC content, MT, etc. 
 

VIII. CONCLUSIONS 
In this paper we present results concerning tests about 
biological constraints on sets of DNA sequences involved in 
in-vitro computations since 1994. Tests show that many 
experiments should be executed in laboratory before choosing a 
data set as input, because the probability of biological fault is 
very high, and, consequently, the probability of erroneous 
computations is very high, too. 
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Figure 1. A graphical representation of biological faults in 
DNA computations sice 1994. The constrains order is: 
1)Hamming Distance, 2) H-measure, 3) Similarity 4)3’-end 
Complementarity,  5)Self Complementarity, 6) Continuity,  
7)GC Content, 8) Melting Temperature. 

 
Our goal was that of underlining the importance of the 

biological constraints when the input is chosen for DNA 
computations, and the influence they have in the step of design 
and implementation of molecular algorithms. 

Eventually, we longed for remarking the value of support 
tools, such as DNAEdit, for the help in the design of molecular 
algorithms: they can assume, indeed, the role of “middle-man” 
instruments between the theoretical realization and the 
practical laboratory implementation for any DNA computing 
procedure. 
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