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Abstract—This paper develops an efficient dis-
tributed algorithm for localising motes in a large scale
sensor network using radio interferometric position-
ing. The focus here is on finding exact solutions
while using a relatively small number of measure-
ments, where the effects of noise are largely ignored.
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1 Introduction

For many applications of wireless sensor networks the
determination of the precise locations of the sensors or
motes is a key to achieving the aim of the sensing ap-
plication [3]. Knowledge of the locations of the sensors
is usually crucial but often difficult to determine as the
initial deployment may be random. Generally, cost and
power limitations on the motes mean that they are not
GPS-enabled; thus other techniques for localisation must
be sought.

The localisation problem addressed in this paper is one
where randomly deployed motes must determine their lo-
cations using only their abilities to communicate with
other motes in the network. The networks we consider are
generally multi-hop networks; in a typical low-powered
sensor network individual motes will lack the energy nec-
essary for long range communication and their commu-
nication ranges will be less than the area covered by the
entire network. It follows that localisation algorithms
based on classic multidimensional scaling (MDS) which
depend on the availability of all pairwise distances be-
tween nodes in the network cannot be used for large scale
low-powered networks. In addition, the algorithms we de-
velop rely on far fewer measurements than are required
for MDS methods, and hence have much better scaling
and resource conservation properties.
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There are two main types of multi-hop localisation [3].
In centralised localisation algorithms, global information
can be used to improve the quality of position estimates.
This has the disadvantage of requiring a powerful central
node dealing with the data structures associated with a
large network, and it exposes a single point of failure in
the network. A distributed algorithm makes use of com-
puting and communication capabilities across the motes
with the advantages of natural load balancing and a lack
of reliance on a single point of possible failure. In this
paper we focus on distributed algorithms.

The sorts of distributed algorithms we develop in this
paper are collaborative (or cooperative) self-localisation
algorithms, which make use of local data, having commu-
nication limited to comparatively small neighbourhoods.
Here we allow unknown-location devices to make mea-
surements with known-location references, called anchors
or beacons, and we additionally allow unknown-location
devices to make measurements with other unknown-
location devices. Such distributed algorithms are attrac-
tive because they are robust to network changes and node
failures. The communication cost also scales well with in-
creasing network size [4].

Localisation measurements are typically made using
acoustic signals. These frequently have ultrasonic fre-
quencies due to stealthy operations. Here a transmit-
ter and receiver pair on each mote enables the sensor
nodes to measure inter-node ranges using the time dif-
ference of arrival (TDoA) between the ultrasonic and RF
signals. Such measurements utilising radio usually rely
on received signal strength that is relatively accurate in
short ranges with extensive calibration, but imprecise be-
yond a few metres [6]. Existing wireless sensor network
localisation methods have either adequate accuracy or ac-
ceptable range, but not both at the same time. In this
paper we will consider an alternative method, called the
Radio Interferometric Positioning system (RIPS) method
described in [2], using radio interferometry, which attains
high accuracy and long range simultaneously. In addi-
tion it does not require any sensor on a mote other than
the radio used for wireless communications. Instead of
providing measurements of the distances between pairs
of nodes, it provides measurements which are a function
of two sets of pairwise distances. The technique relies
on a pair of nodes emitting radio waves simultaneously
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at almost the same frequency. The resultant interfer-
ence composite signal will have a low frequency envelope
that can be measured by cheap and simple hardware.
In [2] a centralised localisation algorithm is described
where all measurements are sent to a central processor
which them uses a genetic algorithm to simultaneously
locate all the nodes. In addition, the network is deployed
over a sufficiently small area that all nodes can communi-
cate with one another. In the implementations described,
all possible measurements are taken, thus the number of
transmissions is O(N2) where N is the number of nodes.
The algorithm is thus computationally demanding both
in the number of measurements required and the solution
method.

In this paper we present a distributed algorithm for accu-
rate unambiguous localisation using RIPS measurements,
in the absence of measurement noise. This approach is
suitable for localisation of sensors in a surveillance re-
gion that is larger than the communication range. The
algorithm requires that a small number of anchor nodes,
in known locations, are available. The number of RIPS
measurements is at most linear in the number of nodes,
and usually much smaller, depending on the distribution
and density of motes with respect to their maximum com-
munication range. This results in a critical cost saving,
as the power requirements required for transmissions are
typically significantly more than that of local processing.

Note that although we ignore measurement noise in this
paper, we nevertheless design our algorithms so as to at-
tempt to minimise error propagation, where this can be
done without compromising computational efficiency. A
study of the error propagation inherent in this approach,
and efficient methods of minimising such errors will ap-
pear in a future paper.

2 Preliminaries: A graph model

Let M = {mi} be the set of motes in a given sensor net-
work. Each mote is assumed to be located at a point on
the xy-plane; in other words, we restrict our attention
to localisation in 2-dimensional space. We also assume
that M contains at least three anchors, ie, motes whose
positions are known. All other motes initially have un-
known positions. Our aim is to determine the positions
of all motes using measurements obtained from the Ra-
dio Interferometric Positioning System (RIPS) [2], where
the number transmissions required for such RIPS mea-
surements should be a small as possible. It is assumed
in this paper that the measurement noise associated with
RIPS trilateration is negligible in order to obtain lower
bounds on the effectiveness of this approach. An expla-
nation of how we compute distances and positions from
RIPS measurements is given in Section 3.

For a given wireless sensor network (WSN), we can define
the associated transmission graph GT = GT (M), where

V (GT ) = M and (mi,mj) ∈ E(G) if and only if the
motes mi and mj are within transmission range of each
other in the WSN.

Recall, from Graph Theory, that S ⊂ M is said to be a
clique if the subgraph of GT induced by S is complete
(ie, fully-connected). Furthermore, S is a maximal clique
if, for every mi ∈ M \ S, S ∪ {mi} is not a clique.

We will see in the next section that three RIPS transmis-
sions are sufficient to allow us to determine the positions
of all motes within a clique of GT relative to a small set of
motes in the cliques known as pseudo-anchors. The algo-
rithm we propose in this paper, first covers GT by a set
of overlapping cliques, then propagates the location in-
formation obtained by RIPS measurements in each clique
through the network (via multiple hops) in a rapid and
distributed manner in order to determine the locations
of all motes. In the absence of noise a necessary condi-
tion for this to be possible is that M contains at least 3
anchors and GT is connected.

The remainder of the paper is structured as follows. Sec-
tion 3 describes the localisation of motes in a clique with
respect to the pseudo-anchors in that clique, using RIPS
measurements. Section 4 describes a distributed method
for dividing the set of nodes into a collection of overlap-
ping cliques in order to propagate this location informa-
tion through the sensor network. Section 5 describes cri-
teria and a distributed algorithm for choosing the pseudo-
anchors in each clique. Finally, some computational re-
sults are given in Section 6.

3 Trilateration within a clique

Assume for the moment that we have a clique of GT con-
taining three anchor motes. We wish to locate the re-
maining motes in the clique using RIPS measurements,
as discussed in [2]. The idea is to utilise two transmit-
ters (two of the anchors) to create an interference signal
and compare the phase offset at two receivers. Given a
suitable choice of carrier frequencies, so that there is no
ambiguity of phase over the range of transmission, this
allows one to determine a sum of distance differences. In
particular, if motes A and B are transmitters and C and
D are receivers then the method effectively allows one to
determine

dABCD = dAD − dBD + dBC − dAC ,

where dPQ represents the distance between motes P and
Q.

If we ignore errors due to noise, then the locations of the
remaining motes can be exactly computed, in terms of the
locations of the anchors. Suppose that A, B and C are
three anchors, and that we wish to determine the location
of D.An application of interferometric positioning with A
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and B as transmitters and C and D as receivers yields

dAD − dBD = dBC − dAC + dABCD := k1 (1)

where k1 is a known constant. Similarly, if we set A and
C as transmitters and B and D as receivers we obtain

dAD − dCD = dCB − dAB + dACBD := k2. (2)

As observed in [1], these are the only two independent
measurements of this form that can be obtained from this
configuration. For example, by setting B and C as trans-
mitters and A and D as receivers we obtain Equation (2)
minus Equation (1).

This means that we cannot directly compute dAD, dBD

and dCD by solving a system of linear equations. For
the planar problem, however, the location of D only has
two coordinates, so in theory the above equations should
suffice for determining the location of D. Equations (1)
and (2) each define a branch of a hyperbola in the plane,
so the solution involves finding the intersection of two
hyperbola.

It is shown in [1] that this problem is equivalent to solv-
ing an associated quadratic equation; hence the problem
is exactly solvable, but may have up to two solutions.
Geometrically, these solutions correspond to the inter-
sections of the the two hyperbola branches defined by
equations (1) and (2).

For motes in general position, this potential ambiguity
in the solution can be resolved by performing one extra
RIPS transmission. Suppose the clique contains a fifth
mote E. Then the two transmissions corresponding to
equations (1) and (2) allow us to narrow down the possi-
ble locations of E to at most two points. If we then take
a third RIPS measurement transmitting from, say, A and
D, then the associated hyperbola for receivers B and E
corresponding to each of the two possible positions of D
are independent of the previous hyperbola for E and con-
sequently allow us to determine the locations of both D
and E.

It follows that (with probability 1 — because the motes
are assumed in general position) localisation of all motes
in a clique S can be performed using 3 RIPS transmis-
sions, providing |S| ≥ 5 and S contains 3 anchors. Fur-
thermore, if we replace some or all of these anchors by
pseudo-anchors (ie, motes whose locations are not neces-
sarily known but that are treated like anchors) then the
3 transmissions allow us to determine the locations of all
elements of S in terms of the positions of the pseudo-
anchors, ie, in terms of those variable parameters that
determine the positions of the pseudo-anchors.

It now remains to propagate this location information
through the network (via multiple hops) in a rapid and
distributed manner in order to determine the location of
all motes.

Si

Figure 1: Illustration of a situation where localising
motes in all cliques except Si does not allow the remain-
ing motes in Si to be uniquely localised.

4 Division of M into cliques

The method we propose for propagating location infor-
mation through the sensor network is to cover M by a
collection of overlapping cliques. We first define some
useful concepts.

Definitions: Given a collection of cliques of M : C =
{S1, . . . , Sk}, we define the propagation graph of C to be
GP = GP (C) such that V (GP ) = C and (Si, Sj) ∈ E(GP )
if and only if |Si ∩ Sj | ≥ 3.

The set of cliques C = {S1, . . . , Sk} is said to be admissi-
ble if it satisfies the following conditions:

1. for each Si ∈ C, |Si| ≥ 5;

2. ∪Si = M ; and

3. GP (C) is connected.

Note that the conditions in the above definition for C be-
ing admissible are necessary conditions for being able to
localise all motes by performing RIPS measurements in
each clique and then propagating the resulting location
information through GP . In particular, Condition 1 is
required to guarantee that we can localise all motes in
each clique (as described in Section 3); Condition 2 is re-
quired in order to reach all motes in M ; and Condition 3
is needed in order to ensure that motes in a clique con-
taining no anchors can eventually be uniquely localised.
This last claim follows from the fact that GP is connected
only if each clique intersects some other clique in at least
3 motes. Suppose on the contrary, that clique Si con-
taining no anchors only intersects one other clique, and
that that intersection only contains two motes. Then,
as illustrated in Figure 1, even if we can localise motes
in all other cliques, knowing the relative positions of the
motes in Si may not allow us to localise the remaining
motes in Si as we can reflect the positions of the motes
in Si through the line containing the two motes in the
intersection without changing the relative positions.

Hence, for efficient and effective propagation we aim to
solve the following problem:
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Clique Problem: Find a collection of cliques C =
{S1, . . . , Sk} for M such that:

(i) C is admissible, and

(ii) each clique is as large as possible (ideally, a maximal
clique), and

(iii) the maximum distance (in GP (C)) of any clique in
C from a clique in C containing an anchor is as small as
possible.

Note that (i) guarantees that we can propagate over all
motes, (ii) will help minimise the number of transmis-
sions required, and (iii) will help minimise cumulative
measurement errors.

The problem of constructing maximal cliques is known to
be NP-hard, even in non-distributed settings. It follows
that we require a heuristic approach to the optimisations
in (ii) and (iii) that can be implemented in a distributed
way. For a given mote mi denote by N(mi) the set of all
motes (including mi) within transmission range of mi,
and call it the set of neighbours of mi. We assume that
each mote mi is able to determine N(mi) and compare
its cardinality |N(mi)| with |N(mj)| for any neighbouring
mote mj .

Near-maximal cliques can be constructed by the following
simple greedy procedure ConstructClique which takes
as input a set S ⊆ M and two subsets A ⊆ S and B ⊆ S
such that |A| ≥ 1 and |B| ≥ 1. It returns a clique in
S that contains at least one element of A and at least
min{3, |B|} elements of B (if the resulting clique has at
least 5 elements).

ConstructClique(S,A, B)
X ← ∅
While S is not a clique or a subset of B

If |S ∩A| = 1 and |S| > 5
Then X ← S ∩A

If |S ∩B| > 3
Then choose x ∈ S \X such that |N(x) ∩ S| is

minimum
Else choose x ∈ S \ (B ∪X) such that |N(x) ∩ S|

is minimum
S ← S \ {x}

Return S

The main algorithm for constructing a set of cliques C is
as follows. It takes as input M , the set of motes, including
knowledge of which motes are anchors. For any clique S,
d(S) will denote its distance in GP from the closest clique
containing an anchor mote.

SetOfCliques(M)
1. Set C ← ∅, da ← 0. Label all motes as available.

2. Let Mav be the set of available motes.

Choose an available anchor mote ma ∈ Mav.
Ma ← N(ma) ∩Mav
S ← ConstructClique(N(ma),Ma, {ma}).
Set d(S) ← da and C ← C ∪ {S}.
Label all elements of S as not available.

3. While there is an available anchor, repeat Step 2.

4. Let da ← da + 1.

5. Let Mav be the set of available motes.
Choose T ∈ C with d(T ) = da − 1 and x ∈ T such
that |N(x) ∩ T | ≥ 3 and |N(x) ∩Mav| is as large as
possible.
Mx ← N(x) ∩Mav
S ← ConstructClique(N(x),Mx, N(x) ∩ T ).
If S contains available motes and |S| ≥ 5, set d(S) ←
da and C ← C ∪ {S}.
Label all elements of S as not available.

6. Repeat Step 5 until it no longer reduces |Mav|.

7. Repeat Steps 4 - 6 until Mav = ∅. Return C and da.

Note that the strategy of constructing as many cliques
as possible before increasing da in the algorithm acts to
minimise the maximum distance of any clique from an
anchor clique. It is possible, however, that the algorithm
may produce a set of cliques C such that GP (C) is not
connected. The number of connected components GP (C)
will be at most k, the number of anchors in M . In general,
we would require only a small number of extra cliques to
interconnect these components (usually, no more than
k− 1 cliques). In order to connect all cliques we now run
the following algorithm, which takes as input C (the set
of cliques from the previous algorithm).

ConnectCliques(C)
1. Choose a connected component of GP (C). Let K ⊆ C

be the set of cliques in that connected component.

2. Label all motes not in a clique of K as available

3. Let Mav be the set of available motes.
Choose T ∈ K with d(T ) = da − 1 and x ∈ T such
that |N(x) ∩ T | ≥ 3 and |N(x) ∩Mav| is as large as
possible.
Mx ← N(x) ∩Mav
S ← ConstructClique(N(x),Mx, N(x) ∩ T ).
If S contains available motes and |S| ≥ 5, set C ← C∪
{S} and set K ← (all cliques in the same connected
component of GP (C) as S).

4. Repeat Steps 2 - 3 until Mav = ∅. Return C.
This procedure computes a good heuristic solution C to
the Clique Problem. It is straightforward to see that
these algorithms can be implemented in a distributed set-
ting.
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5 Choosing Pseudo-anchors

Having constructed a set of cliques C solving the Clique
Problem we now have an efficient way to propagate loca-
tion information throughout the network, via the prop-
agation graph GP (C). However, within each clique we
have the question of which motes to choose for the trans-
missions.

Pseudo-Anchor Problem: Given a clique in M , which
3 motes do we choose as pseudo-anchors to localise the
rest?

Note that we may not have a completely free choice. If the
clique contains an anchor it obviously should be chosen
as one of the three pseudo-anchors. Also there may be an
advantage in choosing a mote in the intersection of two
cliques to be a pseudo-anchor for both cliques, as it will
reduce the number of parameters in the whole system.

Beyond these more obvious criteria, it is clear that to
reduce errors we should aim to choose motes that are
as widely spread within the clique as possible. We can
attempt to do this in a distributed way by using each
mote’s knowledge of its set of neighbours. Let “4” denote
symmetric difference. Then two motes mi and mj in a
clique will tend to be far apart if |N(mi) 4 N(mj)| is
large. In particular, for a uniform random distribution
of motes the probability of the two most distant motes
mi and mj in a given clique having the maximum value
of |N(mi)4 N(mj)| in the clique converges to 1 as the
number of motes and their density increases.

Given a clique S ∈ C we can try to find mi,mj ,mk ∈ S
such that

F (i, j, k) := |N(mi)4N(mj)|+ |N(mi)4N(mk)|
+ |N(mj)4N(mk)|

is as large as possible. This will tend to ensure that
mi,mj ,mk are nicely distributed close to the boundary
of S.

We now describe an efficient heuristic algorithm for find-
ing such a triple mi,mj ,mk. First observe that

F (i, j, k) = 2(|N(mi) ∪N(mj) ∪N(mk)|
− |N(mi) ∩N(mj) ∩N(mk)|).

For the given clique S, the following algorithm provides
an efficient greedy approach to maximising F (i, j, k).

MaximumSpread(S)
1. For each mi ∈ S the mote mi computes |N(mi)| :=

K1
i .

Choose mi such that K1
i is maximum.

Set a(1) ← i (where i is the index such that K1
i is

maximum.)

2. For each mi ∈ S \ {ma(1)} the mote mi computes
|N(mi) \N(ma(1))| := K2

i .

Choose mi ∈ S \ {ma(1)} such that K2
i is maximum.

Set a(2) = i.

3. For each mi ∈ S \ {ma(1),ma(2)} the mote mi com-
putes |N(mi)\(N(ma(1))∪N(ma(2)))|−|N(ma(1))∩
N(ma(2)) ∩N(mi)| := K3

i .
Choose mi ∈ S\{ma(1),ma(2)} such that K3

i is max-
imum.
Set a(3) = i.

4. Return ma(1),ma(2), ma(3).

The reason that ma(1), ma(2), ma(3) make a good choice
of pseudo-anchors of S is as follows:

From the algorithm it is easy to see that

K1
a(1) + K2

a(2) + K3
a(3) =

1
2
F (a(1), a(2), a(3)).

Now note that in Step 1 we have chosen K1
a(1) so that it is

maximum among all K1
i ’s. Similarly, Step 2 ensures that

K1
a(1) + K2

a(2) is maximum for the given choice of a(1) in
Step 1. Finally, Step 2 ensures that K1

a(1) +K2
a(2) +K3

a(3)

is maximum for the given choice of a(1) and a(2) in the
previous steps.

It follows that the above algorithm is a greedy (thought
not, generally, optimal) algorithm for finding a set of
pseudo-anchors mi,mj),mk so that F (i, j, k) is large. It
is clear that it can be easily implemented in a distributed
setting.

The above algorithm is linear and can be shown to have
an approximation bound of 2/3. That is, if Fmax :=
max(F (i, j, k)), where the maximum is taken over all
mi, mj ,mk ∈ S then for motes ma(1),ma(2),ma(3) found
via the above algorithm, we have

F (a(1), a(2), a(3)) ≥ 2
3
Fmax.

We can improve the bound to 7/9 by modifying the al-
gorithm to a quadratic algorithm where ma(1),ma(2) are
first chosen so that K1

a(1) + K2
a(2) is maximum (over any

choice of a(1), a(2)) which can be done in quadratic time,
and then finding a(3) via Step 3 above. Proofs of these
approximation bounds are not given here.

6 Computational Results

The behaviour of the distributed self-localisation scheme
has been examined for the scenario shown in Figure 2, via
a series of simulations. Anchor nodes were placed at the
vertices of a square with side length 250m. The unknown
nodes were randomly distributed in the region [10, 240]2.
Of particular interest was the number of cliques formed in
the proposed approximate solution to the clique problem.
The number of radio transmissions required to acquire
RIPS measurements, given by three times the number
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of cliques, was compared to the number of radio trans-
missions required to gather all possible RIPS measure-
ments (as used in [2]). Results were obtained for various
numbers of unknown nodes and various communication
ranges. Note that we have not included radio transmis-
sions required to construct the cliques or determine the
pseudo-anchors.

Region containing

unknown nodes

6

?

25
0m

-¾

230m

Figure 2: Localisation scenario. Circles indicate the an-
chor node locations. The unknown nodes are randomly
distributed within the inner 230m × 230m square.

Tables 1 and 2 respectively show the number of radio
transmissions for the proposed scheme and for the case
where all possible RIPS measurements are collected. Re-
sults are shown for various numbers of unknown and var-
ious communication ranges. It can be seen that the pro-
posed scheme requires an extremely small number of ra-
dio transmissions which remains essentially constant as
the number of nodes increases for a fixed observation re-
gion and communication range. For a given surveillance
region, decreasing the communication range will tend to
decrease the size of the cliques therefore increasing the
required number of cliques. For a random deployment
of q motes, each with communication range R, the ex-
pected number of transmissions required to find all mea-
surements is proportional to q2R. The results shown in
Table 2 indicate that collecting all measurements will be
very difficult for any reasonably sized network.

Table 1: Number of radio transmissions required for mea-
surement collection for the proposed scheme.

R (m) Number of nodes
50 75 100

100 48 39 33
125 27 33 30
150 15 15 15

An important issue which is only partially addressed by
the proposed localisation scheme is identifiability, that

Table 2: Number of radio transmissions required for col-
lection of all possible measurements.

R (m) Number of nodes
50 75 100

100 573 1203 2060
125 789 1672 2888
150 980 2120 3638

is, the capacity of the measurements to provide the in-
formation needed to unambiguously localise the motes.
The proposed scheme guarantees local identifiability of
the node locations; in other words if we know that the
motes lie in a small region we can localise them. It does
not guarantee global identifiability. In some cases, where
the motes are sparsely distributed, it may be necessary
to take additional measurements to ensure global identi-
fiability. This raises two interesting questions for future
research. First how do we ascertain global identifiabil-
ity and second, for a scenario without global identifiabil-
ity, which measurements should be taken to give global
identifiability. We will return to these topics in future
publications.
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