
Modified Energy Efficient Cache Invalidation
Algorithm in Mobile Environment

S. Sankara Gomathi, S. Krishnamurthi

Abstract – Maintenance of the cache consistency is a

complicated issue in the wireless mobile environment. Caching of
frequently accessed data items on the node can reduce the
bandwidth requirement of the mobile node environment. In this
paper, we present a new technique called Modified Energy
Efficient Cache Invalidation Algorithm (MEECIA) especially to
reduce the uplink bandwidth consumption in the wireless ad-hoc
network, by choosing following modes: Slow, Fast, Super-fast.
The mode is selected based on threshold specified for time and
the number of node requesting the updated data to other node.
Simulation results demonstrate that our algorithm is efficient in
improving mobile caching, reducing the communication
bandwidth and also efficiently utilizing the energy in ad-hoc
network. Compared to the previously reported cache based
Invalidation Report (IR), our scheme can significantly improve
the performance in terms of energy consumption and reduce the
query latency in ad-hoc network.

Index Terms - Mobile caching, Cache consistency, Query
latency, Broadcast bandwidth, IR, Timestamp.

I. INTRODUCTION
 A wireless ad-hoc network is a computer network, in which
the communication links are wireless. The network is ad-hoc
because each node is willing to broadcast and requests the data
for other nodes and so the determination of which node
broadcast the data, is made dynamically based on the number
of request from other nodes. Nodes participating in ad-hoc
network have limited bandwidth and battery power [1]. So the
data communications in these networks are more challenging
than in wired network.

Introducing caching technique for frequently accessed data
item at each node leads to better utilization of bandwidth and
improve the overall performance of the system [2],[3]. This
cache consistency between each node is maintained by
generating IR for updating the cache. Caching of frequently
accessed data at the mobile node has been considered to be
very useful and efficient mechanism for conserving the
bandwidth [11],[3],[4]. Because average data access latency is
reduced as several data access requests can be satisfied from
the cache. The IR consists of the information about objects
that have been updated recently [13]. Node needs to invalidate
an object that are found in the report and salvage their content
that is still valid.

S.Sankara Gomathi is pursuing research work at Anna University in the
field of mobile communication. She is an Assistant professor of Sri
Venkateswara College of Engineering in India (email:
sgomathisubhra@yahoo.com)

S. Krishnamurthi is a Professor of Electronics and Communication
department, Anna University, India (email : skmurthi@gmail.com)

In wireless ad-hoc network every node will act as a server
and each node maintains certain data items. A node can
request for a particular object which will go to the
corresponding server. Transition of the node to corresponding
mode will depend on the number of node request to the
particular object and each node request is quenched as per the
mode.

An algorithm proposed by this paper provides both packet
and power efficiency in ad-hoc network. That is, the ability of
the algorithm is to minimize the total number of packets sent
on a wireless link, and the ability to minimize the battery
power consumed by the node. Also we address the problem of
cache invalidation scheme in ad-hoc network environment and
proposes new cache invalidation scheme for improving the
energy consumption with low query latency and also it
improves the packet and power efficiency by introducing
different modes of operation by each node. Thus an efficient
implementation of the MEECIA algorithm is presented and
simulations have been carried out using java simulator to
evaluate its cache effectiveness.

II. RELATED WORK
In the literature there are two types of cache consistency

maintenance algorithms proposed [3], [6], [10]. They are
stateful and stateless. Stateful approaches are scalable, but
they incur significant overhead due to server database
management. In stateless approach, the server is not aware of
the state of the client’s cache. The clients need to query the
server to verify the validity of their cache before each use,
which not only wastes the scarce wireless bandwidth, but also
consumes a lot of battery energy. Therefore there is a need for
developing scalable and efficient algorithm for maintaining
cache consistency in mobile environments.

Authors in [5],[8] explained that the data dissemination is
the delivery of data from memory of one node to the number
of other nodes. Data dissemination strategy follows periodic
and aperiodic dissemination. Periodical broadcasting of the
data allows the node to disconnect for certain period, without
missing out items. However aperiodic dissemination is a more
effective technique of using the available bandwidth.

Authors in [15] proposed that the mobile station broadcasts
the IR periodically to other node. Once the report has been
generated, the node invalidates its cache accordingly. But
some times the node cannot receive the IR (if it is in the
disconnected state), then the node may be forced to discard the
entire cache content, when the disconnection time exceeds
certain threshold.

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

Fig 1. Periodic Broadcasting

Each node needs to decide whether to send the data

periodically or aperiodically. Periodic transmission has the
advantages over aperiodic transmission. Periodic transmission
of data can reduce the uplink request, and also it consumes
large amount of energy as shown in fig 1. Whereas in
aperiodic transmission, each time the node is requesting the
data as in fig 2 more bandwidth is required. The bandwidth in
the downstream direction is much greater than the
upstream direction [6].

Authors in [15] also explained that the cache invalidation is
based on the periodic broadcasting of invalidation report. The
node listens to the report to identify the cache validity. If the
cache is not valid the node sends the query and refreshes its
cache, and the node keeps a list of items queried during an
interval and answers them after receiving the next IR. If two
or more queries for the same item are requested, then all will
be answered at the next IR as shown in fig 1.

Authors in [9] explained that, each node is maintaining
certain data item depending upon the application. The node
issues only simple requests to read the most recent copy of a
data item from other nodes. Invalidation report has been
generated, either when any updates take place at a particular
node or the data items needed by other node. Additionally,
such architectures should be scalable to support large database
system as well as large number of nodes. This algorithm
maintains the cache consistency between nodes and reduces
the query latency.

III. CACHE INVALIDATION SCHEME

A. Broadcasting Timestamp Algorithm:

In Timestamp Algorithm (TS), the server identifies the data
that has changed in the last ‘w’ second. Thus, the invalidation
report is composed by the timestamps of the latest change for
items. The Mobile User (MU) listens to the report and updates
the status of its cache. For each item cached, the MU either
purges it from the cache (when the items is reported to have
changed at a time larger than the timestamp stored in the
cache), or updates the cache’s timestamp to the timestamp of
the report (if the item was not mentioned). Notice that this is
done for every item in the cache.

The server begins to broadcast the invalidation report
periodically at times Ti = i×L. The server keeps a list LSi, Qi
as follows.

Fig 2. Aperiodic Broadcasting

LSi - {[d, tsd] | (d ε D) Ti-w < tsd < Ti}
 tsd - The timestamp of the last update of 'd’
Qi - {j | j has been queried in the interval [Ti-1, Ti]}
The MU keeps a variable ‘T1’ that indicates, the last time it

received a report. If the difference between the current report
timestamp and this variable is larger than w, the entire cache is
dropped. More formally, the MU runs the algorithm as:

if (Ti – Tl > w) { drop the entire cache; }
else {
 for every item d in the MU cache {
 if ([d, tsd] is in LSi) {
 if (tsc < tsd) { throw d out of the cache;}
 else { tsc = Ti; }}}}
 for every item d ε Qi {
 if d is in the cache
 {use the cache’s value to answer the query; }
 else { go uplink with the query; }}Tl = Ti;

Algorithm 1. Checking Cache Validity using Broadcasting

Timestamp Algorithm

B. Simple Checking Algorithm:

 After a long period of disconnection, most of the cached
data still have not been updated. But they are retained in the
local cache after the node is disconnected, results in
significant reduction of bandwidth because the MU can use its
local cached data. But in order to retain the cached data, it is
necessary to identify the cached data that are still valid and
should be purged.

A straightforward way of checking cache validity, either at
the object level or the group level, is to simply send the object
or group ids and their timestamp to the server. But it requires
uplink communication cost to send. Instead, it is sufficient to
just send Tlb with object ids or group ids to the server. This is
because, once a MU processes a new IR, all the valid cache
entries can be viewed as being time stamped at that moment.
The server can check the validity of an object or a group of
objects based on Tlb, the timestamp of the latest broadcast
report received by a MU. The server then compares Tlb with
the object update timestamp stored in the server, and sends a
validity report back to the MU. The algorithm for query
processing using simple checking scheme as:

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

for every obi ε IR{
 if (obi is in cache and tsd > tsc) { Invalidate obi ; } }
 if (Tlb < (T-w×L)){
 send Tlb and all object ids that are not yet invalidated
 to the server and wait for the validity report;
 Invalidate the cache according to the report;}
 for every item q ε QList {
 if all object referenced by q are in the cache
 { process q;}
 else { send missed object ids to the server;}}Tlb = T;

Algorithm 2. Query Processing using Simple Checking

Algorithm

Once MU receives an IR, it first invalidates its cache

according to the IR. Then, when it wakes up from a
disconnection and Tlb < (T – w×L), it sends the cached objects
that are not yet invalidated to the server for validity checking.
Note that since IR contains the object ids that were updated
during the past w broadcast intervals, no validity checking is
necessary if Tlb ≥ (T – w×L). After receiving the validity
report from the server, the MU then processes the queries.

These algorithms generate the periodical broadcasting of IR
for updating the cache. This may require large amount of
bandwidth and energy that leads to the node to be suspended
from its network soon. Hence cache consistency problem
occurs. But our algorithm is efficient in improving mobile
caching, reducing the communication bandwidth and also
efficiently utilizing the energy in ad-hoc network.

IV. PROPOSED WORK

A. Cache Invalidation in Ad-hoc Network:

Our work introduces the stateful cache invalidation
algorithm. This mainly focuses to optimize the bandwidth
utilization and energy consumption in ad-hoc network. The
major focus is that every node is having the capability of
broadcasting the updated data items. Each node is having the
same amount of energy to maintain certain data item.
Frequently accessed data items are caches for reducing the
bandwidth requirement. Nodes in ad-hoc network contain the
following information (gid, id, object, TS). Each node
maintains a counter for counting the number of nodes
requesting the data item and the request registry for
identifying which node is requesting the updated data item.
The bandwidth utilization is in the order of (gid, TS) > (id,
TS) > (object, TS). TS specify the time value of the latest
changes for the item in the group.

Our algorithm specifies three modes of operation for
broadcasting the data to invalidate the cache. These modes are
named as: Slow mode, Fast mode and Super-fast mode.

a. Slow Mode:
The system is said to be in slow mode when the

broadcasting node will be initially broadcasting (gid, TS) and
also assumes not too many nodes are requesting the updated

objects. The broadcasting node counts the number of request
sent by the nodes for the updated object within a threshold
period (Timeth) and keeps track of how many nodes are
participated in requesting the object.

b. Fast Mode:
In fast mode the node broadcast (id, TS) while the number

of request from the node reaches the specified threshold level
(nodeth-high) and the number of request increases than the
lower threshold value (nodeth-low). At the particular time
interval, the node counts the number of request sent by the
nodes for broadcasting the IR in fast mode. If the number of
request sent by the nodes decreases than higher threshold
value (nodeth-high), the system may enter either into the slow
mode or enter into the super-fast mode.

c. Super-fast Mode:
In the super-fast mode the node acts like asynchronous

manner for fixed time (Timefixed) interval, and send the point
to point message to the node whose data has been changed. If
the number of request sends by the node increases than the
higher threshold value (nodeth-high), then the node is answered
by super-fast mode. After the time (Timefixed) is elapsed, the
system again enters into the fast mode. Compared to other two
modes, the super-fast mode saves the uplink bandwidth
efficiently.

This algorithm uses varying time intervals instead of fixed
time intervals for broadcasting IRs or object. So we start this
algorithm with the long time interval and make the time
window half if the number of updates exceeds a threshold i.e.,
the time interval for slow mode is 20 sec, the time interval for
fast mode is 10 sec and the fixed time interval for super-fast
mode is 2 sec. And also each node will be able to broadcast IR
and receives IR to update its cache.

B. Broadcasting Node:

 In an ad-hoc network, each node is responsible for
constructing IR at a predefined time period. The broadcasting
node follows three modes of operation for generating the
invalidation report, to update the cache. Depends on the
number of request sent by the node, the respective mode has to
be selected to update the cache. The formal description of the
algorithm at the broadcasting node is as follows. The notations
related to data items and modes of operations are specified in
Table1 and Table 2.

Table 1. Data items description

 Symbols Description
 Id id of the data
 ID The set of database id
 gid Group id of the data
 D The set of data item
 nid id of all node
 IR Invalidation Report
 TS Time Stamp
 w Window size

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

Table 2. Modes of operation

Table 3. Description of the data at the receiving node

 Symbols Description
 Reqi {d | d has been queried before Ti}
 T1 The timestamp of the last received IR
 TSc Timestamp of cached data item d
 Reqdata Request registry for identifying which

node is Requesting the data item

(A)Slow Mode:
At interval time Ti construct IRi as follows:
IRi = {[gid, TS] | [gid ε {ID}]Λ[Ti- Llow ×w<TS< Ti]}
Broadcast IRi, Llow; Receive Reqdata;
Compare Reqdata with its Cachedata and Start Timer;
for every node (id ε nid) {
 for every (id(Cachedata) ε Reqdata) {
 Update (nodecnt) and get id of node to (Regreg); }
 if {(nodecnt<=nodeth-low)Λ(Lth =Llow)} {
 Broadcast d ε D and Clear (nodecnt) and (Regreg); }
else if (nodecnt>nodeth-low) { Execute Step (B); }
else if (nodecnt>nodeth-high) { Execute Step (C); }
else {Refer the next id(Reqdata) ; } }

(B)Fast Mode:
At interval time Ti construct IRi as follows:
IRi = {[id, TS]| [id ε {ID}]Λ[Ti- Lhigh ×w<TS< Ti]}
Broadcast IRi, Lhigh; Receive Reqdata;
Compare Reqdata with its Cachedata and Start Timer;
for every node (id ε nid) {
 for every (id(Cachedata) ε Reqdata) {
 Update (nodecnt) and get id of node to (Regreg); }
 if {(nodecnt<=nodeth-high)Λ(Lth =Lhigh)}{
 Broadcast d ε D and Clear (nodecnt) and (Regreg); }
 else if (nodecnt<nodeth-low) {Execute Step (A); }
 else if (nodecnt>nodeth-high) {Execute Step (C); }
 else {Refer the next id(Reqdata); } }

C)Super-fast Mode:
At interval time Ti construct IRi as follows:
IRi = {[d, TS]| [d ε D]Λ[Ti- Lhigh ×w<TS< Ti]}
Broadcast IRi, Lfixed(Point-to-Point);
Execute Step (B) after Lfixed elapsed;

C. Receiving Node:
The receiving node validates its cache based on the received

IR. If the node missed the IR, it will wait for the next IR. Then
it prepares the list of invalidated data items. Those are sending
back to the broadcasting node. Using any one of three modes
the updated data items are reported to the receiving node.
Upon reception, the node updates its cache. The node serves
this data item to answer the query. The formal description of
the algorithm at the receiving node is as follows. The notations
are described in Table-3.

(A)When the node receives IRi and Lth
for every receiving node [id(Cachedata) ε id(IRi)]{
 if(Lth = Lfixed) {
 Download d to its local cache and update;
 Use d to answer the previous query;
 Wait until Lfixed elapsed; }
else if(Lth = Lhigh) {
 if(T1<(Ti- Lth ×w)) {
 Drop the entire cache or send request to verify the

cache;
 for each data item [d, TSc]in the [Cachedata] {
 idnode = id(IRi);
 if(([d, TS] ε data(idnode)) Λ(TSc < TS) {Invalidate d;}
 for each id received {
 if (id ε Reqdata(id)) {
 Download d to its local cache and update;
 Update its cache with newly arrived data;
 Use d to answer the previous query; }}
 if d is an invalid cache item {
 Download d into local cache update;}T1=Ti;
 if(Reqi ≠ 0) then request(Reqi); }}}
 else if(Lth = Llow) {
 if(T1<(Ti- Lth ×w)) {
 Drop the entire cache or send request to verify the cache;
 for each data item [d, TSc]in the [Cachedata] {
 idnode = id(IRi);
 if(([d, TS] ε data(idnode)) Λ(TSc < TS) {Invalidate d;}
 for each id received {
 if (id ε Reqdata(id)) {
 Download d into local cache update;
 Use d to answer the previous query; } }
 if d is an invalid cache item {
 Download d into local cache;}
 T1=Ti;
 if(Reqi ≠ 0) then request(Reqi); } }

 (B) request(Req)
 Reqdata = 0; For each d ε Req {
 If d is valid in the [Cachedata]
 { Use cache’s value to answer the request ;}

 Symbols Description
 Lth The time threshold
 Llow Time interval for slow mode
 Lhigh Time interval for fast mode
 Lfixed Fixed time interval for super-fast

mode

 Reqdata An id list of data items a node requested
from other node

 Cachedata An id list of data items a node contains
 in its cache

 Regreg Request registry for identifying which
node is Requesting the data item

 nodecnt Number of node count
 nodeth-low the lower threshold number of nodes
 nodeth-high the higher threshold number of nodes

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

 else { Reqdata = Reqdata U d;}
 Send request (Reqdata) to the broadcasting node;

Each node is broadcasting the data, which resides in its

cache. The receiving node either updates its cache, or sending
the request back for some particular data item, thereby the
requesting node has been answered by proper mode of
operation for the application. Thereby we can efficiently
increase network communication and throughput. In this
algorithm, we can also minimize the number of request of the
system, compared to other algorithm.

V. PERFORMANCE ANALYSIS
We developed a simple model to analyze the performance

of the proposed cache invalidation scheme in ad-hoc network.
Most existing IR-based cache invalidation algorithms
[3],[5],[7],[15] are proposed to deal with the long
disconnection problem. Since they are based on the TS
algorithm [15], but our major concern is not to deal with the
long disconnection problem, we only compare the
performance of the TS algorithm and the proposed algorithm.

The performance of MEECIA algorithm has been improved
by implementing three modes of operation. These modes are
evaluated based on the metrics such as energy consumption
and query delay. The energy consumption contains three
components: the energy consumed on cache invalidation,
uplink request and to download the desired data and updating
the cache. Based on this the bandwidth consumed when the
number of request by the node increases at the appropriate
level. Query delay occurs because of the waiting time
increases for updating the cache. In order to evaluate the
efficiency of various invalidation algorithms, a simulation
model has been developed.

A. Simulation Model and System Parameters:

 The simulation model consists of the wireless nodes
without any base station. Each one is maintaining certain data
items in its cache. The data base of the node can only be
updated when the queries are made by other nodes. The
simulation model has been implemented in Java based
simulation package.

The nodes are broadcasting the IRs periodically to other
nodes. The broadcasting nodes assign the highest priority to
IR broadcasting, and equal priorities to the rest of the
messages. All other messages are served on FCFS basis. The
node defers IR broadcasting, until it finishes the current packet
transmission. However, the next IR should be broadcasted at
its originally scheduled time interval.

Each node is generating the read-only queries for updating
its cache. If the data item is needed by the application, the
node checks whether the data item is presented in its local
cache memory. If the referenced data item is not in the cache,
the item ids are sent to that corresponding node for fetching
the data items. The node cache management follows the LRU
(Least Recently Used) replacement policy [14]. In our
algorithm, if there are invalid data items, the node replaces the
oldest invalid item. If there is no invalid cache item, the node

replaces the oldest valid cache item. The difference is due to
the fact that the node in our algorithm can download data from
the broadcast channel.

B. Simulation results:

Experiments were run using different workloads and system
settings. The performance analysis presented here is designed
to compare the effects of different workload parameters such
as energy consumption level and query delay on the relative
performance of the TS algorithm and MEECIA algorithm. Our
goal is to minimize the number of node request and the
reduction of query delay in mobile environment for the limited
battery power.

a. Energy Consumption:

In the mobile environment, each node has certain energy
level for transmitting and receiving the data. The energy of the
node reduces, when the node requests the data item and the
waiting time for updating its cache increases [12]. A detailed
explanation is given below by comparing our algorithm with
TS algorithm.

According to our algorithm the node has to perform three
modes of operations. Based on this, we can efficiently utilize
the energy when the number of request is increased. The fig 3
shows the energy consumption of the node while the node
request varies from 2 to 8. At first all node has the same
energy level of 1000. Energy is consumed when the node
request the data. From the result we can say that our algorithm
consumes less energy than TS algorithm.

The fig 4a shows the energy consumption range of both
algorithms. At every second the node energy is consumed
depends on its communication pattern. Say for example at 5th
sec. the energy level of our algorithm is making the
communication effectively. Otherwise, the node may miss its
IR and cache consistency problem will occur. The fig 4b
shows the energy consumption of each node. Once the node
updates its cache either by MEECIA algorithm or TS
algorithm the energy level of the node is measured. Energy
utilization of each node in TS algorithm is greater than the
MEECIA algorithm (see fig 4b). From the simulation results
based on the energy consumption parameter the MEECIA
algorithm is considered as a best energy efficient algorithm for
the nodes in ad-hoc network.

b. The Query Latency:

 We measure the query delay as a function of mean query
arrival time, and the mean update arrival time. Comparing
with TS algorithm, our algorithm significantly improves the
query delay. Each node generates the query according to the
mean query generate time. If the queried data item is present
in its local cache, the node serves the data from its local cache
or the query has to be served by other nodes. So the node is
waiting for processing the query by observing the IR. The IR
contains the limited amount of data items. It cannot answer for
all queried items at IR interval. So some queries are answered
with delay.

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

Fig 3. Energy consumption parameter

on request

Fig 4a. Energy consumption verses
Time Period

Fig 4b. Energy consumption

of each node

 Fig 5a. Query latency as a function
 of mean query generate time

 Fig 5b. Query latency as a function
 of mean update arrival time

The fig 5a shows the query delay as a function of the mean
query generated time. When the query generate time is lower
than 5sec, the query delay of the TS algorithm becomes
infinitely long. However, in MEECIA algorithm even when
the query generates time reaches 3sec, the query delay
becomes very less compared to TS algorithm.

In our algorithm, without considering the priority request, a
node cannot answer the query until it receives the IR. As
shown in fig 5b, as the mean update arrival time increases,
the cache hit ratio increases and the query delay decreases.
Since our algorithm has high cache hit ratio than the TS
algorithm, the query delay of our algorithm is shorter than TS
algorithm. Comparing our algorithm with TS algorithm, our
algorithm significantly improves the energy and reduces the
query delay.

VI. CONCLUSION
 Thus the IR-based cache invalidation has received

considerable attention due to its scalability. Most of the
existing IR-based cache invalidation algorithm concentrates
on dealing with the long disconnection problem, and not much
work has been reported to address the demerits associated with
the IR-based algorithm. In this paper, we propose a cache
invalidation algorithm for improving the energy consumption
and query latency by reducing the number of request sends by
the node in an ad-hoc network. Our algorithm implements
three modes of operation for reducing the request of the nodes
and responding quickly for reducing the query delay. As a
result, most unnecessary request and broadcast bandwidth can
be avoided and the energy can be saved. The various
simulation results show that the proposed algorithm can
reduce the number of request by the node, improve the energy
consumption and also reduce the query latency compared to
the TS algorithm.

An LRU based cache replacement is used in this paper. In
future, we can study the impact of various replacement
algorithms on the performance of MEECIA algorithm.

REFERENCES
[1] T. Imielinski and B. R. Badrinath. “ wireless computing: challenges in

data management” Communications of the ACM, 37(10), Oct. 1994.
[2] K. Wu, P.S. Yu, and M. Chen, “Energy- Efficient Caching for Wireless

MobileComp,” Proc. of IEEE ICDE,New Orleans, pp.336-343, Feb.’96.
[3] G. Cao, “A Scalable Low Latency Cache Invalidation Strategy for Mobile

Environments,” Proc. of ACMMOBICOM, Boston, MA, 2000
[4] G. Cao, “On Improving the Performance of Cache Invalidation in Mobile

Environments,” Mobile Networks and Applications, vol.7, Pp.291-303, 2002
[5] S. K. Lee, C. S. Hwang and H. C. Yu, “Supporting Transactional Cache

Consistency in Mobile Database Systems,” Proc. of ACM MobiDE, 1999.
[6] Q. Hu and D.K. Lee, “Cache Algorithms Based on Adaptive Invalidation

Reports for Mobile Environments,” Cluster Computing, vol.1,pp. 39-50, 1998.
[7] J. Jing, A. Elmagarmid, A. Heal, R. Alonso, “Bit-Sequences: An Adaptive

Cache Invalidation Method in Mobile Client/Server Environments,” Mobile
Networks and Applications, vol. 2, no. 2, pp. 115-127, 1997.

[8] A. Kahol, S. Khurana, S.K.S. Gupta and P.K. Srimani, “A Strategy to Manage
Cache Consistency in a Distributed Mobile Wireless Environment,” IEEE
TPDS, vol.12, 2001.

[9] K. Tan, J. Cai and B. Ooi, “An Evaluation of Cache Invalidation Strategies in
Wireless Environments” IEEE TPDS, vol.12, no.8, pp.789-807, Aug. 2001.

[10] Z. Wang, et al, “SACCS: Scalable Asynchronous Cache Consistency Scheme
for Mobile Environments,” Proc. Of Workshop on Mobile and Wireless
Networks, 2003.

[11] Jun Cai and Kian-Lee Tan, “Energy-efficient selective cache invalidation”
Proc of Wireless Network, vol.5, 489- 502, 1999

[12] L. Feeney and M. Nilsson, “Investigating the Energy Consumption of a
Wireless Network Interface in an Ad Hoc Networking Environment,” Proc. of
INFOCOM, 2001.

[13] Mark Kai Ho Yeung and Yu-Kwong Kwok,“Wireless Cache Invalidation
Schemes with Link Adaptation and Downlink Traffic” IEEE Transactions on
Mobile Computing, vol.4, No. 1, February 2005

[14] A. Kahol, S. Khurana, S. Gupta, and P. Srimani,“An Efficient Cache
Management Scheme for Mobile Environment,” Proc. 20thInt’l
Conf.Distributed Computing Systems, pp. 530-537, Apr. 2000.

[15] D. Barabara and T. Imielinski, “Sleepers and Workaholics: Caching Strategies
in Mobile Environments,” VLDB Journal, 4, 567-602,1995.

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

