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Abstract - We proposed the cost effective (in sense of gate number) 
asynchronous two-level logic. It is based on AND-OR 
implementation of minimized logic functions. We formulated and 
proved the product term minimization constraint that ensures the 
logic correct behaviour. We pointed out the existing tool that 
yields the term minimization under the constraint formulated. We 
processed examples and generated asynchronous two-level logic 
by applying our approach and known ones. The implementation 
complexity was compared. Using our approach, we achieved 
significant improvement.  
 
Index Terms - asynchronous logic, minimization, two - level  logic. 

1. INTRODUCTION 
     The asynchronous logic is classified depending on the mode 
of interaction with the environment. In the input-output mode, 
the environment is allowed to change the input state once the 
new output state is produced. There is no assumption about the 
internal signals and the environment is allowed to change the 
input state before the circuit is stabilized in response to the 
previous input state. In the fundamental mode, the logic 
operates with the following discipline: the environment 
changes the input state once the output state has changed in the 
response on the current input state and each gate inside he 
circuit is stable. The design methodology assumes either 
bounded or unbounded gate and wire delays.  
      In case of bounded delays, the moment when the 
environment may change the input state is estimated based on 
the worst case propagation delay [16]. Within this model, only 
one input signal can be changed at the time. In [10], the 
generalized fundamental mode was proposed where multiple 
input change is allowed during the narrow time interval. For 
such a mode, the method of hazard – free two-level 
implementation was proposed [11]. The multi-level (hazard not 
increasing) transformation is applied to optimize the 
implementation. It is based on the rules formulated in [16] and 
extended in [7]. The methods of hazard-free technology 
mapping were proposed in [2,14].  
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     In case of unbounded delays, the circuit should be capable to 
recognize the moment when input and output states have 
changed. For this purpose, both inputs and outputs are 
implemented using dual-rail encoding. To change an input state 
the environment should reset it first (change to so called space 
state). As a result the output state resets too. After that the 
environment sets a new input state. It implies a new output 
state.  
    The behaviour rule is based on Seitz’s strong or weak 
constraints [5,13]. Under the strong constraints, each output 
changes its state only when all inputs have changed their state. 
Under the weak constraints, some outputs are permitted to 
change their state when some (not all) inputs have changed 
their state.  In both cases, all outputs change their state when all 
inputs have changed their state.  
    For multi-level logic, the hazard-free design methodology of 
circuits implemented using simple gates and NCL was 
proposed [4,9]. It is based on circuit transformation into 
monotonic (and therefore, hazard-free) one.  The 
transformation includes converting each internal node into two 
nodes to produce the outputs for both right and inverse form. 
The drawback is that the circuit cost increases twice.  
    The two - level logic is attractive due to its high performance 
(a signal from inputs to outputs propagates through two levels 
only), regularity and good starting point for multi - level logic. 
In [1,15], the two-level (Delay-Insensitive Minterm 
System-DIMS) multi- output logic was proposed where 
C-elements [12] are used on the first level to implement product 
terms and OR–gates are used on the second one to generate 
functions. The behaviour is based on Seitz’s strong constraints. 
However, DIMS implementation cost is very expensive since 
term minimization is not allowed. Therefore, 2n  (all possible) 
terms of length n each (n-number of inputs) should be 
generated and each term is implemented using the n – input 
C-element, which is complex itself. In [8], the two-level logic 
behaviour is based on the modified weak constraints namely, 
all outputs are permitted to change their state if some – not all - 
inputs have changed their state. As a result, the term 
minimization is allowed but the minimization procedure should 
generate mutually orthogonal product terms to ensure correct 
behaviour (in terms of modified weak constraints [8]). 
However, the implementation cost still remains expensive since 
each term is implemented using C-element. In this paper, we 
propose the cost effective two-level implementation. It is based 
on the further modification of the weak constraints:  we 
suppose that in the reset phase, some or even all outputs may 
change their state if a single input has changed its state. We 
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show that such a behaviour constraint leads to minimized 
two-level logic where the first level can be implemented using 
AND (instead of C-elements) gates. We formulate and prove 
the product term minimization constraint to ensure correct 
behaviour. We point out the existing tool that yields the product 
term minimization under the constraint formulated. Finally, we 
compute examples based on our approach and known ones. We 
estimate and compare the implementation complexity. 

II.  PRELIMINARIES 

   A..    Input/Output Dual-Rail Encoding  
Generally, an asynchronous logic should be capable 1) to 

recognize the moment when the new input state (generated by 
the environment) appears on the inputs and the moment when 
the circuit generates the new output state in response on the 
input one; 2) to notify the environment on the new input and 
output states. After receiving notification the environment can 
generate next input state. To solve this problem, inputs/outputs 
are implemented using dual-rail encoding.  

 Let F= {f1, f2, …, fq} be the set of functions of n inputs X: 
X={x1, x2, … , xn}. We also call F as a multi-output function of 
multi- input X. The canonical representation of two-level logic 
is the sum of the 1-product terms: fc(1)= t1 v  t2 v …v tk, c = 1, 2 
,…,q ,k ≤ 2n, ti – product term, i=1,2,…,k. Let T1, T0 be sets of 
function fc 1- and 0- terms respectively. Two terms  ti  , tj  are 
orthogonal (ti  ort tj ) if one term contains a literal in the right 
form and the other one – the same literal in the inverse form. 
Otherwise, terms are not orthogonal (ti  nort tj ). 

It is supposed that each input and output (function) may be in 
three states: state 1, 0 (so called working states) or undefined 
(space state). To implement three–state input xi, i=1, 2, … , n, 
two signals xi(1) and xi(0) are introduced, where xi(1) =1 and 
xi(0) = 0, if xi is in state 1, xi(1) = 0 and xi(0)=1 if xi is in state 0, 
xi(1) = xi(0) = 0 if xi is in the space state (combination xi(1) = 1 
and xi(0) =1 is not allowed). Similarly, to implement three-state 
output, function fc, c = 1, 2 ,…,q , should be represented in both 
right fc(1) and inverse fc(0) forms where functions fc(1), fc(0) 
are represented as sums of 1- and 0-product terms respectively: 
fc(1)= t1 v  t2 v …v tk, fc(0)=tk+1 v  tk+2… v t m , m ≤ 2n . If fc (1) = 
1, fc (0) = 0 then function fc is in state 1, if fc (1) = 0, fc (0) = 1 - 
function fc is in  state 0 (working states), if fc (1) = fc (0) = 0 
-function fc is in the space state (combination fc (1) = fc (0) =1 is 
not allowed). To change the input state the environment should 
reset it first (change to space state) and after that set it to the 
proper working state. Once the input is in the working state, the 
new input state is recognized. In the reset phase, the output state 
changes from a working one to space one and in the set phase 
the new output state is recognized. 

B.  Strong and weak constraints 
    In the fundamental mode, the asynchronous logic operates 
following so called strong or weak constraints [13] (fig.1). 
Under the strong constraints, the behaviour rule is as follows:  

     1. If all inputs are in a space state then all outputs are in a 

space state; 
     2. If all inputs are in a working state then all outputs are in 

a working state; 
     3. Go to 1. 
    Under the weak constraints, some outputs are permitted to 

change their states when some (not all) inputs have changed 
their states: 

     1. If all inputs are in a space state then all outputs are in a 
space state;  

     2. If some inputs are in a working state then some outputs 
are in a working state; 

     3. If all inputs are in a working state then all outputs are in 
a working state; 

     4. If some inputs are in a space state then some outputs are 
in a space state; 

     5. Go to 1. 
 

 
 
 
Fig.1. Behaviour rule under strong (a) and weak (b) constraints   
 

In both cases, it is supposed that the state of all outputs 
depends on the state of all inputs. As a result, the term 
minimization is not allowed (DIMS). However, the careful 
observation shows that in some cases, the state of outputs can 
be determined based on the state of some (not all) inputs. For 
example, consider single output function f=x1(1) v x1(0)x2(0). 
If x1(1)=1 then independently on input x2 state, function f =1. 
Based on this observation, the weak constraints were modified 
as follows [8]: if some inputs are in the working/space state 
then some or even all outputs are in the working/space state. It 
was shown [8] that under the modified weak constraints, the 
term minimization is allowed. However, to ensure correct 
behaviour the resulting product terms should be mutually 
orthogonal. 
  

III. DIMS 
    Two-level (DIMS) implementation was proposed in [1,15]. 
After input/output dual-rail encoding, 2n terms of length n are 
generated to represent each function in both right and inverse 
forms. On the first level, each term is implemented using the 
C-element. For every input xi ∈X, either signal xi(1) or xi(0) is 
connected to each C-element inputs. The second level is 
implemented using OR gates. C-element is a strongly 
indicating logic: its output signal switches on/off once its all 
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input signals switch on/off. Therefore, C-element output 
notifies on the moment when circuit inputs are in the working 
or space state.  Due to term orthogonality, only one C-element 
switches on/off. The signal from C-element output propagates 
through the single path to gate OR (circuit) output. As a result, 
the circuit output notifies on the new input state. One can easily 
see that DIMS operates under Seitz’s strong constraints. As an 
example, consider two-level implementation of function AND 
of 2 variables (fig.5). The function is given by its canonical 
representation: f=x1x2. After dual-rail encoding, function right 
and inverse form can be represented as follows: 
f(1)=x1(1)x2(1), f(0)=x1(0)x2(1) v x1(0)x2(0) v x1(1)x2(0).  
    Suppose: x1(1)=x1(0)=x2(1)=x2(0)=0 (“all inputs are in the 
space state”).One can check that in this case: f(0)=f(1)=0 (“all 
outputs are in the space state”). Suppose, the environment 
switches inputs x1, x2 to a working state, say 10: x1(1)=x2(0)=1, 
x1(0)=x2(1)=0. As a result, C4-element output signal switches 
on and after propagating through the path (fig.2-bold) the 
circuit output switches to working state 0: f(1)=0, f(0)=1 (“if all 
inputs are in a working state then all outputs are in a working 
state”) . When all inputs switch from working state 10 to the 
space state then C4 –element output switches off and therefore 
output f(0) switches off  (“if all inputs are in the space state then 
all outputs are in the space state”). 
 

 
 

 
Fig.2. DIMS implementation 

 

IV. IMPLEMENTATION BASED ON MODIFIED WEAK 
CONSTRAINTS 

A.  Behaviour Rule 
 
     For DIMS, one can see that 2n terms should be implemented 
using C-elements. In other words, the term minimization 
procedure widely used in the synchronous logic to reduce 
complexity is not allowed. To avoid this restriction and 
therefore generate less complex (in sense of gate number) 
circuits, the modified weak constraints were proposed in [8]. It 
was noted that in some cases the output state can be determined 

based on some (non-redundant) inputs (see example in 
paragraph II.B). The behaviour rule is as follows (fig.3): 
   1. If some inputs are in the working state then some or even 
all outputs are in the working state; 
   2. If all inputs are in the working state then all outputs are in 
the working state; 
   3. If some inputs are in the space state then some or even all 
outputs are in the space state; 
    
 

 
Fig. 3. Behaviour rule under modifies weak constraints 

     
    4. If all inputs are in the space state then all outputs are in the 
space state;  
    5. Go to 1. 
    The redundant inputs can be removed using the term 
minimization procedure. It was proven that asynchronous 
two-level logic [8] satisfies above formulated behaviour rule iff 
the minimization procedure generates mutually orthogonal 
terms.  
    The structure consists of two blocks (fig.4): a two-level 
circuit to implement functions and completion detection logic. 
In the circuit, each term is implemented using the C-element 
and several functions may share the same C-elements. Since 
minimization is allowed, the functions can be implemented 
using less than 2n C-elements (m ≤ 2n- fig.4). Also, some 
C-elements may contain less than n inputs: |S(tk)| ≤ n, where 
S(tk) – set of  term tk literals (input signals), k=1,2,…,m. One 
can see, that the circuit outputs may be used to notify on the 
working/space state of non-redundant inputs when Ck – 
element switches on/off. The notification on the state of any 
redundant (and therefore, removed) input xi, xi∈{ xi1, xi2 ,…, 
xiv}, xi(0)∉S(tk), xi(1)∉S(tk)  should be done by the completion 
detection logic where the pair of ORed signals xi(0), xi(1) is 
connected to C-element input.  Signal D indicates (by switching 
to 1/0) the moment when redundant inputs are in the working 
/space state.  

B .  Example 
 
     Again, consider function AND of two variables: 
f(1)=x1(1)x2(1), f(0)=x1(0)x2(1) v x1(0)x2(0) v x1(1)x2(0). The 
minimization procedure that yields mutually orthogonal terms 
can be applied to the inverse form: f(0) = x1(0)x2(1) v x2(0). 
One can see that function f(0) second term contains neither 
x1(1), nor x1(0). Therefore, if inputs switch from/to the space 
state to/from one of the working states: x1(0)=x2(0)=1 or 
x1(1)=x2(0)=1, input x1 state can’t be notified by output signal 
f(0). The notification should be done by completion detection 
logic. 
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V. COST EFFECTIVE IMPLEMENTATION 

A.  Behaviour Rule 
 
     The goal of our approach is to propose further reducing the 
complexity of the two-level logic. Actually, we wish to 
implement the logic as a two-level circuit with AND gates 
(instead of C-elements) on the first level and OR gates on the 
second level. For this purpose, further modification of the 
behavious rule is introduced (fig.6): 
 

 
 
 

Fig.4. Structure 
 

 
Fig. 5. Implementation example 

 

 
 
Fig.6. Behaviour rule for cost effective implementation 
 

   1. If some inputs are in the working state then all outputs 
are in the working state; 

   2. If all inputs are in the working state then all outputs 
remain in the working state; 

   3. If a single input is in the space state then some or all 
outputs are in the space state; 

   4. If all inputs are in the space state then all outputs are in 
the space state; 

    5. Go to 1.  
    Comparing with the rule (paragraph  IV. A), the difference is 
in the reset phase 3 where switching a single input to the space 
state results in switching some or even all outputs to the space 
state. The cost effective logic (fig.7) consists of a two-level 
AND-OR (instead of C-OR) circuit and completion detection 
that indicates the state of all inputs xi∈X, i=1, 2,  … , n. It 
differs from the completion detection (fig.4) that indicates the 
state of redundant inputs only. The reason of such a 
modification is as follows: C- elements (first level logic) are 
replaced for AND gates. Therefore, in the reset phase, the 
circuit outputs are not capable to indicate the state of 
non-redundant inputs since changing the state of any single 
input implies changing the state of all outputs. 
 

B. Minimization Constraint 
 
     It is supposed that within the cost effective implementation, 
the product term minimization is allowed. We should formulate 
minimization constraint to ensure proper (paragraph V.A) 
behaviour rule.  

Given the cost effective implementation (fig.7) of function 
set F.   

Theorem 1. The behaviour of any function fc  (fig.7),       fc ∈ 
F, doesn’t violate the behaviour rule (paragraph V.A) iff: ti  ort  
tj , for ∀(ti,  t j) : ti,  t j ∈ T1 , and ti,  t j ∈ T0.    

Proof. Necessity. Consider the circuit fragment containing 
ANDi, ANDj gates connected to OR gate (fig.8a). Suppose:  ti 
nort tj : ti,  t j ∈ T1. Suppose: S(ti) – set of  term ti literals (input 
signals). For non-orthogonal terms, define joint set  S(tij ): S(tij ) 
= S(ti ) ∪ S(tj ). Let S(X) be the set of input signals that switch 
on once inputs switch to given working state. Suppose: S(tij) ⊆ 
S(X). Suppose: signal xl (u) /xr (u) has the longest switching 
delay among the signals of set S(ti)/S(tj),  xl (u) ∈ S(ti) ,                 
xr (u) ∈ S(tj) , u ∈{0,1}. When signals xl (u), xr (u) switch on 
then ANDj , ANDj  gate outputs switch on. As a result, signal 1 
propagates through two paths: ANDi-OR, ANDj-OR. Suppose 
that the sum of signal xl (u) switching delay and path ANDi-OR 
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delay is shorter than the sum of signal xr (u) switching delay 
and path ANDj-OR delay. In this case, the signal 1 propagating 
through path ANDi-OR switches output fc(1) on (output fc goes 
to the working state).  
 
 

 
 
 
Fig.7. Cost effective implementation structure 
 

Now suppose that any signal xa (u)∈ S(ti) switches off (input  
xa goes to the space state). It implies switching ANDi gate 
output off.  As a result, signal 0 propagates through path 
ANDi-OR and function fc(1) switches off  (output fc goes to the 
space state). Due to longer propagation delay, the signal 1 
propagating through path ANDj-OR may switch output fc(1) on 
again and later off due to switching any signal  xb (u) ∈  S(tj) off  
(erroneous pulse- fig.8,b). It violates the behaviour  rule (“if a 
single input is in the space state then some or all the outputs are 
in the space state”). The above conclusion is valid for function 
fc(0) , if ti, t j ∈ T0 . 

Sufficiency. Again consider the same circuit fragment 
(fig.9a). Suppose: ti  ort  tj, ti,  t j ∈ T1.and S(ti) ⊆ S(X). In this 
case, S( tj ) ⊄ S(X), ∀tj ∈ T1\ ti 

  due to the orthogonality of  ti,  tj 

 and in contrast to the previous case, there is only one path 
(fig.9,a, bold line) the signal propagates to the output through. 
Therefore, if signals from set S(ti) switch on then ANDi gate 

output switches on and in turn, output fc(1) switches on (“if 
some inputs are in the working state then some or all outputs are 
in the working state”). Once any signal xa(u)∈S(ti) switches off 
then output fc(1) switches off (“if a single input is in the space 
state then  some or all outputs are in the space state”) (fig.9b). 
As a result, the behaviour of any function fc  ∈ F, doesn’t violate 
the behaviour rule (paragraph V.A). 

The above conclusion is valid for function fc(0) if we 
suppose: ti, t j ∈T0 .                                                                       ∎ 

Note that the product term constraint (mutually orthogonal 
terms) is the same as for the two-level logic [8]. Therefore, the 
tool [3] already mentioned in [8] can be used for the term 
minimization in the case of the cost effective implementation. 

 
 

 

 
 
Fig.8. Necessity conditions, a) circuit, b) timing diagram 
 
C. Example 
 
    Again, consider the implementation (fig.10) of minimized 
function AND of 2 variables: f(1)=x1(1)x2(1), f(0)=x1(0)x2(1) v 
x2(0). The circuit is implemented using three two-input gates. 
Completion detection contains two OR gates that indicate the 
state of inputs x1, x2.  Let us show that the implementation 
satisfies the behaviour rule formulated in paragraph 5.1. 
Initially, all inputs and the output are in the space state. 
Suppose input x2 switches to working state 0: x2(1)=0, x2(0) 
=1(“some inputs are in the working state”). In response, the 
output switches to the working state (“all outputs are in the 
working state”).  Since input x1 is the redundant one its state 
doesn’t affect the output state. Therefore, when input x1 is in 
the working state, the output remains in the working state. The 
moment when all inputs (both redundant and non-redundant) 
are in the working state is indicated by signal D=1. Now 
suppose that signal x2(0)=0 (“if a single input is in the space 
state…”). Then output f(0)=0 (“… then all outputs are in the 
space state”).The notification on the moment when all inputs 
are in the space state is done by signal D=0. 
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Fig.9. Sufficiency conditions, a) circuit, b) timing  diagram 
 
 

 
 

Fig.10. Implementation example 

V. EXPERIMENTAL RESULTS 
  We processed 3 examples: function AND of 2, 3 and 4 

variables (further: AND(2), AND(3), AND(4)). For 
minimization, espresso tool [3] with the option – d1merge 
(espresso –d1merge) is used. It merges terms that differ in one 
variable and therefore produces mutually orthogonal terms.  

   We compared the complexity (expressed as the number of 
2 input gates G(2)) of our implementation (Minimized 
AND-OR structure – AND-OR/M) with DIMS [1] where 
minimization is not allowed and C-OR Minimized (C/OR/M) 
implementation [8]. To measure complexity, the approach [6] 
has been used. Within this approach, the complexity of the 
logic is estimated as follows: C(n)= (n-1)C(2), C(2)=4G(2), 
G(n)=(n-1)G(2), where C(n) – C-element of n inputs, G(n) – 
n-input One can see (Table1) that we achieved significant 
improvement and believe 

                                                                                                   

 
that the improvement will be even  higher for the functions of  
more variables. 
 
Table 1. Function AND implementation complexity 

Examples DIMS[1]   C-OR/M[8] AND-OR/M 
AND(2) 18G(2) 

(fig.2)  
10G(2) 
(fig.5)  

9G(2) 
(fig.10) 

AND (3) 102G(2) 28G(2) 18 G(2) 
AND (4) 206G(2) 50G(2) 28 G(2) 

VI. CONCLUSION 
We proposed the cost effective (in sense of gate number) 

dual-rail implementation of asynchronous two-level logic. It is 
based on the modified weak constraints. Using the existing tool 
(espresso [3]) we processed examples and produced dual-rail 
two-level logic. We compared our implementation complexity 
with ones obtained using known approaches [1,8]. We 
achieved significant improvement.  

REFERENCES 
[1] T.S. Anantharaman, A Delay Insensitive Expression  Recognizer,  IEE  
     VLSI Tech.Bull, Sept, 1986 
[2] P. Beerel, K.Y.Yun, W.C. Chou, Opimizing Average-Case  Delay in   
     Technology Mapping of Burst-Mode Circuits,  IEEE Ont. Symp.on   
     Advanced Research in Asynchronous  Circuits and Systems, March, 1996   
      pp.244-259  
[3] R.K.Brayton, et al, Logic Minimization Algorithm for VLSI Synthesis,  
      Norwell, MA: Kluwer Academic, 1984 
[4] J.Cortadella, A.Kondratyev, L.Lavagno, C.Sotiriou, Coping with the   
      Variability of Combinational Logic  Delays, IEEE Int. Conf. On Computer   
      Design (ICCD), October 2004, pp.505-508 
[5] W.J.Dally, J.W.Poulton, Digital Systems Engineering, Cambridge     

University Press, 1998,  663 p. 
[6] I.David, R.Ginosar, M.Yoeli, An Efficient Implementation of Boolean  
     Functions as Self-timed  Circuits, IEEE Trans.  Computers, vol. 41, No 1,   
     1992,  pp. 2- 11 
 [7]  D. Kung, Hazard-Non-Increasing Gate – Level   Optimization Algorithm,    
        IEEE Int. Conf. On Computer –Aided Design, November, 1992, pp.  

631-634 
[8] I.Lemberski, M.B.Josephs, Optimal Two- Level Delay-Insensitive    
       Implementation of Logic Functions, PATMOS2002, Spain, pp.109-119 
[9] M.Ligthart, K.Fant, R.Smith, A. Taubin, A.Kondratyev, Asynchronous 

Design Using Commercial HDL Synthesis Tools, 6-th Int. Symp. on 
Advanced Research  in Asynchronous Circuits and Systems (ASYNC’00), 
pp.  114-125 

[10] S.M.Nowick, Automatic Synthesis of Burst-Mode Asynchronous    
        Controllers, Ph.D. thesis, Stanfort University, Mar March 1993 
[11] S.M.Nowick, D.L.Dill, Exact Two-Level Minimization of Hazard-Free 

Logic with Multiple-Input Changes, IEEE CAD, vol.14, August, 1995, pp. 
986-997 

[12] Principles of Asynchronous Circuit Design, Ed. J.Sparsø, S.Furber,    
        Kluwer Academic Publishers, 2001, 337 p. 
[13] C.L Seitz, System Timing, In: Introduction to VLSI Systems, C. Mead, L. 

Conway, Addison—Welsey Publishing Company, 1980, pp. 218-262 
 [14] P. Siegel, G.D. Micheli, D. Dill, Automatic Technology Mapping for 

Generalized Fundamental Mode Asynchronous Designs, IEEE Design  
Automation Conference, June 1993, 61-67 

 [15] J.Sparsø, J.Staunstrup, M. Dantzer-Sørensen, Design of Delay Insensitive 
Circuits Using Multi-Ring Structures, pp. 15-20 

 [16] S.H. Unger, Asynchronous Sequential Switching Circuits, John   Wilcy &      
        Sons, Inc., 1969 

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007


