

Cost Effective Implementation of Asynchronous
Two-Level Logic

Igor Lemberski, Member, IAENG

Abstract - We proposed the cost effective (in sense of gate number)
asynchronous two-level logic. It is based on AND-OR
implementation of minimized logic functions. We formulated and
proved the product term minimization constraint that ensures the
logic correct behaviour. We pointed out the existing tool that
yields the term minimization under the constraint formulated. We
processed examples and generated asynchronous two-level logic
by applying our approach and known ones. The implementation
complexity was compared. Using our approach, we achieved
significant improvement.

Index Terms - asynchronous logic, minimization, two - level logic.

1. INTRODUCTION
 The asynchronous logic is classified depending on the mode
of interaction with the environment. In the input-output mode,
the environment is allowed to change the input state once the
new output state is produced. There is no assumption about the
internal signals and the environment is allowed to change the
input state before the circuit is stabilized in response to the
previous input state. In the fundamental mode, the logic
operates with the following discipline: the environment
changes the input state once the output state has changed in the
response on the current input state and each gate inside he
circuit is stable. The design methodology assumes either
bounded or unbounded gate and wire delays.
 In case of bounded delays, the moment when the
environment may change the input state is estimated based on
the worst case propagation delay [16]. Within this model, only
one input signal can be changed at the time. In [10], the
generalized fundamental mode was proposed where multiple
input change is allowed during the narrow time interval. For
such a mode, the method of hazard – free two-level
implementation was proposed [11]. The multi-level (hazard not
increasing) transformation is applied to optimize the
implementation. It is based on the rules formulated in [16] and
extended in [7]. The methods of hazard-free technology
mapping were proposed in [2,14].

Manuscript received March 22, 2007.
I. Lemberski is with Baltic International Academy, Lomonosova 4, Riga,

LV-1003, LATVIA (phone: +37122 33 29 61; fax: +371 7 241 272; e-mail:
Igor.Lemberski@bsa.edu.lv).

 In case of unbounded delays, the circuit should be capable to
recognize the moment when input and output states have
changed. For this purpose, both inputs and outputs are
implemented using dual-rail encoding. To change an input state
the environment should reset it first (change to so called space
state). As a result the output state resets too. After that the
environment sets a new input state. It implies a new output
state.
 The behaviour rule is based on Seitz’s strong or weak
constraints [5,13]. Under the strong constraints, each output
changes its state only when all inputs have changed their state.
Under the weak constraints, some outputs are permitted to
change their state when some (not all) inputs have changed
their state. In both cases, all outputs change their state when all
inputs have changed their state.
 For multi-level logic, the hazard-free design methodology of
circuits implemented using simple gates and NCL was
proposed [4,9]. It is based on circuit transformation into
monotonic (and therefore, hazard-free) one. The
transformation includes converting each internal node into two
nodes to produce the outputs for both right and inverse form.
The drawback is that the circuit cost increases twice.
 The two - level logic is attractive due to its high performance
(a signal from inputs to outputs propagates through two levels
only), regularity and good starting point for multi - level logic.
In [1,15], the two-level (Delay-Insensitive Minterm
System-DIMS) multi- output logic was proposed where
C-elements [12] are used on the first level to implement product
terms and OR–gates are used on the second one to generate
functions. The behaviour is based on Seitz’s strong constraints.
However, DIMS implementation cost is very expensive since
term minimization is not allowed. Therefore, 2n (all possible)
terms of length n each (n-number of inputs) should be
generated and each term is implemented using the n – input
C-element, which is complex itself. In [8], the two-level logic
behaviour is based on the modified weak constraints namely,
all outputs are permitted to change their state if some – not all -
inputs have changed their state. As a result, the term
minimization is allowed but the minimization procedure should
generate mutually orthogonal product terms to ensure correct
behaviour (in terms of modified weak constraints [8]).
However, the implementation cost still remains expensive since
each term is implemented using C-element. In this paper, we
propose the cost effective two-level implementation. It is based
on the further modification of the weak constraints: we
suppose that in the reset phase, some or even all outputs may
change their state if a single input has changed its state. We

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

show that such a behaviour constraint leads to minimized
two-level logic where the first level can be implemented using
AND (instead of C-elements) gates. We formulate and prove
the product term minimization constraint to ensure correct
behaviour. We point out the existing tool that yields the product
term minimization under the constraint formulated. Finally, we
compute examples based on our approach and known ones. We
estimate and compare the implementation complexity.

II. PRELIMINARIES

 A.. Input/Output Dual-Rail Encoding
Generally, an asynchronous logic should be capable 1) to

recognize the moment when the new input state (generated by
the environment) appears on the inputs and the moment when
the circuit generates the new output state in response on the
input one; 2) to notify the environment on the new input and
output states. After receiving notification the environment can
generate next input state. To solve this problem, inputs/outputs
are implemented using dual-rail encoding.

 Let F= {f1, f2, …, fq} be the set of functions of n inputs X:
X={x1, x2, … , xn}. We also call F as a multi-output function of
multi- input X. The canonical representation of two-level logic
is the sum of the 1-product terms: fc(1)= t1 v t2 v …v tk, c = 1, 2
,…,q ,k ≤ 2n, ti – product term, i=1,2,…,k. Let T1, T0 be sets of
function fc 1- and 0- terms respectively. Two terms ti , tj are
orthogonal (ti ort tj) if one term contains a literal in the right
form and the other one – the same literal in the inverse form.
Otherwise, terms are not orthogonal (ti nort tj).

It is supposed that each input and output (function) may be in
three states: state 1, 0 (so called working states) or undefined
(space state). To implement three–state input xi, i=1, 2, … , n,
two signals xi(1) and xi(0) are introduced, where xi(1) =1 and
xi(0) = 0, if xi is in state 1, xi(1) = 0 and xi(0)=1 if xi is in state 0,
xi(1) = xi(0) = 0 if xi is in the space state (combination xi(1) = 1
and xi(0) =1 is not allowed). Similarly, to implement three-state
output, function fc, c = 1, 2 ,…,q , should be represented in both
right fc(1) and inverse fc(0) forms where functions fc(1), fc(0)
are represented as sums of 1- and 0-product terms respectively:
fc(1)= t1 v t2 v …v tk, fc(0)=tk+1 v tk+2… v t m , m ≤ 2n . If fc (1) =
1, fc (0) = 0 then function fc is in state 1, if fc (1) = 0, fc (0) = 1 -
function fc is in state 0 (working states), if fc (1) = fc (0) = 0
-function fc is in the space state (combination fc (1) = fc (0) =1 is
not allowed). To change the input state the environment should
reset it first (change to space state) and after that set it to the
proper working state. Once the input is in the working state, the
new input state is recognized. In the reset phase, the output state
changes from a working one to space one and in the set phase
the new output state is recognized.

B. Strong and weak constraints
 In the fundamental mode, the asynchronous logic operates
following so called strong or weak constraints [13] (fig.1).
Under the strong constraints, the behaviour rule is as follows:

 1. If all inputs are in a space state then all outputs are in a

space state;
 2. If all inputs are in a working state then all outputs are in

a working state;
 3. Go to 1.
 Under the weak constraints, some outputs are permitted to

change their states when some (not all) inputs have changed
their states:

 1. If all inputs are in a space state then all outputs are in a
space state;

 2. If some inputs are in a working state then some outputs
are in a working state;

 3. If all inputs are in a working state then all outputs are in
a working state;

 4. If some inputs are in a space state then some outputs are
in a space state;

 5. Go to 1.

Fig.1. Behaviour rule under strong (a) and weak (b) constraints

In both cases, it is supposed that the state of all outputs
depends on the state of all inputs. As a result, the term
minimization is not allowed (DIMS). However, the careful
observation shows that in some cases, the state of outputs can
be determined based on the state of some (not all) inputs. For
example, consider single output function f=x1(1) v x1(0)x2(0).
If x1(1)=1 then independently on input x2 state, function f =1.
Based on this observation, the weak constraints were modified
as follows [8]: if some inputs are in the working/space state
then some or even all outputs are in the working/space state. It
was shown [8] that under the modified weak constraints, the
term minimization is allowed. However, to ensure correct
behaviour the resulting product terms should be mutually
orthogonal.

III. DIMS
 Two-level (DIMS) implementation was proposed in [1,15].
After input/output dual-rail encoding, 2n terms of length n are
generated to represent each function in both right and inverse
forms. On the first level, each term is implemented using the
C-element. For every input xi ∈X, either signal xi(1) or xi(0) is
connected to each C-element inputs. The second level is
implemented using OR gates. C-element is a strongly
indicating logic: its output signal switches on/off once its all

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

input signals switch on/off. Therefore, C-element output
notifies on the moment when circuit inputs are in the working
or space state. Due to term orthogonality, only one C-element
switches on/off. The signal from C-element output propagates
through the single path to gate OR (circuit) output. As a result,
the circuit output notifies on the new input state. One can easily
see that DIMS operates under Seitz’s strong constraints. As an
example, consider two-level implementation of function AND
of 2 variables (fig.5). The function is given by its canonical
representation: f=x1x2. After dual-rail encoding, function right
and inverse form can be represented as follows:
f(1)=x1(1)x2(1), f(0)=x1(0)x2(1) v x1(0)x2(0) v x1(1)x2(0).
 Suppose: x1(1)=x1(0)=x2(1)=x2(0)=0 (“all inputs are in the
space state”).One can check that in this case: f(0)=f(1)=0 (“all
outputs are in the space state”). Suppose, the environment
switches inputs x1, x2 to a working state, say 10: x1(1)=x2(0)=1,
x1(0)=x2(1)=0. As a result, C4-element output signal switches
on and after propagating through the path (fig.2-bold) the
circuit output switches to working state 0: f(1)=0, f(0)=1 (“if all
inputs are in a working state then all outputs are in a working
state”) . When all inputs switch from working state 10 to the
space state then C4 –element output switches off and therefore
output f(0) switches off (“if all inputs are in the space state then
all outputs are in the space state”).

Fig.2. DIMS implementation

IV. IMPLEMENTATION BASED ON MODIFIED WEAK
CONSTRAINTS

A. Behaviour Rule

 For DIMS, one can see that 2n terms should be implemented
using C-elements. In other words, the term minimization
procedure widely used in the synchronous logic to reduce
complexity is not allowed. To avoid this restriction and
therefore generate less complex (in sense of gate number)
circuits, the modified weak constraints were proposed in [8]. It
was noted that in some cases the output state can be determined

based on some (non-redundant) inputs (see example in
paragraph II.B). The behaviour rule is as follows (fig.3):
 1. If some inputs are in the working state then some or even
all outputs are in the working state;
 2. If all inputs are in the working state then all outputs are in
the working state;
 3. If some inputs are in the space state then some or even all
outputs are in the space state;

Fig. 3. Behaviour rule under modifies weak constraints

 4. If all inputs are in the space state then all outputs are in the
space state;
 5. Go to 1.
 The redundant inputs can be removed using the term
minimization procedure. It was proven that asynchronous
two-level logic [8] satisfies above formulated behaviour rule iff
the minimization procedure generates mutually orthogonal
terms.
 The structure consists of two blocks (fig.4): a two-level
circuit to implement functions and completion detection logic.
In the circuit, each term is implemented using the C-element
and several functions may share the same C-elements. Since
minimization is allowed, the functions can be implemented
using less than 2n C-elements (m ≤ 2n- fig.4). Also, some
C-elements may contain less than n inputs: |S(tk)| ≤ n, where
S(tk) – set of term tk literals (input signals), k=1,2,…,m. One
can see, that the circuit outputs may be used to notify on the
working/space state of non-redundant inputs when Ck –
element switches on/off. The notification on the state of any
redundant (and therefore, removed) input xi, xi∈{ xi1, xi2 ,…,
xiv}, xi(0)∉S(tk), xi(1)∉S(tk) should be done by the completion
detection logic where the pair of ORed signals xi(0), xi(1) is
connected to C-element input. Signal D indicates (by switching
to 1/0) the moment when redundant inputs are in the working
/space state.

B . Example

 Again, consider function AND of two variables:
f(1)=x1(1)x2(1), f(0)=x1(0)x2(1) v x1(0)x2(0) v x1(1)x2(0). The
minimization procedure that yields mutually orthogonal terms
can be applied to the inverse form: f(0) = x1(0)x2(1) v x2(0).
One can see that function f(0) second term contains neither
x1(1), nor x1(0). Therefore, if inputs switch from/to the space
state to/from one of the working states: x1(0)=x2(0)=1 or
x1(1)=x2(0)=1, input x1 state can’t be notified by output signal
f(0). The notification should be done by completion detection
logic.

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

V. COST EFFECTIVE IMPLEMENTATION

A. Behaviour Rule

 The goal of our approach is to propose further reducing the
complexity of the two-level logic. Actually, we wish to
implement the logic as a two-level circuit with AND gates
(instead of C-elements) on the first level and OR gates on the
second level. For this purpose, further modification of the
behavious rule is introduced (fig.6):

Fig.4. Structure

Fig. 5. Implementation example

Fig.6. Behaviour rule for cost effective implementation

 1. If some inputs are in the working state then all outputs
are in the working state;

 2. If all inputs are in the working state then all outputs
remain in the working state;

 3. If a single input is in the space state then some or all
outputs are in the space state;

 4. If all inputs are in the space state then all outputs are in
the space state;

 5. Go to 1.
 Comparing with the rule (paragraph IV. A), the difference is
in the reset phase 3 where switching a single input to the space
state results in switching some or even all outputs to the space
state. The cost effective logic (fig.7) consists of a two-level
AND-OR (instead of C-OR) circuit and completion detection
that indicates the state of all inputs xi∈X, i=1, 2, … , n. It
differs from the completion detection (fig.4) that indicates the
state of redundant inputs only. The reason of such a
modification is as follows: C- elements (first level logic) are
replaced for AND gates. Therefore, in the reset phase, the
circuit outputs are not capable to indicate the state of
non-redundant inputs since changing the state of any single
input implies changing the state of all outputs.

B. Minimization Constraint

 It is supposed that within the cost effective implementation,
the product term minimization is allowed. We should formulate
minimization constraint to ensure proper (paragraph V.A)
behaviour rule.

Given the cost effective implementation (fig.7) of function
set F.

Theorem 1. The behaviour of any function fc (fig.7), fc ∈
F, doesn’t violate the behaviour rule (paragraph V.A) iff: ti ort
tj , for ∀(ti, t j) : ti, t j ∈ T1 , and ti, t j ∈ T0.

Proof. Necessity. Consider the circuit fragment containing
ANDi, ANDj gates connected to OR gate (fig.8a). Suppose: ti
nort tj : ti, t j ∈ T1. Suppose: S(ti) – set of term ti literals (input
signals). For non-orthogonal terms, define joint set S(tij): S(tij)
= S(ti) ∪ S(tj). Let S(X) be the set of input signals that switch
on once inputs switch to given working state. Suppose: S(tij) ⊆
S(X). Suppose: signal xl (u) /xr (u) has the longest switching
delay among the signals of set S(ti)/S(tj), xl (u) ∈ S(ti) ,
xr (u) ∈ S(tj) , u ∈{0,1}. When signals xl (u), xr (u) switch on
then ANDj , ANDj gate outputs switch on. As a result, signal 1
propagates through two paths: ANDi-OR, ANDj-OR. Suppose
that the sum of signal xl (u) switching delay and path ANDi-OR

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

delay is shorter than the sum of signal xr (u) switching delay
and path ANDj-OR delay. In this case, the signal 1 propagating
through path ANDi-OR switches output fc(1) on (output fc goes
to the working state).

Fig.7. Cost effective implementation structure

Now suppose that any signal xa (u)∈ S(ti) switches off (input
xa goes to the space state). It implies switching ANDi gate
output off. As a result, signal 0 propagates through path
ANDi-OR and function fc(1) switches off (output fc goes to the
space state). Due to longer propagation delay, the signal 1
propagating through path ANDj-OR may switch output fc(1) on
again and later off due to switching any signal xb (u) ∈ S(tj) off
(erroneous pulse- fig.8,b). It violates the behaviour rule (“if a
single input is in the space state then some or all the outputs are
in the space state”). The above conclusion is valid for function
fc(0) , if ti, t j ∈ T0 .

Sufficiency. Again consider the same circuit fragment
(fig.9a). Suppose: ti ort tj, ti, t j ∈ T1.and S(ti) ⊆ S(X). In this
case, S(tj) ⊄ S(X), ∀tj ∈ T1\ ti

 due to the orthogonality of ti, tj

 and in contrast to the previous case, there is only one path
(fig.9,a, bold line) the signal propagates to the output through.
Therefore, if signals from set S(ti) switch on then ANDi gate

output switches on and in turn, output fc(1) switches on (“if
some inputs are in the working state then some or all outputs are
in the working state”). Once any signal xa(u)∈S(ti) switches off
then output fc(1) switches off (“if a single input is in the space
state then some or all outputs are in the space state”) (fig.9b).
As a result, the behaviour of any function fc ∈ F, doesn’t violate
the behaviour rule (paragraph V.A).

The above conclusion is valid for function fc(0) if we
suppose: ti, t j ∈T0 . ∎

Note that the product term constraint (mutually orthogonal
terms) is the same as for the two-level logic [8]. Therefore, the
tool [3] already mentioned in [8] can be used for the term
minimization in the case of the cost effective implementation.

Fig.8. Necessity conditions, a) circuit, b) timing diagram

C. Example

 Again, consider the implementation (fig.10) of minimized
function AND of 2 variables: f(1)=x1(1)x2(1), f(0)=x1(0)x2(1) v
x2(0). The circuit is implemented using three two-input gates.
Completion detection contains two OR gates that indicate the
state of inputs x1, x2. Let us show that the implementation
satisfies the behaviour rule formulated in paragraph 5.1.
Initially, all inputs and the output are in the space state.
Suppose input x2 switches to working state 0: x2(1)=0, x2(0)
=1(“some inputs are in the working state”). In response, the
output switches to the working state (“all outputs are in the
working state”). Since input x1 is the redundant one its state
doesn’t affect the output state. Therefore, when input x1 is in
the working state, the output remains in the working state. The
moment when all inputs (both redundant and non-redundant)
are in the working state is indicated by signal D=1. Now
suppose that signal x2(0)=0 (“if a single input is in the space
state…”). Then output f(0)=0 (“… then all outputs are in the
space state”).The notification on the moment when all inputs
are in the space state is done by signal D=0.

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

Fig.9. Sufficiency conditions, a) circuit, b) timing diagram

Fig.10. Implementation example

V. EXPERIMENTAL RESULTS
 We processed 3 examples: function AND of 2, 3 and 4

variables (further: AND(2), AND(3), AND(4)). For
minimization, espresso tool [3] with the option – d1merge
(espresso –d1merge) is used. It merges terms that differ in one
variable and therefore produces mutually orthogonal terms.

 We compared the complexity (expressed as the number of
2 input gates G(2)) of our implementation (Minimized
AND-OR structure – AND-OR/M) with DIMS [1] where
minimization is not allowed and C-OR Minimized (C/OR/M)
implementation [8]. To measure complexity, the approach [6]
has been used. Within this approach, the complexity of the
logic is estimated as follows: C(n)= (n-1)C(2), C(2)=4G(2),
G(n)=(n-1)G(2), where C(n) – C-element of n inputs, G(n) –
n-input One can see (Table1) that we achieved significant
improvement and believe

that the improvement will be even higher for the functions of
more variables.

Table 1. Function AND implementation complexity

Examples DIMS[1] C-OR/M[8] AND-OR/M
AND(2) 18G(2)

(fig.2)
10G(2)
(fig.5)

9G(2)
(fig.10)

AND (3) 102G(2) 28G(2) 18 G(2)
AND (4) 206G(2) 50G(2) 28 G(2)

VI. CONCLUSION
We proposed the cost effective (in sense of gate number)

dual-rail implementation of asynchronous two-level logic. It is
based on the modified weak constraints. Using the existing tool
(espresso [3]) we processed examples and produced dual-rail
two-level logic. We compared our implementation complexity
with ones obtained using known approaches [1,8]. We
achieved significant improvement.

REFERENCES
[1] T.S. Anantharaman, A Delay Insensitive Expression Recognizer, IEE
 VLSI Tech.Bull, Sept, 1986
[2] P. Beerel, K.Y.Yun, W.C. Chou, Opimizing Average-Case Delay in
 Technology Mapping of Burst-Mode Circuits, IEEE Ont. Symp.on
 Advanced Research in Asynchronous Circuits and Systems, March, 1996
 pp.244-259
[3] R.K.Brayton, et al, Logic Minimization Algorithm for VLSI Synthesis,
 Norwell, MA: Kluwer Academic, 1984
[4] J.Cortadella, A.Kondratyev, L.Lavagno, C.Sotiriou, Coping with the
 Variability of Combinational Logic Delays, IEEE Int. Conf. On Computer
 Design (ICCD), October 2004, pp.505-508
[5] W.J.Dally, J.W.Poulton, Digital Systems Engineering, Cambridge

University Press, 1998, 663 p.
[6] I.David, R.Ginosar, M.Yoeli, An Efficient Implementation of Boolean
 Functions as Self-timed Circuits, IEEE Trans. Computers, vol. 41, No 1,
 1992, pp. 2- 11
 [7] D. Kung, Hazard-Non-Increasing Gate – Level Optimization Algorithm,
 IEEE Int. Conf. On Computer –Aided Design, November, 1992, pp.

631-634
[8] I.Lemberski, M.B.Josephs, Optimal Two- Level Delay-Insensitive
 Implementation of Logic Functions, PATMOS2002, Spain, pp.109-119
[9] M.Ligthart, K.Fant, R.Smith, A. Taubin, A.Kondratyev, Asynchronous

Design Using Commercial HDL Synthesis Tools, 6-th Int. Symp. on
Advanced Research in Asynchronous Circuits and Systems (ASYNC’00),
pp. 114-125

[10] S.M.Nowick, Automatic Synthesis of Burst-Mode Asynchronous
 Controllers, Ph.D. thesis, Stanfort University, Mar March 1993
[11] S.M.Nowick, D.L.Dill, Exact Two-Level Minimization of Hazard-Free

Logic with Multiple-Input Changes, IEEE CAD, vol.14, August, 1995, pp.
986-997

[12] Principles of Asynchronous Circuit Design, Ed. J.Sparsø, S.Furber,
 Kluwer Academic Publishers, 2001, 337 p.
[13] C.L Seitz, System Timing, In: Introduction to VLSI Systems, C. Mead, L.

Conway, Addison—Welsey Publishing Company, 1980, pp. 218-262
 [14] P. Siegel, G.D. Micheli, D. Dill, Automatic Technology Mapping for

Generalized Fundamental Mode Asynchronous Designs, IEEE Design
Automation Conference, June 1993, 61-67

 [15] J.Sparsø, J.Staunstrup, M. Dantzer-Sørensen, Design of Delay Insensitive
Circuits Using Multi-Ring Structures, pp. 15-20

 [16] S.H. Unger, Asynchronous Sequential Switching Circuits, John Wilcy &
 Sons, Inc., 1969

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

