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Abstract— The improvement on the QSAR prediction of the 

trans-stilbenes affinity for the β-amyloid peptide (employed for 
detecting the Alzheimer disease) achieved by means of using 
approximate similarity measurement is presented in this work. A 
wide spectrum of similarity methods is described, and results 
obtained by approximate similarity are compared with those 
obtained by constitutional, fingerprint and descriptor-based 
similarity. The fact of using similarity corrections by considering 
distances between the non-isomorphic fragments (the 
approximate similarity concept) led to accurate QSAR models (Q2 
> 0.80). The high predictive ability achieved by simple methods is 
remarked. 
 

Index Terms— Similarity, Non-isomorphic Dissimilarity, 
Approximate similarity, Drug activity prediction.  
 

I. INTRODUCTION 
Chemists have always employed models aimed at 

representing complex chemical entities in a simple way: names, 
molecular weight, graphs, and so on. But the rise of computer 
science has allowed developing a great amount of methods with 
aim of transforming molecules into data structures amenable to 
be processed by computers [1]. 

Computational chemistry encompasses a series of 
mathematical methods implemented by computer which show a 
wide spectrum of applications, namely: reproduction of 
chemical processes, modeling of structures, prediction of 
properties, activities and reaction variables, etc. [2] 

The description of structures by means of numbers enables 
the application of statistical methods to establish a 
mathematical relationship between the description carried out 
and properties and/or behavior of molecules. Quantitative 
Structure Activity/Property Relationship (QSAR/QSPR) are 

the computational chemistry disciplines which propose 
different methodologies for molecular description and study 
their efficiency for in-silico prediction [3]. 
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Several classifications of these methodologies could be 
carried out depending on the characteristics of the descriptor 
vector (2D or 3D, local or global, constitutional or geometrical, 
etc.) and on the mathematical method employed to define the 
QSAR/QSPR equation (univariate or multivariate, parametric 
or non parametric, global or feature selection, etc.) [4].  

2D similarity approaches can be defined as simple methods 
since they employ topological measurements derived from 
molecular graphs, but many times they show inconsistencies 
for the appropriate representation of QSAR/QSPR predictive 
spaces [5]. Thus, accuracy achieved is not enough to consider 
models as predictive tools. In this work we present the 
advantages resulting from the use of the recently proposed 
approximate similarity. This measurement refines the chemical 
information extracted from molecular graphs by considering 
new chemical pieces of information: the non-isomorphic 
substructures. The affinity of trans-stilbenes for the β-amyloid 
peptide [6] has been the chemical frame considered due to its 
application in the early detection of the Alzheimer disease. 

This work has been organized as follows: after the 
introductory section, a general description of the use of the 
similarity concept in QSAR/QSPR is given. Section 3 describes 
different classical similarity approaches, whereas the 
approximate similarity concept is defined in section 4. 
Evaluation of the different QSAR models developed is carried 
out in section 5, and finally, conclusions are given. 

 

II. SIMILARITY APPROACHES 
Similarity measurements are often employed to develop 

screening methods of chemical databases and to predict 
molecular properties. The latter application is based on the 
“similar molecules show similar properties” chemical 
principle, thus enabling the study of both physico-chemical 
properties and biochemical behavior. 

The development of similarity-based QSAR models consists 
of a series of common stages, namely: a) first, a data set which 
represents both the molecular diversity and the 
property/activity range to be modeled and predicted is selected; 
b) second, 2D or 3D methods are employed to compute the 
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isomorphism shown by each pair of the compounds which 
compose the data set; c) a similarity matrix is built by means of 
using any of the similarity metrics summarized in literature; 
and d) multivariate regression techniques and validation 
strategies are employed to establish the prediction equations 
and to assess the uncertainty reduction achieved, respectively.  

Several 2D and 3D similarity methods have been proposed. 
The former makes use of graph (called molecular graph) 
representation of all the data set elements by considering the 
atoms and bonds which compose a molecule as the nodes and 
edges, respectively. There are two ways of using a molecular 
graph. First, after computing one or several descriptors over the 
molecule, we can build univariate or multivariate models to 
predict chemical properties/activities. In other way, measures 
of similarity between the different molecule descriptions of the 
data set can be carried out by means of considering size and 
nature of molecules and of the isomorphic fragments [7]. 

Three dimensional similarity methods, based on 
Comparative Molecular Field Analysis (CoMFA), consider 
XYZ coordinates of atoms and grids enclosing data set 
structures. Then, a series of molecular field interactions are 
computed at each one of the grid points, and similarity between 
all the molecules are computed by taking into the overlapping 
between a pattern randomly selected and each data set element 
in the built grid. Thus, a similarity measurement can be 
considered as a distance between de calculated descriptors for 
the XYZ coordinates of each data set element [8].  

In spite of the efficiency achieved by 3D methods, some 
shortcomings related to their high computational cost are 
involved in this kind of QSAR developments. For instance, 
optimizations of 3D structures are carried out by complex 
methods like quantum mechanics, molecular dynamics, 
molecular mechanics, etc. In other hand, alignment of 
structures is also required in order to reproduce the 3D space 
according to key parts for the property/activity. In addition, 
selection of a representative pattern is also a subjective step. 

Regarding 2D methods, optimization and alignment of 
chemical structures are not involved, thus not requiring high 
computational resources. In spite of this, similarity 
measurements have shown some problems in predicting 
molecular properties even in data sets composed by compounds 
showing similar structures. 

In previous works [9], we have proposed the Approximate 
Similarity concept. This new similarity measurement, which 
involves all the characteristics of 2D similarity approaches, 
considers several pieces of 2D structural information, namely: 
a) graph information of the data set elements; b) data of 
common fragments extracted from the isomorphism detection 
process; c) information of the non-isomorphic fragments 
obtained in the graph matching, i.e., those substructures which 
do not compose the isomorphism computed for each pair of the 
data set elements; and d) invariant-based description of whole 
graphs, and of isomorphic and non-isomorphic fragments by 
means of 2D-descriptors which accounts for their chemical 
nature. 

 

III. CLASSICAL SIMILARITY APPROACHES 
In this work, we expose the application of several 2D 

similarity methods to the development of QSAR models, thus 
showing the advantage derived from the use of the approximate 
similarity.  

A. Representation of the data set elements 
The molecules which compose the data set to be modeled are 

represented by non-directed and non-weighted graphs, known 
as molecular graphs. A molecular graph GA consisting of nA 
nodes and eA edges which represent the atoms and bonds of a 
molecule, respectively. 

B. Constitutional Similarity 
Bi-dimensional similarity measurements are obtained after 

representing the data set elements by means of molecular 
graphs and isomorphism extraction. Classically, graph 
matching computes the number of nodes and edges of the two 
matched molecular graphs and of the common fragments. 

Several similarity indices have been proposed with the aim 
of relating the constitutional description with a similarity 
measurement normalized within the range [0,1]. Tanimoto and 
Cosine formulas have been widely employed as similarity 
indices. These indices are shown in expressions (1) and (2). 

Tanimoto: 
cba

cS BA −+
=,  (1) 

Cosine: 
ba

cS BA
×

=,  (2) 

where: a and b are the sizes (number of nodes and edges) of the 
molecular graph GA and GB, respectively, and c is the size of the 
molecular graph GC which represents the isomorphism 
extracted form the GA and GB matching. 

The GC graph can be obtained by different ways. GC is often 
considered as a connected graph representing the maximal 
common subgraph (MCS) between GA and GB. But other 
approaches do not show the requirement of fully connected 
graph, these representing either the set of maximal common 
edges subgraphs (MCES) or the set of all the maximal common 
subgraphs (AMCS). 

C. Fingerprint-based Similarity 
Other classical approaches to the 2D similarity concept make 

use of the transformation of the molecules into fingerprints [10]. 
A fingerprint is a binary array of a preset size which represents 
structural properties of the molecular graphs. Different kinds of 
fingerprints have been proposed depending on the structural 
elements to be represented and on the array size. 

In a general way, fingerprint construction consists of a series 
of steps, namely: a) generation of the molecular graph for each 
element of the data set; b) obtaining of the subgraphs showing 
size from 1 to m (often lower than 9) for each graph; c) 
extraction of preset pattern substructures in some fingerprint 
kinds; d) assignation of a binary representation and position of 
each path and pattern presented in the data set; e) and finally, 
the fingerprint construction. 
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So, fingerprints can be considered as data structures which 
do not require great computational costs for their handling and 
they store greater structural information than that shown by the 
chemical graph. Nevertheless, some shortcomings are involved 
in the use of fingerprints. On a hand, if fingerprint size is small, 
different paths or patterns are located at the same bits, thus 
giving redundancy and high density fingerprints which produce 
high similarity values and data inconsistencies. On the other 
hand, big sizes are often responsible for scattered fingerprints 
which produce extremely low similarity measurements. 

Fingerprint similarity values are most of times obtained by 
means of Tanimoto index and through the computation of 
boolean operations between the data set fingerprints. Values for 
a and b (see expressions 1 and 2) are the number of bits equal to 
1 of fingerprints A and B, respectively, whereas c represents the 
number of bits equal to 1 and common to the fingerprints of 
molecules A and B. 

D. Descriptor-based Similarity 
Recently, the use of different descriptors computed over 

molecular graphs has been proposed with the aim of obtaining 
similarity measurements. So, taking into account the molecular 
graphs GA and GB representing the molecules A and B, 
respectively, a similarity approach based on extracting a 
descriptor or invariant over graphs GA, GB and GC can be 
proposed. Advantages of this kind of approaches derive from 
the use of descriptors which account for different structural 
properties of molecular graphs. Therefore, a given descriptor 
can be selected in order to explain in a major extent the 
property/activity we are trying to model and predict. 

Descriptor-based similarity measurements can be obtained 
by any descriptor, for instance, the Cosine index as follows: 

  

Cosine: 
)()(

)(
,

BA

C
BA GtdGtd

Gtd
S

×
=  (3) 

  

where: td(GA), td(GB) and td(GC) are the values of a given 
descriptor computed over the graphs of molecules A, B and of 
the extracted isomorphism, respectively. 

 

IV. APPROXIMATE SIMILARITY APPROACH 
The above described similarity approaches employ 

characteristics of molecular graphs and of isomorphic 
subgraphs extracted in the matching process for all the pairs of 
the data set. But these approaches do not consider straightly the 
fragments which do not compose the extracted isomorphism. 

For instance, taking into account the three molecular graphs 
shown in Fig. 1, classical similarity measurements only 
consider the characteristics of graphs GA, GB and GC and 
characteristics of the isomorphic subgraph GI. As can be 
observed, the matching processes GA-GB and GB-GC computed 
the same isomorphism.  

Nevertheless, non-isomorphic fragments are also responsible 
for the properties/activities of the molecules shown in Fig. 1.  

Our proposal is to consider the contribution to the similarity 

measurement of the non-isomorphic fragments. Thus, we take 
into account the distances between the subgraphs that do not 
form the isomorphism IA,B. Thus, the structural difference ГA,B 
(dissimilarity or distance) between two molecular graphs GA 
and GB is calculated as follows: 

  

)](),([
)],(),,([ .,,

BA

BABBAABA

NIFtdNIFtdg
IGtdIGtdg

=

==Γ
 (4) 

  

where: IA,B represents the isomorphism extracted from 
matching of the GA and GB molecular graphs; non-isomorphic 
subgraphs NIFA=GA-IA,B and NIFB=GB-IA,B correspond to the 
subgraphs of GA and GB, respectively, that do not form the 
isomorphism IA,B; g() is a function aimed at obtaining a distance 
value (e.g. Euclidean, Mahalanobis, etc.) between td(NIFA) and 
td(NIFB); and td is a topological descriptor which describe the 
non-common subgraphs, namely: Wiener (W), Hyper Wiener 
(WW) and so on indexes. Contrary to similarity, higher the ГA,B 
shows, higher the dissimilarity between the molecules A and B 
is. 
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Fig. 1. Isomorphic and non-isomorphic fragments for three 
examples of molecules 

A. Correction of the structural similarity: the Approximate 
Similarity 

With the aim of defining a new similarity measurement 
which takes into accounts both the classical similarity and the 
non-isomorphic distance, the Approximate Similarity (AS) is 
defined as follows: 

  

),w,Γf(SAS ΓA,BA,BA,B =  (5) 
  

where: SA,B is a classical similarity measurement 
(constitutional, fingerprint-based or descriptor-based); ГA,B is 
the dissimilarity defined in equation (4), and wΓ is a weighting 
factor which adjusts the distance contribution in the 
approximate similarity calculation.  

Thus, chemical similarity achieved by the AS approach will 
be more accurate due to the consideration of the difference 
between the non-common substructures of the matched 
molecules, which most of times are responsible for their 
properties/activities. 
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Fig. 2. Molecular graphs for the data set of 22 trans-stilbene 

 
Table I. SMILE structures, and experimental, predicted and reference affinities for the data set 

     

  pKi
 Molecules Exp. Pred. Ref. 
1 CN(C)C1=CC=C(\C=C\C2=CC(Br)=C(O)C=C2)C=C1 8.70 8.46 8.56 
2 CN(C)C1=CC=C(\C=C\C2=CC=C(Br)C(N)=C2)C=C1 8.55 8.21 8.13 
3 COC1=CC2=CC=C(\C=C\C3=CC=C(C=C3)N(C)C)C=C2C=C1 8.15 8.14 8.23 
4 CN(C)C1=CC=C(\C=C\C2=CC=C3C=CC(C)=CC3=C2)C=C1 8.14 7.91 8.09 
5 CCN(CC)C1=CC=C(\C=C\C2=CC=C(O)C=C2)C=C1 8.00 8.05 8.04 
6 CN(C)C1=CC=C(\C=C\C2=CC=CC(Br)=C2)C=C1 7.90 8.52 7.74 
7 COC1=CC(=CC=C1)\C=C\C2=CC=C(C=C2)N(C)C 7.87 8.07 7.60 
8 CNC1=CC=C(C=C1)\C=C\C2=CC=C(C=C2)N(C)C 7.82 7.70 7.82 
9 CN(C)C1=CC=C(\C=C\C2=CC=C(C=C2)N(C)C)C=C1 7.73 7.83 7.99 

10 NC1=CC=C(C=C1)\C=C\C2=CC=C(OCCF)C=C2 7.59 7.29 7.42 
11 CN(C)C1=CC=C(\C=C\C2=CC=C(N)C=C2)C=C1 7.58 7.56 7.80 
12 CN(C)C1=CC=C(\C=C\C2=CC=CC(=C2)N(=O)=O)C=C1 7.56 7.29 7.65 
13 CN(C)C1=CC=C(\C=C\C2=CC=C3C=CC(=O)OC3=C2)C=C1 7.55 7.72 7.93 
14 OC1=CC=C(C=C1)\C=C\C2=CC=C(NCCF)C=C2 7.52 7.47 7.65 
15 CN(C)C1=CC=C(\C=C\C2=CC=C(C=C2)C3=CC=CC=C3)C=C1 7.47 7.76 7.48 
16 COC1=CC=C(C=C1)\C=C\C2=CC=C(N)C=C2 7.44 7.74 7.68 
17 FCCNC1=CC=C(C=C1)\C=C\C2=CC=C(OCCF)C=C2 7.41 7.44 7.21 
18 COC1=CC=C(C=C1)\C=C\C2=CC=CC=C2 7.36 7.08 7.08 
19 CN(C)C1=CC=C(\C=C\C2=CC=CC=C2)C=C1 7.35 7.27 7.31 
20 COC1=CC=C(C=C1)\C=C\C2=CC=C(C=C2)N(=O)=O 7.33 7.45 7.31 
21 CC1=CC=CC(\C=C\C2=CC=C(C=C2)N(=O)=O)=C1 6.82 6.82 6.94 
22 C1=CC=C(C=C1)\C=C\C2=CC=CC=C2 6.24 6.36 6.38 

     
 

V. MATERIAL AND METHODS 
In this work, the efficiency of approximate similarity 

methods was tested for the prediction of binding affinity of 
trans-stilbene derivatives to the β-amyloid (Aβ) peptide. Aβ 
accumulation in the brain is a key symptom for the 
development of Alzheimer’s disease (AD), which destroys 
the part of the nervous system responsible for storing 
memories. The fact of detecting Aβ accumulations by means 
of non invasive spectroscopic techniques is pursued by the 

scientific community in order to detect the disease in its early 
development. 

The synthesis of specific ligands of Aβ which act as 
imaging factors to reveal the presence of Aβ has been widely 
studied. The trans-stilbene series (22 compounds) studied in 
this work shows a wide range of affinity for the Aβ plaques 
consisting of Aβ1-40 aggregates in the brain of AD people. 
Thus, there is a great interest in developing computer tools 
for the aid of development of trans-stilbene derivatives. A 
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fast and efficient QSAR model based on 2D similarity 
calculations and distance corrections of similarity, 
respectively, could provide a useful predictive tool. 

Fig. 2 and Table I show, respectively, the 2D structures 
and the SMILE representations of the 22 stilbene 
compounds. MarvinScketch was employed as builder for the 
2D structures, whereas the fingerprints were generated by 
generfp of JChem [11]. As can be observed, the structure of 
the compound 22 is a substructure of the rest of stilbene 
molecules.  

The affinity values are also shown in Table I, expressed as 
pKi = -log(Ki), and the statistical characterization of the 
experimental data set affinity is as follows: N: 22, mean: 
7.64, min: 6.24, max: 8.70, standard deviation: 0.52. 

The isomorphism computation for all the pairs of 
compounds was carried out by using an algorithm which 
extracts the maximum common substructure (MCS). This 
program was developed by authors [12]. Wiener index (eq. 
6) was employed to calculate descriptor-based similarities. 

∑∑
<

=
N

i

N

ji
j

ijdW  (6) 

The Wiener computation was also modified (W*) in order 
to consider the weighted distance matrix. In this matrix, each 
elements (i, j) corresponds to the minimal pathway length 
between the graph nodes (atoms) i and j computed by 
considering interatomic distances relative to the C-C bond. 

The Wiener index has been demonstrated to be useful for 
predicting molecular properties since three decades ago [7]. 
This index allows describing the molecular size and volume, 
which have been widely related to properties/activities of 
molecules. In addition, W* provides information of the 
atoms and bonds that compose the molecule, thus refining 
the chemical information shown by this kind of graph 
invariants. 

VI. EVALUATION OF THE DIFFERENT SIMILARITY 
APPROACHES 

Partial Least Squares Regression (PLSR) was employed 
as multivariate regression technique [13]. PLSR reduced 
original similarity spaces by considering variances of 
predictors and properties/activities. In addition, PLSR 
permitted the use of symmetric matrices —other regression 
techniques, e.g. Multiple Linear Regression (MLR), require 
systems with more objects than predictors—. Leave one out 
was the strategy employed to validate the quality of 
equations. Different statistical parameters were studied, 
namely: coefficient of determination (Q2), standard error in 
cross-validation (SECV), and slope and intercept of the 
predicted vs. experimental plot. All these parameters are 
referred to predictions. Study of anomalies was also carried 
out. 

QSAR community considers that meaningful models are 
obtained when Q2 > 0.50 and, on the other hand, when the 
SECV value is much lower than the standard deviation of the 

data set. In addition, slope and bias close to 1 and 0, 
respectively, also confirm the models predictive capacity.  

Table II shows the models built by the different similarity 
approaches studied in this work. As can be observed in Table 
II, classical similarity matrices did not give good predictive 
models since all the indices employed led to poor values for 
all the statistical parameters. In a similar way, 
descriptor-based similarities did not show predictive ability 
in spite of using the modified Wiener index (W*). Q2 values 
were much lower than 0.5 and SECV was similar to the 
standard deviation of the affinities, thus not obtaining 
uncertainty reduction. 

Regarding models derived from use of fingerprints, 
acceptable Q2 values were obtained, namely: 0.58 and 0.56 
for the Tanimoto and Cosine indices, respectively. The 
slightly higher predictive ability achieved for the Tanimoto 
index could be due to the reduction of redundancies 
observed in the location of fragments in both high density 
and scattered fingerprints. Nevertheless, these models only 
can be employed for screening tools (separation of low, 
medium and high affinity values). Greater Q2 values are 
required to achieve robust QSAR models. 

Taking into account the above commented results, 2D 
similarity approaches show shortcomings for the 
development of QSAR models. In these cases, predictive 
spaces were symmetric similarity matrices built by means of 
isomorphism measurements which only consider 
characteristics of the molecular graphs and of the computed 
isomorphic fragment. Thus, the development of a 2D 
similarity measurement which employs non-isomorphic 
contributions should be attempted. The similarity correction 
by considering non-isomorphic information was carried out 
as expression (7). 

⎥
⎥
⎦
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⎢
⎣

⎡
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 (7) 

We can observe three terms in equation (7). First, one of 
the classical similarity SA,B above described is employed. The 
second component is a measurement of the isomorphic 
fragment weighted contribution for each pair of data set 
elements with regard to the matched molecules.  

This contribution was obtained by using modified Wiener 
index (W*), which is computed over the weighted distance 
matrix of graphs. Finally, the third term considers the 
non-isomorphic fragments (NIF) contribution to the 
similarity correction. With this aim, Wiener and modified 
Wiener indices (W and W*) were computed over the normal 
and weighted distance matrices, respectively. 

Table II shows the results obtained by the approximate 
similarity approach of equation (7). Similarity measurement 
considered was that derived from fingerprints by using the 
Cosine index.  
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Table II. Experimental results for different similarity-based approaches 
Similarity Prediction Model 

Model Index Descriptor Slope Intercept Q2 SECV Outlier 
Classical Tanimoto None 0.62 2.91 0.12 0.51  
 Cosine None 0.60 3.05 0.10 0.51  
Fingerprint-based Tanimoto None 0.91 0.66 0.58 0.34  
 Cosine None 0.90 0.72 0.56 0.35  
Descriptor-based Tanimoto W 0.83 1.29 0.29 0.45  
 Cosine W 0.60 3.04 0.10 0.51  
 Tanimoto W* 0.82 1.33 0.29 0.45  
 Cosine W* 0.60 3.04 0.10 0.51  
Approximate Cosine W, W* 1.01 -0.13 0.89 0.17 1 

 
As can be observed, one outlier was detected when a study of 

descriptor-activity outliers was carried out. On this purpose, the 
T parameter was computed as the residual/SECV ratio, and 
Tcut-off was set to 2.5. Without considering the detected 
anomalous compound, excellent accuracy and precision were 
achieved (Q2 = 0.89 and SECV = 0.17), and slope and intercept 
extremely close to 1 and 0, respectively. 

The outlier corresponded to stilbene derivative 6. As can be 
observed in Fig. 2 and Table I, the difference between 
molecules 6 and 7 is at the meta substitution of one of the 
aromatic ring, namely: bromide and –OCH3 for molecules 6 
and 7, respectively. In this case, the approximate similarity 
detected the difference of size and electronegativity for both 
substituents, but this structural difference did not involve great 
differences between the affinities [14]. Similar interpretation 
may be given when molecules 1 or 2 (in both cases bromide is 
present) are compared with 6: very few structural changes are 
involved in high affinity differences. 

When the outlier was considered, statistical parameters were 
as follows, namely: Q2 = 0.80, SECV = 0.23, slope = 0.92 and 
intercept = 0.66. Other approximate approaches were tested, 
but better results were not obtained. 

 

VII. CONCLUSIONS 
In this work, the improvement on the predictive power of 

similarity-based QSAR models has been achieved by means of 
the use of a new chemical dimension of the information 
extracted from molecular graphs. In this way, distances 
between the subgraphs which do not compose the isomorphism 
extracted from molecular matching has been considered in 
correction of classical and invariant-based methods. 

Prediction of the affinity of a trans-stilbene series for the 
β-amyloid (Aβ) peptide was successful in the cases in which 
the traditional methods fail. Therefore, the consideration of 
non-isomorphic atoms and bonds led to predictive spaces 
characterized by high and low Q2 and SECV values, 
respectively. In addition, anomalous behavior shown by 
compounds was only detected by approximate similarity 
approaches, thus indicating the richer chemical information 
modeled.  

It is interesting to remark that the simplicity of 2D QSAR 
methods was maintained since molecular graphs were 

employed for generating approximate similarity measurements. 
And as the most important step, quality of prediction was 
drastically improved, thus concluding that accurate models 
were obtained in spite of considering only 2D representations. 
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