
 

 

 

  
Abstract— In this paper, a Neuro-Predictive (NP) controller is 

designed and implemented on a highly non-linear system, a model 

helicopter in a constrained situation. It is observed that the closed 

loop system with the NP controller has a significant overshoot and 

a long settling time in comparison to the same system with an 

existing fuzzy controller. In order to improve the undesired system 

performance, a Sugeno-type fuzzy compensator, having only two 

rules, is added to the control loop to adjust control input. The 

newly designed Neuro-Predictive control with Fuzzy Compensator 

(NPFC) improves the system performance in both overshoot and 

settling time. Furthermore, it is shown that the NPFC controlled 

system is robust to disturbance and parameter changes. 

 
Index Terms—Neuro-Predictive, Fuzzy Control, Model 

Helicopter, Overshoot. 

 

I. INTRODUCTION 

Predictive control, as a method of using predicted outputs to 

determine control inputs, was initially introduced by classical 

Model Predictive Controllers (MPCs) [1]. It is obvious that for 

“prediction”, a “model” is needed in the classical MPCs. Quite 

often linear state space models are used. Such models can 

predict the behavior of many processes satisfactorily [2]. In 

some cases, Artificial Neural Network (ANN) can use linear 

models with limited validity areas for non-linear systems; such 

models can also be used in the classical predictive control [3]. 

But nonlinear models are usually needed in order to predict the 

behavior of nonlinear systems. Soloway and Haley used 

nonlinear artificial neural networks as a model for predictive 

control purposes [4]. Using nonlinear models, the classical 

MPC method to derive control input is not applicable any more. 

In order to compute the control input in the presence of 

nonlinear ANN models, nonlinear optimization methods are 

often used [5,6,7], although an additional ANN can also 

perform this task [8]. Neuro-predictive controllers have been 

implemented in a variety of applications such as control of food 

or chemical processes and control of air/fuel ratio of engines [9, 
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10, 11]. This method has also been used to control a hybrid 

water and power supply [12] and a 6-DOF robot [13]. In 

medical engineering, neuro-predictive controllers are used to 

control insulin pump of diabetic patients [14]. In this research, 

neuro-predictive approach is used to control a model 

helicopter’s yaw movement. A fuzzy inference system is also 

designed as a compensator to improve the efficiency of 

neuro-predictive controller. 

II. RELATED CONTROL METHODS 

The designed hybrid controller includes three main parts; an 

artificial neural network to predict the behaviour of system, a 

“nonlinear optimization method” to minimize the performance 

function, and a “fuzzy inference system” to improve the 

efficiency.  

Inasmuch as the controlled system is dynamic in nature, the 

ANN should be recurrent. The inputs of the ANN are the inputs 

and outputs of system at a specific time ( t ) and at the instants 
prior to that time. The output of ANN is the output of system at 

the time just after the specific time, i.e., ( tt ∆+ ), where t∆ is 

the minimum time interval of data recording (shown in Fig.1). 

 
Figure 1: Scheme of an ANN usable in a neuro-predictive control 

 

A neural network was trained off-line using recorded data 

before operation; besides, it is trained on-line during operation. 

A perceptron structure with two layers of connections is used in 

this study. After training, for the first estimation, the inputs of 

the ANN are the tentative control input of system ( u′ ), previous 
control inputs of system ( )( iku −  when 1≥i ), current and 

previous actual outputs of systems ( )( iky −  when 0≥i ). The 

output of the ANN is the first predicted value of the output, 

)1( +kys . To estimate )( ikys + , when 1>i , the previously 

estimated values of sy are used as previous output values of the 

system which are originally estimated based upon the actual 
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outputs of the system, the actual inputs and tentative control 

inputs of the system.  

Predicted outputs of the ANN can be used to calculate the 

performance function. In the discrete domain, the performance 

function is defined as below: 
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where, sy and dy are the estimated and desired outputs of the 

system respectively, and u′ and u are the tentative and actual 
control inputs, respectively. Additionally, ρ is a factor 

defining the importance of constancy of the control input. In the 

right-hand side terms of (1) (arguments of J function) u′  is the 
only independent variable that is not influenced by the current 

and previous situation of the system. This variable can be 

selected arbitrarily and can affect other variables and the 

performance, whereas other terms of the right-hand side of the 

equation (arguments of J ) are thoroughly dependent on the 

current situation of the system, therefore, their values can not be 

adjustable. In other words, for control purpose, it can be 

assumed that: 

).(uJJ ′=                                                                                 (2) 

Now, u′ should be so determined that J has its minimal value. 

To do this, the Taylor’s series of the performance function can 

be written as: 
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after derivation of (4), it becomes: 
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In order to minimize )( uuJ ′∆+′ , its derivative is set to zero. 

Consequently: 
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The right-hand side of (5) is called Newton’s direction [15]. In 

this method, kg , a performance function gradient is defined as:  

;
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moreover, kG  is defined as:               
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To modify control input, following relation can be used: 

,kkoldnew gGuuu −=′−′=′∆                                                        (8) 

but, in practice, an adjustable coefficient is used for kk gG to 

obtain a quicker convergence:   

.kkoldnew gGuuu η−=′−′=′∆                                                     (9)                                                                                                

Using (9), it is obtained that:   

),()( kkoldnew gGuJuJ η−′=′                                                   (10) 

Equation (10) can be rewritten as:  

.kkold gGuJofArgument η−′=                                                (11) 

Both oldu′ and kk gG are known in this stage, then, while 

changingη , JofArgument moves along a line. There is an 

optimum point on this line that minimizes J . Such an 

optimization problem is classified as a linear search. The 

backtracking method, introduced by Dennis and Schnabel [16], 

is selected for linear search. The modified u′ ( newu′ ) is used as 

the new control input.  

Beside neural modeling and selecting optimization 

(predictive) algorithm, a simple Sugeno-type fuzzy inference 

system is designed to make the response of neuro-predictive 

controller decay quickly when the error is sufficiently low. 

III. MECHANICAL MODELING 

The model helicopter used in this research is a highly nonlinear 

two input-two output system. The helicopter has two degrees of 

freedom, the first possible motion is the rotation of the 

helicopter body with respect to the horizontal axis (which 

changes the pitch angle) and the second is rotation around the 

vertical axis (which change the yaw angle). The helicopter can 

rotate from �
170−  to �

170  in the yaw angle, and from �
60− to 

�
60  in the pitch angle. System inputs are voltages of main and 

rear rotors, and the yaw and pitch angles are considered as its 

outputs.  

 
Figure 2:  A scheme of model helicopter 

 

A mechanical modeling was obtained using Newton and 

Euler laws. After modeling, the following differential equations 

are obtained [17]:  
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The variables and indices are listed at nomenclature. In (5~10) 

the torques can be substituted by their equal expressions 

obtained from kinetics of the system.  

In this research, a special situation is studied. In this situation, 

the motion is so constrained that the vertical motion is 

impossible; moreover, the input voltage of main rotor )( RU  is 

set to “zero”. As a result, the only input of the system is the input 

voltage of rear rotor )( SU . Also, the yaw angle (the angle in 

horizontal plane) is considered as the unique output. In this 

situation, only (16) and (17) can represent the behavior of 

system. Since there is no change in the pitch angle, gyroscopic 

torque does not exist; furthermore, the main rotor does not 

generate any torque. Consequently, (17) is simplified as below: 
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where: 

,)( 2
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., ψµ ωVSfriction cT =                                                                         (20) 

The equations defining the behavior of this first order system 

can be written as: 

,ψωψ =ɺ                                                                                  (16) 
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where ψω is the angular velocity of helicopter body in the yaw 

direction and Sω  is the angular velocity of the rear rotor blades 

that is a nonlinear function of the input voltage of rear rotor. 

IV. DESIGN OF HYBRID CONTROLLER 

A. Neural Network Model 

A three layer recurrent perceptron is used to model the system. 

The numbers of neurons in the input and hidden layers are 6 and 

7 regardless of biases. The value of each bias is 1. The input and 

output layers have linear activation functions with slope of one, 

whereas, the hidden layer has sigmoid activation function, that 

is, the output of i
th
  neuron of the hidden layer is: 
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where ijw  is the weight of connections between i
th
  neuron of the 

hidden layer and  j
th
 neuron of the input layer whose output is 

jy , and 7 (at the top of sigma symbol) is the number of neurons 

in the input layer in addition to its bias. In this research, 

Levenberg-Marquardt algorithm is applied for batch 

back-propagation training. A scheme of neural network together 

with the input and output data during training is shown in Fig. 3. 

A set of 1300 input-output recorded data of system was used for 

training. In order to obtain such a data set, pulse signals were 

sent to the system with a time interval of 1 second for 130 

seconds and the output value was recorded at any time. Testing 

data was obtained with sending a sinusoidal signal to the system 

as the input (input is the voltage of the rear rotor of the 

helicopter). The training was completed only with 8 iterations. 

 
Figure 3: Neural network structure and input-output data in 

training stage 

The performance function of training is the sum of squared 

errors, and the data were normalized before training. Figures 4 

and 5 both illustrate the success of training. 

 

 
Figure 4: Verification information of ANN regarding testing area 

 

 
Figure 5: Verification information of ANN regarding training area 

After successful training, the neural network was used to predict 

the future outputs of the system. In this stage, dissimilar to 

training stage, the inputs and outputs were not recorded data. 

For the first estimation, the neural network inputs and outputs 

are shown in Fig.6.  

The tentative input u′  and estimated output
sy appear in the 

estimation stage. For next steps of estimation, )1( +kys is 
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replaced by )( ikys +  (where  )1>i ; moreover, some of the 

inputs of the ANN shown in a dashed rectangle in Fig.7, change 

values when )( ikys +  (where )1>i is estimated. For 2=i , or 

to estimate )2( +kys , the inputs of the ANN located in the 

dashed rectangle of Fig.6, are shown in Fig.7. 

 
Figure 6: Neural network structure and input-output data in the 

first estimating (predicting) stage 

 

Fig.8 shows the same inputs for 3≥i . 

 
Figure 7: dashed area of Fig.6 for i=2 

 

 
Figure 8: dashed area of Fig.6 for i>2 

B. Predictive Control 

In order to explain the details of predictive control, (1) should 

be re-noticed: 
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The purpose of predictive control is to define tentative control 

input u′ so that J is minimized. Using the ANN, designed and 

trained in previous section, predicted output values can be 

available. To obtain predicted output values, at each instant, the 

ANN should be used N times as shown in (1). The estimated 

(predicted) output value of any stage of prediction is applied as 

one of the inputs for the next prediction stage. In this research 

7=N has been used. Let’s consider seven sequential identical 

neural networks that the outputs of any of them (except the last 

one) provide one of the inputs of the next ANN. Such a neural 

model, namely “Neural Predictive Model” obtains the estimated 

(predicted) output values of system ( )( iky + , )7~1=i  using 

the previous and current values of the output of system )(y , the 

previous values of control input )(u  and the tentative control 

input )(u′ . As a result, when 21or=ρ , the value of 

performance function ( J ) can be calculated as shown in Fig.9. 

In order to explain the total process of predictive control, a 

general model is considered as the sum of neural predictive 

model and J function. The output of this general model is the 

value of )(kJ . Additionally, as previously stated, the 

nonlinear optimization function which derives the tentative 

control input is a combination of (6), (7), (9) and the linear 

search. Fig.10 shows the neuro-predictive control algorithm. 

  
Figure 9: The process of calculation of the performance function 

 
Figure 10: neuro-predictive controller 

 

For the first steps, )1(−J  and )2(−J  should be determined 

using previous recorded values. 

C. Fuzzy Compensator 

After implementation of neuro-predictive controller, it was 

observed that it reached the desired point more quickly than 

existing fuzzy controller, but a serious problem was also 

observed. The system under neuro-predictive control has a 

considerable overshoot and a long settling time. In order to 

solve this problem, a fuzzy compensator is added to the 

controller. The input of this fuzzy inference system is the 

absolute value of error and its output is a coefficient multiplying 

by u′ (the tentative control input, derived from the 

neuro-predictive algorithm) to achieve a modified control input. 

This fuzzy compensator is a Sugeno-type FIS with only two 

rules: 

 

if    absolute error   is      A         then  correction coefficient=2; 

if    absolute error   is  any value  then correction coefficient=0; 

 

where A is a Gaussian membership function whose membership 

grade can be calculated as below: 

])
5

20
(

2

1
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mg .                                 (23) 

A scheme of this fuzzy inference system is shown in Fig.11. 

 
Figure 11: fuzzy compensator scheme 

 

The role of fuzzy compensator is to reduce the control input (the 

rear rotor voltage) when the error is of small values. The effect 

of this simple corrector is discussed in the next section. 
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V. SIMULATION RESULTS 

The responses of the closed loop system for the three 

different controller are shown in Fig.12 for four set-points and 

three controllers. In other words, the helicopter was rotated 

form stationary situation to some different desired values of yaw 

angle by the rear rotor, while the rear rotor was controlled by an 

existing “fuzzy controller”, “neuro-predictive controller” or 

“NPFC”.  

Table 1: Operational information of different controllers 
Set 

point 

Controller 

Type 

ECC 

(V.s) 

IDC 

(V.s) 

Maximum 

Overshoot 

(deg) 

Settling 

time (s) 

Fuzzy 5.434 0.32 36.367 7.4 

NP 11.26 2.83 49.238 - 

 

-60 

deg NPFC 9.784 0.79 9.124 2.7 

Fuzzy 6.758 0.33 45.222 10.8 

NP 11.80 0.97 24.781 - 

 

-100 

deg NPFC 12.51 0.69 10.041 5 

Fuzzy 4.101 0.16 10.239 6.9 

NP 21.14 2.75 22.023 - 

 

60 

deg NPFC 22.64 1.32 7.931 4.1 

Fuzzy 5.951 0.16 16.734 9.0 

NP 27.92 1.95 18.913 - 

 

100 

deg NPFC 28.38 1.41 6.247 5.3 

 
Figure 12: Responses of different controllers & setpoints 

 

An energy consumption criterion ( ECC ) is also defined to 

represent the total energy consumption of the closed loop 

system during operation, and it can be calculated as: 

,)(
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dttuECC

T
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where T is the final time for calculation and )(tu is the input 

voltage of the helicopter’s rear rotor or control input. Since 

neuro-predictive controllers are essentially designed to reduce 

the deviation of inputs rather than the absolute value of inputs. 

Another criterion namely, input deviation criterion IDC  is 

defined as: 

,)()( dttutuIDC

T

∫ −−=
τ

τ                                                   (25) 

whereτ is the sampling time of the system. Table 1 includes 

these two criteria for all plots shown in Fig.12. This table also 

shows information of the maximum overshoot of the 

experiments. Furthermore, the settling time needed for the yaw 

angle to settle within 5 degrees of the desired value, is shown in 

Table 1 as well. 

It is clearly observed that the proposed NPFC controller 

performs better in terms of the overshoot and settling time in 

comparison to the existing fuzzy controller which is considered 

as a satisfactory controller for this type of high inertia systems. 

From the simulations, it can be seen that the control input 

generated by NPFC controller does not exceed the permitted 

range for the input voltage although it consumes more energy. 

VI. ROBUSTNESS ANALYSIS 

In this section, the designed controller (NPFC) is 

experimentally evaluated regarding the parameter or 

disturbance robustness. At the first step, a NPFC controller 

with 2=ρ  is designed. In order to elaborate disturbance 

robustness, the helicopter was exposed to a sudden impact 

causing �
30 rotations in the direction or against the direction of 

rotation. The disturbances (impacts) are exerted around the 

sixth second during system’s operation as shown in Fig. 13. At 

the same moment the error was about �2 and converged to zero. 

The desired yaw angles were �80 and �80− . The assumed 

impacts were considerably severer than those impacts may be 

encountered in reality. The controlled system passed these 

experiments successfully. Fig.13 shows the response of the 

NPFC controlled system under the mentioned disturbances. 

In order to analyze the parameter robustness of the system, 

(16) and (21) defining systems’ dynamic can be re-written as: 

,ψωψ =ɺ                                                                                    
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There are four parameters in these equations: the moment of  

inertia VI for the helicopter body around its vertical axis, the 

distance of the rear rotor Sr from the joint of the helicopter body 

with its basis (shown in Fig.3), the rear rotor blade constant FSk  

and the friction coefficient for rotation around vertical axis 

Vcµ . Among these parameters, VI and Sr are geometrical 

constants. As to the operation environment of the model 

helicopter, FSk  is also assumed to be a constant. Therefore, the 

only variant parameter of system is Vcµ whose original value for 

properly lubricated joint is 0.0095. 

 
Figure 13: The behavior of NPFC controlled system with 

disturbance 
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Dust or lack of fabrication may cause this parameter increased. 

Figs.14 and 15 show the effect of a sudden increase of this 

parameter by 300% during operation. The increase of 

Vcµ occurred at the fourth and sixth second time marks. The 

NPFC controlled system passed the tests satisfactorily. 

 

 
Figure 14:The behavior of NPFC controlled system with sudden 

parameter change 

 

Two main reasons can be attributed to the robustness of the 

NPFC controller; 

1) The output of fuzzy compensator’s output (and 

consequently controller’s input) increases 

considerably as soon as the absolute error increases. 

2) On-line training makes the neural network model 

adaptive to changes in parameters. 

VII. CONCLUSION 

In this paper, neuro-predictive controllers are studied and 

implemented on a system with non-linear and non-symmetric 

dynamics. Although pure neuro-predictive controllers do not 

work well for this system, but NP controllers, combined with a 

fuzzy compensator, shows a satisfactory response in 

comparison to the existing fuzzy controllers. In the NPFC the 

control input is adjusted through multiplying by a small positive 

number generated by fuzzy inference system. The fuzzy 

compensator is designed so that as the error is small, the output 

converges to zero. It is indicated that the designed controllers 

improve the control performance of the closed loop system. 

Moreover, the disturbance and parameter robustness of the 

system has been improved as well.  
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