
 
 

 

  
Abstract—Surface wave method can be used to determine the 

properties of the component materials of a pavement structure. 
The measurements are made of the differences in the phase of a 
wave of the Rayleigh type, received at two points at known radial 
spacings from the source of the wave. Pavements for highways or 
airport runways are usually constructed of cement concrete. Such 
pavements are treated as a single layer of a constant thickness 
overlying a semi-infinite medium. The system is dispersive and 
inverse methods can be employed to determine the properties of 
the materials of the component layers of the structure. Algebraic 
inverse method has been developed and employed to conduct the 
inversion process of the experimental dispersion curve in order to 
back calculate the unknown parameters of the system.  
 

Index Terms— Computer application, Pavement, Surface wave, 
Inversion.  
 

I. INTRODUCTION 
A pavement system is a layered half space with the deepest 

layer extending to infinite depth. The determination of in-situ 
elastic properties of pavement layers materials is of great 
importance in pavement engineering and pavement 
management system. The stiffness moduli of pavement layers 
are required in characterizing materials, designing constructed 
layers, assessing structural capabilities of existing pavements 
and evaluating pavement conditions and rehabilitation needs. 

Pavements respond to dynamic loads by transmitting waves 
through the pavement structure. It is logical to use the results of 
measurements of wave propagation for pavement testing and 
analysis. The wave propagation method, as a nondestructive 
testing procedure, is an effective, fast and economic technique 
to deduce the necessary information for pavement analysis. 
Surface waves of the Rayleigh type are used for this purpose. 
The waves are generated artificially, by means of a hammer 
blow applied to the surface of the pavement.  

In an infinite, homogeneous, linear elastic material two types 
of wave may occur, compressional waves and shear waves. The 
velocities of these waves will depend on the elastic parameters 
and on the density of the material. In a layered system, the 
phase velocity is not constant, but varies with the frequency. 
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The manner of the variation is used to determine the required 
parameters of the system (the velocity of wave propagation in 
each medium, and the thickness of each layer). Wave velocity 
is a direct indication of the elastic stiffness of the material, i.e. 
higher wave velocities are associated with higher stiffnesses 
and vice versa. Thus the full range of the materials used in the 
pavement layers can be assessed by this method. 

The results of measurements are interpreted with the aid of 
inverse methods. Solutions of the relevant wave equation are 
used to express the surface phase velocities in terms of the 
frequency. The resulting expressions are inversed in order to 
determine the elastic constants of the components of the 
pavement structure. The solution of these problems is 
facilitated by the use of computer-based algebra.  

 

II. WAVE METHOD 
Waves of the Rayleigh type are generated by applying an 

impulsive load, a hammer blow, at right angles to the surface of 
the pavement. The measurements are made of the differences in 
the phase of the Rayleigh wave, received at two points at 
known radial spacings from the source of the wave, from which 
the elastic properties and thicknesses of the component 
materials of the pavement layers are derived. Two vertical 
sensors (usually accelerometers) are placed on the surface of 
the system at known horizontal distances to monitor the vertical 
ground motions induced by the hammer. The analog motions 
captured by sensors are amplified and converted into a digitized 
form by the Analog-to-Digital (A/D) converter. A wide range 
of PC-based data acquisition and control systems provide 
facilities for these kinds of readings and conversions and permit 
analysis of data with the help of software. On completion of the 
A/D conversion, the digitized signals are transformed from the 
time domain to the frequency domain by the Fast Fourier 
Transform (FFT). 

The velocity of the generated wave is determined as a 
function of the frequency, enabling a frequency-dispersion 
curve to be plotted. This curve shows the phase velocity of a 
wave at the surface of the structure. The frequency-dispersion 
data (experimental dispersion curve) can be used to determine 
the properties of the media of which the structure is composed. 
The properties can be determined by the application of inverse 
methods to the results obtained through the establishment of the 
experimental dispersion curve. 
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III. INVERSION PROCESS 
The problem is to determine the properties of the component 

materials of the pavement structure. The inversion process is 
used to back calculate the unknown parameters of the system 
from the data measured in the field and presented in the form of 
the experimental dispersion curve. 

Most of the inverse techniques developed thus far are based 
on the numerical methods. With the numerical inverse method, 
an initial model is assumed for the system, and the theoretical 
dispersion curve is obtained by determining the phase velocity 
at different frequencies using the elastic theory of wave 
propagation in layered media. In most applications, values of 
the unknown parameters of the system are guessed by trial and 
error, and the forward calculation is repeated until the 
agreement between the calculated and the measured results is 
sufficiently close. Once an adequate match between the 
experimental dispersion curve and the theoretical one for the 
trial model is established, the last modified profile is accepted 
as a solution. However this process is time-consuming, greatly 
dependent on the experience of the user and requires 
engineering judgment. Ideally, a true mathematical inverse 
should be found.   

Graphical inverse methods sometimes suffice for obtaining 
approximate results (Akhlaghi, 2004), although most systems 
must be analyzed with the aid of relevant solutions of the wave 
equation of the particular system studied. The simplest 
assumption is that the structure consists of a free plate, which is 
far from reality. A free plate is an idealized, rather than a truly 
physically-realizable, model but it is a good approximation to a 
number of practical configurations (Akhlaghi & Cogill, 1996). 
By employing the free plate solutions and applying to a 
single-layered system, it is possible to determine some 
unknown parameters of the medium from the characteristic 
equation of the system. 

A layered system is a more accurate model of a pavement 
than a free plate. The system described by Lee (1932) is 
composed of a single layer overlying a semi-infinite medium. 
This system is discussed in the following section. The use of 
computerized algebra offers the means of obtaining a true 
inverse. The result is obtained in the form of a polynomial. The 
application of such a method is proposed to obviate the need for 
trial and error and for numerical iterative solutions.  

 

IV. SYSTEM EQUATION 
Pavements contain a surface layer having a stiffness which is 
higher than that of the underlying medium. As the difference 
in the densities is not significant, the compressional wave 
velocity (α ) and shear wave velocity ( β ) are higher in the 
surface layer. Then: 
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ω = angular frequency; and c = phase velocity. 
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Suffixes 1 and 2 denote the surface layer and the underlying 
medium respectively. 

The values of 1r  and 1s  are imaginary, and it is convenient, 
following Lee (1932), to change the notation. We substitute: 
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The determinant of the system can be written (Ewing et al. 
1957) as: 

01221 =− ηξηξ  (6)  
where: 
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where X, Y, Z, W are the terms introduced by Love (1911) as 
follows: 
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If it is assumed that 11 μλ = , 22 μλ =  and that h is small, then 
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and (7) to (10) are as follows: 
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By applying (6), (13) to (16) lead to a cubic in 2k which can 
be used to solve for k in terms of the frequency ω . The 
frequency ω  is defined implicitly in the remaining 
independent variables in (7) to (10). The relevant solution must 
be selected. 
 

V. COMPUTER APPLICATIONS 
The following segment of a forward program in Fortran is 

used to obtain values of the wavelength for given values of the 
surface phase velocity. 

 
 250 CONTINUE 
 R1H = (2./V)*R1K 
 KOUNT = KOUNT + 1 
 R2H = (2./V)*R2K 
 S1H = (2./V) *S1K 
 S2H = (2./V) *S2K 
C*************************************************************************** 

 XI1 = (2.-CB1*CB1) *(X*COS(R1H)+R2R1*Y*SIN(R1H)  
  1           +2. *S1K*(R2K*W*SIN(S1H)-XKS1*Z*COS(S1H) 
 XI2 = (2.-CB1*CB1)*(S2K*W*COS(R1H)+XKR1*Z* 
  1   SIN(R1H) +2.*S1K*(X*SIN(S1H)-S2S1*Y*COS(S1H) 
C*************************************************************************** 
 ETA1 = (2.-CB1*CB1) *(R2K*W*COS(S1H)+XKS1*Z* 
  1       SIN(S1H) +2. *R1K*(X*SIN(R1H)-
R2R1*Y*COS(R1H) 
       ETA2 = (2.-CB1*CB1) *(X*COS(S1H)+S2S1*Y*SIN(S1H) 
  1      +2. *R1K*(S2K*W*SIN(R1H)-XKR1*Z*COS(R1H) 
C*************************************************************************** 
 XITEM1 = XI1*ETA2 
 XITEM2 = XI2*ETA1 
C*************************************************************************** 
 DEL = XITEM1 – XITEM2 
 

Typical results for the fundamental mode are shown in Fig. 1. 
This figure shows the reciprocal of wavelength plotted against 
the frequency. The slope of the curve yields the reciprocal of 
the limiting phase velocities at short and at long wavelengths. 
As the expression contains trigonometric functions, higher 
modes exist but are likely to be suppressed by material 
damping. 
 The inverse of the results shown in Fig. 1 is needed for 
analyzing field measurements. The following code is 
developed for use with Mathematica (Wolfram, 1992). It has 

been used to calculate a thickness 'h' corresponding with 
successive pairs of values of phase velocity and frequency as 
data. It yields an inverse to the Fortran Program above. 
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Figure 1: Fundamental mode dispersion data for single layer 

overlying a semi-infinite medium 
 

(* The following is a definition of the period equation and 
leads to a polynomial 'y' in h to the power of nine *). 
 
k = w / c   ;  kb1 = w / b1   ;     kb2 = w / b2  ; 
 
r1 = ( - 1 / c ˆ 2 + 1 / a1 ˆ 2) ˆ(1/2) ;  
s1 = ( - 1 / c ˆ 2 + 1 / b1 ˆ 2) ˆ(1/2) ;  
r2 = ( + 1 / c ˆ 2 - 1 / a2 ˆ 2) ˆ(1/2) ;  
s2 = ( + 1 / c ˆ 2 - 1 / b2 ˆ 2) ˆ(1/2) ;  
 
(* The definition of the ancillary variables follows *) 
 
ww=2(mu2/mu1-1) ; 
xx=mu2/mu1 kb2ˆ2/kˆ2 – ww ; 
yy=kb1ˆ2/kˆ2 + ww ; 
zz=mu2/mu1 kbˆ2/kˆ2 – kb1ˆ2 / kˆ2 – ww ; 
 
pow := 9 ;  (* Set the degree of polynomial *) 
 
x1= ((2-kb1ˆ2/kˆ2) (xx Cos [ w r1 h ] + r2/r1 yy Sin [ w r1 h 
]) 
       + 2 s1/k ( r2/k ww Sin [ w s1 h ] – k/s1 zz Cos [ w s1 h ] 
)) 
x2=((2-kb1ˆ2/kˆ2) (s2/k ww Cos[w r1 h] + k/r1 zz Sin[w r1 
h]) 
        + 2 s1/k ( xx Sin [ w s1 h ] – s2/s1 yy Cos [ w s1 h ] )) 
e1=((2-kb1ˆ2/kˆ2)(r2/k ww Cos[w s1 h] + k/s1 zz Sin[w s1 h]) 
         + 2 r1/k ( xx Sin [ w r1 h ] – r2/r1 yy Cos [ w r1 h ] )) 
e2= ((2-kb1ˆ2/kˆ2) (xx Cos [ w s1 h ] + s2/s1 yy Sin [ w s1 h 
]) 
         + 2 r1/k ( s2/k ww Sin [ w r1 h] – k/r1 zz Cos [ w r1 h 
])) 
 
(* Expand each of the elements in a series, and simplify *) 
 
xi1 = Factor [ Normal [Series [ x1, {h, 0, pow}  ] ] ] ; 
xi2 = Factor [ Normal [Series [ x2, {h, 0, pow}  ] ] ] ; 
eta1 = Factor [ Normal [Series [ e1, {h, 0, pow}  ] ] ] ; 
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eta2 = Factor [ Normal [Series [ e2, {h, 0, pow}  ] ] ] ; 
 
(* Now write the determinant, to be solved by reversion for the 
thickness, h *) 
 
f = Normal [ Series [ { xi1 eta2 – xi2 eta1 } , {h, 0, pow} ] ] ; 
y = Simplify [ Factor [ f ] ] ; 
  
(* ‘y‘ is a polynomial, and the coefficients of hˆn can be 
extracted by a Coefficient [ y, h, n ] command *) 
 
z = -Coefficient [y, h, 0]/Coefficient [y, h, 1] ; 
 
(* Independent variable of the reversion *) 
 
y1 = y - Coefficient [y, h, 0] ;  
y2 = y1/ Coefficient [y1, h, 1] ; 
 
(* Subtract the constant term from the series, and arrange that 
hˆ1 has coefficient of unity *) 

 
The series y2 is reversed in order to obtain a series for the 

layer thickness h. The result is obtained in terms of the 
velocities of compressional and shear waves in the component 
media (a1, a2, b1, b2), the measured values of frequency and 
the corresponding surface phase velocity (the data pairs w and 
c). The reciprocal slopes of the plot in Fig. 1 are the limiting 
velocities of waves of the Rayleigh type in two component 
materials. If a value of Poisson’s ratio is assumed, the 
parameters a1, a2, b1 and b2 can be estimated from the field 
results. The series represents the behavior of a physical system, 
and it is expected that it must be convergent. However, as in the 
case of forward program, an infinite number of modes exists 
and the relevant one must be selected. The solution shown can 
be adapted to the case of a layer of material having a higher 
stiffness overlying a semi-infinite medium of material having a 
lower stiffness. 

 

VI. SUMMARY AND CONCLUSIONS 
Surface wave method can be used to determine the 

mechanical and physical properties of the materials of a layered 
structure such as highway pavements and airport runways. The 
dispersion curve of Rayleigh waves can be determined in the 
field with the aid of measurements of ground motions induced 
by a hand hammer. The phase velocity is not constant, but 
varies with the frequency. The manner of the variation is used 
to determine the required parameters of the system using one of 
the inverse methods. 

Inverse problems in relation to the study of layered systems 
such as highway pavements have been discussed, and 
numerical results have been demonstrated. The inverse can be 
obtained numerically, by trial and error. Values of the unknown 
parameters of the system are guessed, and the forward 
calculation is repeated until the agreement between the 
calculated and the measured results is sufficiently close. This 

method is time-consuming and requires experienced operator 
and engineering judgment. Also graphical inverse method is 
available; however it is approximate procedure and is 
applicable only to simple cases. Ideally, the inverse should be 
obtained by means of a true mathematical inverse. This inverse 
method has been developed for the case of single layer 
pavement system during this research work. The frequency 
equation for the system is expanded as a polynomial, and is 
solved for the unknown parameters of the system. The 
unknowns are usually the layers thicknesses and the elastic 
moduli of the materials within each layer. The unknowns can 
be calculated directly and no iteration is required.  
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