

Abstract— Software testing is a perennial problem,

consequently it scores scant attention. An inclusion to testing
challenges is aspect-oriented paradigm, which has a dichotomy of
core and crosscutting concerns. Since emergent behavior of the
aspects during their interaction with objects, and inter
dependencies not only incurring challenges for testing, but also
alludes to creation of innovative testing techniques. Several faults
are introduced by aspects. In this paper, we have surveyed all the
existing testing techniques including static verification techniques
for aspect-oriented programs. These factors appeal us to devise a
comprehensive testing framework to meet obliviousness of
harmful aspects. Various approaches are lacking in automation or
either can’t deal with testing of large programs. This paper
suggests the need of regression testing by analyzing the prevailing
testing techniques for aspect-oriented programs, and investigates
efficacy of regression testing. The paper proposes an architecture
of a framework (Aspect Driven Regression Testing framework)
ADRT, and underlying details for testing of aspect based
application, and a tool, (Objects-Aspects Regression Analysis)
OARA for automation of testing process for aspect-oriented
programs.

Index Terms—Aspect-oriented programs, regression testing,
test case generation, regression faults

I. INTRODUCTION
 Aspect-oriented programming is a new methodology claiming
enhanced concepts. Expected software design, and acquiring
maximum modularity leads us to the most innovative, and
seminal aspect-oriented paradigm, as it exhibits the
effectiveness, and robustness of required level. Code scattering
and code tangling are some of the major vulnerabilities, which
any other paradigm has to come across. Aspect-oriented
programming provides effective solution for aforementioned
bottleneck. The separation of concerns is under focus in
aspect-oriented paradigm to avoid code scattering, and
tangling, by treating separately core and crosscutting concerns
at design level. Implementation tools are e.g., AspectJ [28],
AspectC++ [27]. The main constructs, added to object-oriented
paradigm are; join points, pointcuts, advice, introductions, and
aspects. In aspect-oriented technology, an aspect is woven into
core concerns; aspect is realized as a crosscutting concern. The
aspect code observes the base program, and when certain
pointcuts reach, the aspect code is woven there. Several tools

M. N Qamar1 is with the COMSATS Institute of Information Technology,
Islamabad, Pakistan and a senior member of Centre for Software Dependability
(phone: +923455893722; fax:+92519257164;
e-mail: nafees_qamar@comsats.edu.pk).

A. Nadeem is with Centre for Software Dependability, Muhammad Ali
Jinnah University, Islamabad, Pakistan (email: anadeem@jinnah.edu.pk)

R. Aziz is with the COMSATS Institute of Information Technology,
Islamabad, Pakistan (e-mail: romana@ comsats.edu.pk).

can be found out, e.g., AspectJ [28], AspectC++ [27], and
HyperJ. Aspect based programming is not matured yet, so
analysis of aspects regarding their issues can be found in [2],
[3], [4], [5] [6], [7]. One of the attributes of aspect-oriented
paradigm is weaving process, which is called dynamic weaving.
Although it is not cost effective [1], but many people are
working to cater tool issues, which of course will be solved, as
just one in [1]. AspectJ is a tool to write aspects, solves it up to
some extent.

Though aspect-oriented focuses on design problems, and
promises to develop best solution but absence of errors can’t be
assured by any paradigm. Ultimately developments of efficient
testing techniques, and tools, which assist in the creation of
high-quality software, have become one of the most important
research areas. Researchers often demonstrate the effectiveness
of their techniques using tools that function on contrived or toy
systems. We are in need to perform additional research that
provides analytical, statistical, or empirical evidence of the
effectiveness of the test-selection criteria in revealing faults
[31], specifically for aspect-oriented programs. Exhaustive
testing is impossible in both principle and practice. Bach
suggests that testing should be based on circumstances [30].
Apparently some techniques, which have been proposed for
aspect-oriented programs implicitly accepting the testing
criterion flaws, and don’t have practical aptitude. While
valuation of pertinent object-oriented testing techniques show
their inadequacy for aspect-oriented testing or even using them
as it is for aspect-oriented programs, a dissent has been shown
by the behavior of aspect-oriented programs.

In this paper, we have surveyed several testing strategies. It
is obvious that found solutions are infeasible or their
automation seems impractical. This paper presents a solution
considering the two main aspects, i.e., automation, and testing
adequately (w.r.t faults) considering the reuse of test cases.
ADRT (Aspect Driven Regression Testing) is presented for
sufficient testing of aspect-oriented programs. Besides
regression fault, the proposed approach ADRT comprises of
three components, which assist overall testing activity by using
their own scheme. They are equally useful for OARA
(Objects-Aspects Regression Analysis) for automation. ADRT
framework contains following components:

(i) Testing Support Architecture (TSA)
(ii) Test Architecture (TA) – testing environment
(iii) RF (Regression Faults)

This paper attempts to imbibe a general overview of static
testing techniques for aspect-oriented programs. A detailed
discussion also resides in the paper about testing issues of
aspect-oriented programs, tradeoffs, and then analyzes the
testing techniques to see whether they are sufficient, and
capable whether they support testing of large programs and
automation.

An Approach to Test Aspect-oriented Programs
M. N Qamar1 *, A. Nadeem2 , R. Aziz1

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

Paper is organized in the following way: Section 2 states
related work. In Section 3 architecture of the proposed
framework for testing aspect-oriented programs including
ADRT, TSA, TA, RF. Section 4 explains the implementation
details for ADRT using a tool, OARA, and it’s structuring.
Finally, section 5, future directions, and conclusion have been
discussed.

II. RELATED WORK
Robust design features of aspect-oriented paradigm has

many proofs, e.g., [18], [25], [27], but unfortunate perspective
is that the testing frameworks are engineered using
aspect-oriented paradigm (especially due to its aspect part
characteristics) e.g., [18], [21], [22], but aspect-oriented
programs itself to test is an issue. The methodologies, which
exist for testing of aspect-oriented programs, other than the
above, are [9], [10], [11], [12], [13], [14], [16], [17], [18] [20].
The general discussion about these techniques is as follows:

The work presented by Zhou et al., in [9], discussed the
approach of testing is in four steps which explores woven
application. In first step, class testing is done, then aspect is
tested as unit, in third step integration testing, and in the last
system level testing of the software is exercised. Their
technique requires more causal details. Another technique
presented in [17] focuses on unit testing framework, and test
oracles from aspects in aspect-oriented programs. In their
approach, top level aspects are picked from generic aspects,
residing in aspect-oriented program. A language AOTDL
(Aspect-Oriented Test Description Language) is used for
building of application specific aspects for testing. Zhao, and
Martin [14], are extending their previous work based on
object-oriented programming, as SDG (System Dependence
Graph) is constructed for Aspect-Oriented programs. A bit
similar approach is presented by Weifeng et al.,[11], where
they create AFG (Aspect Flow Graph) by combining state
models (class & aspect) with flow graph (method & advice) for
aspect scope coverage, for building test suites. It is a hybrid
solution, which comprises of responsibility based testing
model, and implementation based testing model. Another
technique, introduced by Xu and Xu present a state-based
approach for testing aspect-oriented programs [29]. Program
slicing is an effective method to perform testing process; Zhao
does a similar work. ASDG is built (Aspect-Oriented System
Dependence Graph) to represent aspect-oriented programs,
found in [24].

By Zhoa [12], a data-flow-based unit testing of
aspect-oriented programs is introduced. But according to
Rapps, and Weyuker; it is inadequate to just examine the
control flow of the program [23]. Another very similar
approach [19] by Otavio et al. is proposed as a model using
control and data flow testing criteria. These concepts would be
implemented on woven artifacts. [7] considering aspect as unit,
have been classified. They developed a tool JamlUni for
aspectual behavior. Tensen, and Alexander [16] presented a
testing approach, which is a hybrid technique based on two
methods, i.e., coverage, and mutation testing. Static analysis is
done for aspect code fragments. They introduce a set of
mutation operators to evaluate if a test suite is sufficiently

sensitive to find errors in pointcuts and aspect precedence. A
well-versed approach is presented by Rajan, and Sullivan [13].
They proposed language-centric approach to automate test
adequacy analysis, called them as concern coverage. In their
approach, they claim that it is possible to do explicit, precise,
abstract, and machine-readable representation of the tester’s
intent, so that it can ease the testing by eliminating the need for
manual selection, and explicit maintenance of test adequacy
criteria. Some other techniques like [8], [2], [4], [5], [6], [32],
[3], [1] but reliability through formal specification and
verification but only focused chunks of problems, more
instances are [33], [17], [12], [9], [11], [13], [16].

III. PROPOSED APPROACH: ASPECT DRIVEN
REGRESSION TESTING

This section describes the motivation for ADRT as well as
the architecture of the proposed framework, classification of
aspects, regression faults, and components of ADRT, i.e., TSA,
TA, RF to adequately test the aspect-oriented programs.

From the regression testing perspective, for aspect-oriented
programs, we treat core concerns as baseline components, and
aspects as delta components. ADRT (Fig.1) is based on the
regression faults, which are basic notion for implementing
ADRT. Let us how it works:

Fig. 1. Abstract level components of ADRT

ADRT starts from the woven application, keeps the records

of the woven aspects, and imminent faults are related to those
aspects. Based on the testing criterion, the testing environment
is set, keeping in view the pros and cons of application to be
tested. ADRT addresses specifically the test cases generation,
test cases reuse, test oracle creation, test execution environment
and the coverage evaluation. Aspects categorization and
regression faults are very significant factors of ADRT. After
looking in to those in next discussion, we will see how the
ADRT components e.g., TSA, TA and RF take part in ADRT.
They have been explained explicitly in this section.

ADRT is designed in an impressive fashion to detect faults;
therefore, harmful aspects are easy to witness. We apply
regression testing on the woven system because this testing
strategy focuses on to locate undesirable changes (errors made
by aspects) in the new system. To analyze the impact of aspects
on the correctness of core concerns (which are free of language
compulsion) we can adopt this regression testing framework.
Generally, regression testing is applied on system, subsystems,
and modules. It is performed to correct faults, improvements in
functionalities, or to adopt it to environmental changes as
aspects made to existing system. First the technique will

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

analyze the regress on the core concerns considering the flaws
that can occur in woven systems and those faults are considered
as Regression Faults. Binder [35], regression testing is affective
for revealing faults by the two components, which are named
delta/baseline component. Robert also concludes that despite
some limitations, regression testing plays an important role in
revealing bugs. Through regression testing we may able to find
delta/ baseline incompatibilities, and undesirable feature
interactions between a baseline, and a delta. All the other
approaches, which exist for aspect-oriented testing, are based
on using the object-oriented techniques with some
enhancements or replacements. Though regression testing is
also one of those techniques, which is being used for
object-oriented testing, but it is purely addressing the
regression faults, which can occur. So the best suitable
technique towards testing of aspect-oriented programs would
be to choose regression testing based on the different faults that
can occur in woven system.

This approach comprises of five main characteristics:

1. As mentioned above, we are classifying the faults,
which would not only be used for the current system,
but their reusability would also be a distinctive factor
of this approach.

2. Secondly, the technique facilitates the testing process,
as the faults always stand with programmers. Through
classification, and providing the programmers flaws
as checklists, the automation is strengthened and
overall strategy designs a suitable environment for
testing purposes.

3. Its automation tempts towards practical use for testing
of large programs.

4. It also encompasses the facility of testing classes with
any suitable technique, which would be considered as
a best one by the testing group.

5. Components, like TSA, TA, RF, and OARA overall
distinctive features of our approach.

3.1 Categorization of Aspects and Their Behavior
The aspects’ classification [33], a detail is resides over here

to make their use in TSA. Just a few aspects with their details
are as follows:

Invasive aspects have ability to change the values of
variables in the underlying system, and change the
transformations (actions) of the underlying system.

Spectative aspects do not influence the values of underlying
variables or conditions for underlying events, and only gather
information in local variables.

Regulative aspects can affect the control of the underlying
system (e.g., by short circuiting underlying computation
sequences [8]) in addition to the capabilities of spectative
aspects.

The first six faults are proposed by Alexander et al., [20].
While as are we working on large software application to
demonstrate the use of our tool, we identified some other faults
as well, which have been enlisted below.

3.2 Regression Faults
“A regression fault occurs when both a stable baseline

system B and a delta component D pass individually adequate
test suites, but fail when used together.”[34]

Counterparts of Aspect-oriented paradigm are normally
adopted by the industry, and this compelling practice is helpful
in analyzing these, but conversely aspect-oriented
programming doesn’t have that much advantage. We need to
realize its benefits for software applications, so its other dark
sides may be addressed. Following are some of faults, which
show the strength of regression testing for aspect-oriented
programs. Gradually the repository of regression faults grows,
as the applications are built. Further faults can be seen in [35].
Regression testing has shown its validity and effectiveness for
object-oriented programs but regarding aspect-oriented
applications there doesn’t exist any methodology to test the
programs.

In ADRT, by gathering the information of aspects, which
have been implemented on the core system, is being utilized in
TSA component, regression faults (RF-described above) are
those that are consequences of woven system.

While TA supports test cases reuse, generation of new test

cases, and test data generation issues and problems. Distinctive
feature of this framework is automation.

3.3 Testing Support Architecture (TSA)
The TSA (Fig. 3), part of ADRT provides the basic

information regarding application for ADRT, and also for the
automation process of large applications. Usually the
augmented system is built by the weaving of aspects on the
classes. Numbers of regression faults have been described for
aspect-oriented programs (see regression faults), while it is
likely to grow when large applications are built using the
aspect-oriented paradigm. Complete information is maintained
in TSA for the faults, which are obviously their by different
kinds of aspects. Still the classification [33] is not that much
mature, which can possibility classify all types of aspects and

• Incorrect strength in pointcut patterns
• Incorrect aspect precedence
• Failure to establish expected postconditions
• Failure to preserve state invariants
• Incorrect focus of control flow
• Incorrect changes in control dependencies

In addition to above fault model, following are the other
regression faults, which we observed:

• Faults of Exceptional control flow changes
• Faults of Inter-type declarations
• Faults by polymorphic calls
• Join points faults
• Any undesirable feature interaction between

object, and the aspect. There may arise situations
where the behavior is completely unobservable.

• Incompatibilities among aspects and classes
even if the requirements and the implementation
have not changed.

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

sources of errors, but of course industry practice would add to it
more. In related work many testing techniques have been
described or even through static verification, which can test
aspect as single entity [3], and obviously there is no question
about testing of classes as single units. The major characteristic
of TSA is that it is provides complete set information about the
application which we have to test, as mentioning the woven
aspects, and their expected faults. We tag the faults information
with aspects categories. In support to this process we can have
RF module, which provides complete assistance while testing
any aspect-oriented application. As the faults are always likely
to occur, we can use a sub-module named as

Tested: as
un it

Test C ases
R epository

Aspects Test C ases
R epository

O bjects

Augm ented System

Tested:
U nit testing

Regression Faults

R epository for
R egression fau lts

Aspects
C ategorization fo r
testing purposes

Spectative R egulativeInvasive

Input to O AR A,
com plete repository

in form ation and
analyzed faults

im plies

Fig.2 TSA. Application information aspect categorization,

and regression faults

RF (Fig. 4) in OARA, to facilitate testing process. Through

this module, faults repository is gradually built. By this we can
prioritize, and categorize faults for testing aspect-oriented
applications. The TA highlights the approach in a robust way.

3.4 Test Architecture (TA)
Test cases and test data’s reusability is still a challenge in

testing process. TA (Test Architecture Fig.5) is one of the
attempts to demonstrate feasible and manageable solution for
aspect-oriented applications. The TA addresses several issues,
which are still unanswered for aspect-oriented programs.

Since the test cases have to be applied on augmented
application. There is a need to perform serious effort for
prioritization, selection, and generation of test cases. OARA
has the capability to prioritize, select, and generation of test
cases through TA. We have two issues in test cases, one is the
re-use of existing ones, and the other is generation of new.
Prioritization of test cases can be analyzed by the last two
modules, i.e., TSA and RF, which look after for faults including
the aspects categorization. On the basis of those faults, the
relevant test cases are automatically selected, and would be
executed.

Test Cases Repository
Weaved Aspects

:Information Repository

Test Cases
Repository Repository

Test Cases

New Test Cases
Generation

Comparator

Test Data
Generation

Results Analysis
Augmented System

R
ep

or
tin

g
re

po
si

to
ry

Fig. 3 A component Comparator for test-cases generation

and reuse

In case, the faults’ test cases doesn’t exist in the repository

(this is analyzed by the comparator component of TA), new test
cases are generated to complete the whole testing process. After
that we can prepare complete set of test cases to be exercised on
the aspect-oriented program. For identification of faults, we can
adopt Safe Techniques for test selection or any other which is
meeting the criterion. Safe technique is one of the amortizing
solutions as described in [10]. The following algorithm
precisely describes the procedure:

do
While criterion not satisfied
Select test cases, which already used using TSA
or new test cases as per required by the faults
comparator organizing test cases generation, and reuse
 generate test data
if test cases satisfies criterion
 end;
else reduction or addition of new test cases
end;

IV. IMPLEMENTATION DETAILS
It is inadequate to test applications manually or even testing

activity becomes unmanageable, and costly, which is infeasible
to adopt. To the best of our knowledge OARA
(Objects-Aspects Regression Analysis, Fig.7) is only a new
methodology to test large aspect-oriented applications
automatically (the algorithm is given below). In our testing
process, we are exploiting the attractive attributes of regression
testing to perform testing applications, and implicitly this
information is used in our tool, named OARA. We are working
to bring its implementation for challenging aspect-oriented
paradigm. Intuitively numbers of standard features have been
added for thorough testing of aspect-oriented programs, but
still needs enhancements.

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

OARA Algorithm

textAugmented System TSA

Testing Activity
Starts:

Testing End: up to the
defined criterion

Regression
faults

Test Data
Generation

Test Cases
Collection

Results Analysis

Any other
processing?

TARFI

Testing
Criterion

Generated
Test Cases Test Data

Generated

Processing...

flo
w

 Fig.4 OARA support for ADRT

After first implementation of our tool, we gradually enhance

its functionality, and to make it more useful and appropriate for
aspects based faults in any system. Hence the complete process
is being automated to meet the aspect-oriented challenges as
well as to address the large applications.

V. CASE STUDY
Aspect-oriented applications are result of weaving process.

A woven application, we say the new system is ∆, we want to
test all the changes which aspects made in the core system,
which was functional as standalone system. To test the ∆, we
use OARA for reuse of existing test cases, generation of new
test cases along with data, TSA provides information regarding
woven application i.e., ∆. Result analysis is automated against
the set criterion.

5.1 Description
The core concerns are implemented using any

object-oriented language as aspect-oriented paradigm allows
developers to do so. Specifically the crosscutting concerns are
written using any aspect-oriented language e.g., AspectJ,
HyperJ, AspectC++. After specifying pointcuts, join points,
advices etc., in the aspects which are implementing
crosscutting features, by compiler, the aspects are woven to
core system. Number of interdependencies exists among
objects and aspects. The overall system is called augmented
system.

As the aspects make numerous changes to the existing
system, and there remains no validity that the implemented core
concerns function as desired. In our case the classes have been
tested already, as single units. Aspects can also be individually
tested, same as unit testing. We may assume that independently
the core and crosscutting features are performing their desired
functionalities. Weaving together the objects and aspects,
requires validation of desired functionalities.

Several faults are introduced by weaving process of aspects
with objects. Through ADRT, all faults are categorized,
especially the types of aspects, which have been used as
crosscutting features. TSA component of ADRT supports the
testing activity as it keeps the comprehensive information
regarding the built application. TA element is another major
feature, which is managing the overall test cases activity. A
comparator component is being employed to decide reusability
of test cases. Regression faults are explicitly maintained in RF,
which is result of any aspect-oriented application. Repository is
maintained for RF, as faults in one aspect-oriented product may
be seen in many other aspect-oriented applications.

There are two situations when the reusability of test cases is
obvious. One part of the reusability factor is to execute the test
cases which were used for testing of classes, and still they
effectively testing those parts of the classes, which are affected
by the aspects. In second situation, reusability of test cases is
more certain because those test cases, which were generated
earlier for any aspect-oriented application, and considering the
faults in results of weaving process, those test cases can be
executed more obviously and effectively. Reusability may also
contain existing test data.

The major focus of ADRT framework is to analyze the
augmented system by testing process, which either can contain
reusability of existing test cases (as discussed above) or
generation of new test cases along with test data, test oracle
generation, test execution, and in the last coverage evaluation is

01: Get Information about the aspect-oriented
application

// its classes information, woven
aspects and their categories
determined from TSA

02: Get the testing Criterion
03: LOAD TSA Information in CONSTRUCTOR
04: UPDATA (Delete or Add) RF Information

//if already exist
05: SETUP TA Environment
06: Use Comparator to trace existing Test
Cases for Reuse

//including Also search for existing
test cases applied to aspects

07: If criterion/ testing environment doesn’t
satisfy,

create New Test Cases
 //Generate Test Data along with new Test
Cases
08: Tester’s verification for starting
testing process
09: Complete Setup for testing environment
10: while (testing criterion not true)
10: TEST AOP()
11: for(i=0; i< Test_Cases; ++i)
12: if (Test(i))is true
13: save the result
14: else interpret the test case result
15: end for
16: end while
17: Print Results for Analysis
18: End of Testing Activity

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

carried out.
The overall testing process is automated, to minimize the

cost of testing; less man-machine interaction is focused. A tool,
OARA is used to automate the testing process, which gathers
all the information, which is adequate to start testing process.
Testing criterion is a human activity as it can be effectively
specified by the tester. But the coverage evaluation may be
automated, which would be against criterion. The overall
testing process gets ends according to criterion, if satisfied.

VI. CONCLUSION & OUTLOOK
Commendable research is in progress for testing of

aspect-oriented software. Instead of fluff and crippled testing
techniques, we should adopt productive testing solutions like
regression testing. Significant attention is paid to the
challenging issues, which are set by the new paradigm, but it is
very important that fault proven, high in cost, difficult to adopt
techniques should not be visited in the context of
aspect-oriented testing. It should also be on the agenda to
absorb the testing techniques for object-oriented systems and
their pay-offs. We have presented a testing framework (ADRT)
for aspect-oriented programs, which includes the analysis of
aspects interaction with core system. In this framework, we
have identified test cases, test data, reusability, automation
aspects of the framework, and specifically addressing the
faults, which occur during aspect-oriented programming.
In our future work, we will present our fully implemented tool,
OARA for ADRT framework, specifically considering the test
cases generation, reduction in test cases, and different types of
flaws in aspects woven applications. Regression testing has
much impressive results if the process is automated. ADRT will
be analyzed for feasibility, its adoptability for practical use, and
to make it more feasible. Obviously experimental study will be
presented to demonstrate the strength of ADRT. Currently we
are working on an aspects based application, and also the
proper tool configuration.

REFERENCES
[1] Sereni, D., Moor, O. D.: Static Analysis of Aspects, Oxford. In AOSD

2003 Boston, MA USA. In proceedings of ACM (2003)
[2] Sakurai1, K., Masuhara, H.: Ubayashi N., Matsuura1 S., Komiya1 S.:

Association Aspects. In AOSD (March 2004) also in proceedings of ACM
(2004)

[3] Denaro, G., Monga, M.: An Experience on Verification of Aspect
Properties. In IWPSE 2001, Austria, also in proceedings of ACM (2001)

[4] Douence, R., Fradet, P., Südholt M.: Composition, Reuse and Interaction
Analysis of Stateful Aspects, In AOSD 04 (March 2004), Lancaster UK.
Also in proceedings of ACM (2004)

[5] Storzer, M., Krinke, J., Breu S.: Trace Analysis for Aspect Application.
Universitat Breu, Passau, Germany

[6] Ubayashi, N., Tamai, T.: Aspect-Oriented Programming with Model
Checking. In Proceedings of ACM (2002)

[7] Lopes, G.V., Ngo, T.C.: Unit-Testing Aspectual Behavior, Donald Bren
School of Information and Computer Sciences, University of California,
Irvine.

[8] Katz, S.: A Survey of Verification and Static Analysis for Aspects.
AOSD-Europe Technion-1(10 July (2005)

[9] Zhou, Y.: Towards a Practical Approach to Test Aspect-Oriented
Software, Department of Informatics, Donald Bren School of Information
and Computer Sciences, University of California.

[10] Graves, T.L., Harrold, M.J., Kim, .J, Porter, A., Rothermel, G.: An
Empirical Study of Regression Test Selection, In proceedings of IEEE
(1998)

[11] Xu, W., Xu, D., Goel, V., Nygard, K.: ASPECT FLOW GRAPH FOR
TESTING ASPECT-ORIENTED PROGRAMS, Department of
Computer Science, North Dakota State University Fargo, ND 58105.
U.S.A.

[12] Zhao, J.: Data-Flow-Based Unit Testing of Aspect-Oriented. Proceedings
of the 27th Annual International Computer Software and Applications
Conference (COMPSAC’03), In proceedings of IEEE (2003)

[13] Rajan, H., Sullivan, K.: Generalizing AOP for Aspect-Oriented Testing,
in conference ’05, month 1-2, 2005, 2004 ACM 1-58113-000-0/00/0004.

[14] Zhao, J., Rinard, M.: System Dependence Graph Construction for
Aspect-Oriented Programs, Cambridge, USA

[15] Hailpern, B., Santhanam, P.: Software debugging, testing, and
verification, IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002.

[16] Mortensen, M., Alexander, R.T.: Adequate Testing of Aspect-Oriented
Programs, Colorado State University, Fort Collins, Colorado, USA,
Technical report CS 04-110, December 2004.

[17] Xu, G., Yang, Z., Huang H., Chen, O., Chen, L., Xu, F.: JAOUT:
Automated Generation of Aspect-Oriented Unit Test Proceedings of the
11th Asia-Pacific Software Engineering Conference (APSEC’04), Also in
proceedings of IEEE

[18] Hughes, D., Greenwood, P.: Aspect Testing Framework, Computing
Department, Lancaster University, UK

[19] Augusto, O., Lemos, L., Maldonado, J.C., Masiero, P.C.: Data Flow
Integration Testing Criteria for Aspect-Oriented Programs, Universidade
de S˜ao Paulo, Av. do Trabalhador S˜ao-Carlense, 400, S˜ao Carlos, SP.

[20] Alexander, R.T., Bieman, J.M.: Towards the Systematic Testing of
Aspect-Oriented Programs, Colorado State University, Department of
Computer Science, Safety Systems Research Center, University of
Bristol, Bristol, UK, 2004 Published by Elsevier Science B. V.

[21] Xiaoguang, M., May, J.: A Framework of Integration Testing using
AspectJ, 2004 published by Elsevier Science B. V.

[22] Bruel, J.M.: Using Aspects to Develop Built-In Tests for Components,
Submitted in July 03 to the AO modeling with UML Workshop at
UML’03, San Francisco, USA.

[23] Rapps, S., Weyker, E.J., Data Flow Analysis Techniques for Test Data
Selection, In 1982 IEEE, 0270/82/0000/0272.

[24] Zhao, J.: Slicing Aspect-Oriented Software, Proceedings of the 10th
International Workshop on Program Comprehension (IWPC’02). IEEE
(2002)

[25] STRUCTURING OPERATING SYSTEM ASPECTS,
COMMUNICATIONS OF THE ACM, October 2001/vol. 44, No. 10

[26] Walker, R.J., Baniassad, E.L.A., Murphy G.C., An Initial Assessment of
Aspect-oriented Programming, Dept. of Computer Science, University of
British Columbia, 20 l-2366 Main Mall, Vancouver, BC V6T 124
Canada, In ICSE ‘99 Los Angelos CA USA, In ACM 1999, I-581
13-074-0/99/05, IEEE (1999)

[27] AspectC++ Homepage: http://. aspectc.org.
[28] AspectJ Homepage: http://eclipse.org/aspectj.
[29] Xu, D., Xu, W., Nygard, K.: A State-Based Approach to Testing

Aspect-Oriented Programs, Technical Report NDSU-CS-TR04-XU03,
North Dakota State University, September, 2004.

[30] Bach, J.: Reliable Software Technologies, A Framework for Good
Enough Testing, In proceedings of IEEE Computer Society (1998)

[31] Harrold, M.J.: Testing: A Roadmap, In Future of Software Engineering,
22nd International Conference on Software Engineering, June 2000.

[32] Okun, V., Black, P.E.: Issues in Software Testing with Model Checkers,
National Institute of Standards and Technology, Gaithersburg, 2003.

[33] Rinard, R., Salcianu, A., Bugrara S.: A Classification System and
Analysis for Aspect Oriented Programs, In proceedings of ACM (2004)

[34] Binder, R.V.: Testing Object-Oriented Systems, Models, Patterns, and
Tools. Printed by Addison-Wesley (1999)

[35] Xu, D.: Test Generation from Aspect-Oriented State Models, Technical
Report NDSU- CS-TR-05-XU02, (September 2005)

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

