
 
 

 

  
Abstract— The rapid transit network design problem considers 

at upper level the list of potential transit corridors and stations to 
design the network as a discrete space of alternatives. At lower 
level the alternatives are evaluated based on the route and mode 
user decisions. The optimization objective is to maximize the 
transit demand considering the user’s behaviour and the network 
design constraints. The stochastic extension considers the demand 
as a random variable, the formulation considering “a priori” and 
“a posteriori” models are considered. The model is proved 
experimenting the formulations using Branch and Bound in test 
networks. 
 

Index Terms— rapid transit network design, stochastic 
optimization.  
 

I. INTRODUCTION 
 The rapid transit network design (RTND) problem 

considers the location decisions and the user decisions: at upper 
level, a list of potential rapid transit corridors and stations are 
assessed on the basis of its own constraints and, at lower level, 
the user traffic behaviour is considered. The way of selecting 
and comparing these network alternatives is performed by 
considering that the demand chooses path and mode depending 
on the network supplied. 

The main efforts in this line of research have been aimed at 
determining the alignments and the location of stations. 
Reference [10] expands on the previous models by 
incorporating the station location problem, the alternative of 
several lines and defining the model using the maximum 
coverage of the public demand as an objective function and the 
budget constraints as side constraints. Reference [11] is an 
extension of the above paper, where the train lines are not 
initially given and the lines do not have fixed origins and 
destinations. 

Uncertainty is modelled under the assumption that the 
demand is a random vector. Under the approach of scenario 
analysis, Benders decomposition is an appealing algorithm that 
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replaces the very large problems posed in scenario optimization 
with large sequences of relatively small problems. 

Different algorithms have been proposed for generating 
cuts. The first algorithm of this class is the so-called 
“L-shaped” decomposition, which works on a finite set of 
outcomes. This concept was generalized by the stochastic 
decomposition algorithm, which generates cuts from a 
potentially infinite sample space. This algorithm converges 
almost surely to the optimal solution, but the rate of 
convergence on practical applications remains an open 
question [1], [3]. 

Stochastic linearization techniques [8] are easy to compute 
and store, but they lack of stability. We may consider that linear 
approximations are attractive for transportation applications 
because they retain the structure of the original problem. Then 
if the first stage is a network problem, adding a linear 
adjustment term retains this property. The instability of pure 
linearization techniques may be solved by employing a 
nonlinear stabilization term [5]. 

Another way of tackling the problem is to approximate the 
recourse function without considering the convergence to the 
exact function. Then we consider an adaptive functional 
estimator. For no differentiable problems, the result of its use is 
an algorithm that should be considered as nearly optimal with a 
much faster rate of convergence. 

The choice of the best algorithm for two-stage resource 
allocation problems is an open question [2]. They appear 
frequently but in transportation applications it is usual to deal 
with multistage problems, as is our case. 

Other formulations to include the uncertainties are being 
considered: the chance constraints [4], and the use of risk 
functions [12]. 

 The paper is organized as follows: In Section 2 the 
deterministic RTND model is discussed. In Section 3 we define 
the stochastic approach to the RTND problem. Finally the 
conclusions and the references are considered. 

 

II. DETERMINISTIC RAPID TRANSIT NETWORK 
DESIGN 

 
The RTND model is defined in [10] and [11]. Its detailed 

formulation may be found in the references. A short RTND 
formulation description is here considered. 

The data required for the model are the following: 
1. The set of potential locations (N) and the set of edges 

(A) linking them. Therefore, we have a potential 
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network from which the optimum rapid transit network 
is selected. 

2. As well as locating the stations, they must be connected 
with a finite number of transit lines that do not have 
predetermined origins and destinations. Although the 
number of lines is a variable, the maximum number of 
them is known. 

3. The distances between every pair of nodes, as they will 
be used to define the public cost. 

4. The demand corresponding to an origin/destination 
(O-D) pair of nodes (w) or, equivalently, to a 
commodity. The set of O-D pairs is W. 

5. Each edge (i,j) has a capacity qij given. 
6. The costs of constructing each station or section of line. 

The set of lines is L. The construction costs have lower 
and upper budget bounds. 

7. The generalized cost of satisfying the demand through 
the private network. Note that the cost through the 
public network depends on the topology of the 
constructed network and therefore on the edges that are 
selected. 

The decisions that will be considered are described by: 

• 1l
iy = , if line l L∈  is located using the node i, 0 

otherwise. 
• 1l

ijx = , if line l L∈  is defined using the edge  (i,j), 0 
otherwise. 

• 1,lh =  if the line l has at least a link located, 0 
otherwise. 

• 1w
ijf = , if the demand of the pair w uses edge (i,j) in the 

public network, 0 otherwise. 
• 1wp = , if the demand w uses the public mode, 0 

otherwise. 
The objective function is defined as follows: 

( ) ( )1 1
2 2dpub rc lcz z z zη ηη − −= − + +  

, where η is typically about 0.9, because the maximization of 
the public trip covering, dpubz , is the main objective. The routing 
and location costs, rcz  and lcz  respectively, are also 
minimized. 

The disaggregate level of the constraints is mentioned 
between parentheses: 

• Budget Cost Constraint (BCC), that bounds the 
construction cost. 

• In the Routing Demand Constraints (RDC(i,w)) the 
multicommodity flow conservation at each node i is assumed 
for each demand w. 

• The Line Location Constraints (LLC(l)) are needed so 
that line l can be constructed. 

• The Mode Demand Splitting Constraints (MDSC(w)) 
produce an all or nothing mode assignment for each demand w: 
if private cost is inferior to public cost then the demand is 
assigned to private mode; otherwise, it is assigned to public 
mode. 

• The Location-Allocation Constraints (LAC((i,j),w)) 
guarantee that a demand w is routed on an edge (i,j)  only if this 

edge belongs to the public network and the edge has enough 
capacity. 

The RTND may then be expressed, in terms of the above 
constraints, as follows: 

{ }, , , , 0,1
.

: , ( , ), ( ),
( ), (( , ), )

x y h f p
Min z

subject to CCC RDC i w LLC l
MDSC w LAC i j w

∈

 

III. STOCHASTIC RAPID TRANSIT NETWORK DESIGN 
Uncertainties that appear in constraints RDC will be taken 

into account using Stochastic Optimization. Two usual 
approaches are: chance constrained and recourse models. 

The chance constrained models assume that the constraints 
that involve random variables will hold with a given threshold 
probability. 

The stochastic RDC (SRDC) in RTND (SRDC) is 
formulated by: 

( ), ,w w
ij iBf d i N w Wξ ϑ= = ∀ ∈ ∀ ∈  

, where ( )w
id ϑ is the random demand. 

The SRDC under chance constrained model are formulated 
as: 

( ) 1 ,w
i wP d w Wξ α≥ ≥ − ∀ ∈  

If we assume that the random variables appearing in 
different constraints are independent. We can write the above 
constraints as: 

( ) 1w
i

w W

P dξ α
∈

≥ ≥ −∏  

 
The stochastic SRTND is defined by the RTND constraints 

but substituting RDC by SRDC. 
In SRTND the decisions must be taken before the values of 

the random variables are known (a priori decision) and an 
adaptative action is allowed when these uncertainties disappear 
(a posteriori decision). The adaptative step is defined by a 
second level optimization in the context of a bilevel 
programming. Resource decomposition is adequate to split the 
bilevel to two optimization problems of one level. The second 
or lower level represents the future resources and it is 
formulated depending on the “posteriori” policy to represent. 

The resource decomposition considers at first, or master 
level, the “difficult” or “priori” variables, 1 ( , , )x x y h=  and at 
second, or submodel level, the “easy” or “posteriori” variables, 

2 ( , )x f p= . In SRTND context the first variables are the 
design variables and the second the user routing variables. Let 
X1 and X2 be the feasible sets that depend only on variables x1 
and x2, respectively. Being E the mathematical expectation, 
SRTND may be formulated as: 

1 1

2 2

1 1

1 2 2

( ) ( ( , ))

( , ) ( ( ) ( ))
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,
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We deal with a discrete time stochastic process defined on 
a probability space {Ω,ℑ, P} where the variable is {ξ}.  If the 
demands are considered, the variable will be discrete. If a 
percentage is taking into consideration, ξ will by a real valued 
vector. 

We will substitute the terms depending on x2 in the 
objective function by their expectation.  We should derive its 
distribution function or approximate it by another one ψ .  In 
the latter case, it is necessary to establish the convergence of the 
expectation computed to the real one.  

Using this fact we should be able to fix an upper bound to 
the approximating error  

( )1 1 arg.min E( (x , ))-E( (x , )/ )   = ( )ϕ ϑ ϕ ϑ ψ ε ψ  
This is a recommended approach for solving stochastic 

programs, [7] and [8].  When ψ  is an estimate of the unknown 
density we should look for the bound of E( ( ))ε ψ , say 
B( ( ))ε ψ  and establish under which condition  its limit is zero. 
Once established an algorithm we must study again its 
convergence and evaluate its behaviour using Monte Carlo 
experiments. 

The look for a deterministic equivalent of a stochastic 
programming usually determines a dynamic programming 
formulation; see the results of [13] and [14], hence Bender’s 
decomposition or some other method should be considered for 
prediction.  Benders decomposition is an appealing algorithm, 
which performs, satisfactorily in large problems appearing in 
scenario optimization. Different algorithms can be used for 
generating the cuts. A very popular one is the “L-shaped” 
decomposition algorithm.  It deals with a not too large finite set 
of outcomes. A linear program must be solved for each 
outcome. A generalization of it is the so called stochastic 
decomposition algorithm; see [15] and [16]. It generates cuts 
from a sample space which is considered infinite. These types 
of algorithms converge almost surely to the optimal solution.  
Which is the real rate of convergence of them is not known. 
Hence in there are not recommendations for practical 
applications. 

A large number of academic analyses of stochastic 
programming use the niceties of scenario methods but, in 
applications, they are too costly. It seems that algorithms based 
on Benders decomposition, stochastic liberalization with 
nonlinear stabilization strategies, or nonlinear functional 
approximations are the solutions for solving large problems as 
ours. Some challenging experiences are reported by [6].They 
have been considered when we developed our algorithms. 

Some authors have quoted that Benders decomposition is 
probably limited in transportation applications to resource 
allocation problems, because of the usual use of 
approximations based on linear programs. We should give a 
response on the speed of convergence of Benders 
decomposition. Some statistics on it should be made. Notice 
that in reality we should obtain integer solutions an evaluation 
of errors generated by rounding should be made therefore the 
accuracy of the solutions should be studied too. 

A stochastic, decomposition based on Bender has been 
suggested, see [9], the decomposition, requires smoothing the 
coefficients. Despite some technical considerations, Benders 
decomposition is a very promising technique for developing the 
computer algorithms.  We should test its performance wit 
expect to other alternative approximation strategies and 
stochastic variants of Benders decomposition algorithms. The 
literature suggests that they should be almost optimal and that 
they should works at a faster rate of convergence than has been 
achieved using the current Benders decomposition. 

 
The previous formulations will be considered in detail and 

some first computational experiments comparing them will be 
presented in the meeting. 
 

IV. CONCLUSION 
In this paper, a first version of the stochastic approach of the 

Rapid Transit Network Design has been defined. Some 
constraints alternatives extensions and the resource approaches 
have been discussed. Some computational experiments are 
included. Further research considers a number of ways where 
the models can be strengthened, and new efficiently methods 
may be studied. 
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