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Abstract—One of main issues in point matching is
the choice of the mapping function and the compu-
tation of its optimal hyperparameters. In this paper,
we propose an attractive approach to determine the
mapping function based on Gaussian processes (GPs)
model. The mapping function is assumed to belong
to a GPs model specified by a mean and a covariance
function. Meanwhile, hyperparameters optimization
of mapping function is replaced by adaptation of GP
model. Experiments show that the algorithm has ef-
ficient mapping capability and practical implementa-
tion in both synthetic and real cases.
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1 Introduction

It is a fundamental yet still open problem in computer
vision and image processing to match two point-sets to
find the geometric mapping and correspondence between
two sets of points in 2D or in 3D [1]. There are several
possible choices for what type of geometric transforma-
tion model is used for characterizing the mapping of two
given point-sets correspondences. Broadly one can di-
chotomize the types of geometric transformation models
into the class of deterministic models and the class of sta-
tistical models. Deterministic models always need to ex-
ploit some prior knowledge about the distortion to choose
a model of mapping function and determine optimal val-
ues of models parameters. Much effort has been expended
in development of deterministic transformation [5]. The
most frequently used deterministic mapping functions are
polynomials of a lower degree. Higher order polynomi-
als usually are not used in practical applications because
they may introduce unnecessary warping. The most of-
ten used representatives of the kernel-based determinis-
tic mapping functions are radial basis functions. Their
name ’radial’ reflects an important property of the func-
tion value at each point: it depends just on the distance
of the point from the control points set, not on its par-
ticular position. Multiquadrics, reciprocal multiquadrics,
Gaussians, Wendland’s functions, and thin-plate splines
(TPS) are several examples of the radial basis functions
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[2, 3, 4, 5]. For deterministic models, the task to be
solved consists of choosing of the mapping function and
estimating of its parameters. Unfortunately, because the
distortion between the two point-sets is often unknown
as prior, choosing a ’true’ mapping function may not be
a very simple step. Furthermore, estimation of the pa-
rameters is always solved to minimize the mean square
error over control points, but this solution may be incor-
rect when the training data set has small size or contain
some noise. Therefore, simple deterministic models may
lack expressive power in the case of complex data sets,
and their more complex counter-parts may not be easy
to work with in practice.

Recently, statistical models have been studied as the geo-
metric transformation models. In [6], the least square
support vector machines (LS-SVM) had been proposed as
an adaptive transformation model estimation approach.
The approach is based on the structural risk minimization
theory and can control the tradeoff between minimizing
the error on the control points and minimizing the capac-
ity of mapping functions. As mentioned by the authors,
it is reasonable to believe that their approach should per-
form at least as well as the deterministic model as men-
tioned above. The drawback of this approach is that the
kernel hyperparameters optimization procedure by cross
validation is not a very efficient way in practice.

To address the concern for geometric mapping, we con-
cern ourselves with statistical models to find an appro-
priate transformation model estimation method, which
should have some properties as below: (1) excellent map-
ping capability even for complex case; (2) efficient com-
putation of optimal values of model hyperparameters. In
this paper, an attractive approach is proposed to deter-
mine the mapping function from given coordinates of two
corresponding point-sets via GPs model. The GPs model
provides a kernel machine framework and has the state
of the art of performance for regression and classification
[7, 8, 9]. Based on the idea of GPs model, we assume
that the mapping function belongs to a prior GP, which
does not depend on corresponding point-sets but speci-
fies some properties of mapping function. Then, this prior
GP is updated to a posterior GP in the light of known
corresponding point-sets by Bayesian inference. The fi-
nal actual mapping function is assuming to be one sample
from the posterior GPs. Furthermore, the properties of
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the prior GP can be learned in the light of known corre-
sponding point sets by Bayesian inference. This learning
procedure actually replaces the computation of optimal
values of hyperparameters in deterministic models. The
experimental results indicate that the new approach has
the properties cited above.

2 Gaussian Process Model

A GP is fully specified by its mean function m(x) and
covariance function CΘ . The GP prior over an unknown
function can be written as:

p(f |X, Θ) =
1

(2π)N/2|CΘ|1/4
•

exp

{

−
1

2
(f − m)T CΘ

−1(f − m)

}

(1)

or

f ∼ GP(m, CΘ)

where the mean is usually assumed to be zero m = 0 and
each term cij of a covariance matrix CN is a function of
xi and xj , i.e. c(xi, xj).

The GP prior will be used as a prior for Bayesian in-
ference because of no training data information is incor-
porated into it. By updating this prior in the light of
training data, a posterior GP can be inferred which can
be used to make predictions for unseen test cases. Let
assume we have been given a data set D of data point
xi with target value ti: D = {(xi, ti), i = 1, 2, . . . , N} .
Given this data set, we wish to find the target value t̃

for a new data point x̃. The predicted value of t̃ and its
stand deviation can be written respectively as:

t̂N+1 = k
T
C

−1

N tN

σ2

t̂N+1
= κ − k

T
C

−1

N k (2)

where k is a vector of covariance between every training
case and x̃; CN is the covariance matrix for training data
set; κ is the self-variance for x̃.

Assuming that a form of covariance function has been
chosen, but that it depends on undetermined hyperpa-
rameters. Then it attempts to ’learn’ these hyperpara-
meters from training data by Bayesian inference. The
posterior distribution of the hyperparameters Θ is,

P (Θ|tN , XN) ∝ P (tN |XN , Θ)P (Θ) (3)

The optimal value of hyperparameters Θ can be inferred
by optimizing the marginal likelihood L based on its par-
tial derivatives, which can be written respectively as:

L = −
1

2
logdet(CN ) −
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t
T
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∂L

∂θ
= −

1

2
trace(C−1

N

∂CN

∂θ
) +

1

2
t
T
NC

−1

N

∂CN

∂θ
C

−1

N tN (5)

Given marginal likelihood and its derivatives, it is
straightforward to feed this information to an optimiza-
tion package in order to obtain a local maximum of mar-
ginal likelihood. Other alternative to maximum likeli-
hood estimation of the hyperparameters, such as cross-
validation or generalized cross-validation method, would
appear to be difficult when a large number of hyperpara-
meters are involved.

3 Determining Mapping Function via

GPs Model

In this section, we return to our concerned problem: de-
termining the mapping function. Assume we have two
sets of corresponding points (in either 2D or higher di-
mension) P = (pi, i = 1, 2, . . . , K) and Q = (qi, i =
1, 2, . . . , K) respectively. Each pi represents a corre-
sponding point coordinate (p1

i , p
2
i , . . . , p

D
i ) in one point-

set and each represents a corresponding point coordinate
(q1

i , q2
i , . . . , qd

i ) in another point-set. Obviously, it breaks
down into d scattered data regression problems with the
training data (p1, p2, . . . , pK , q1), . . ., (p1, p2, . . . , pK , qd)
respectively. For the sake of simplicity, we only consider
the first regression problem within two dimensions space,
i.e. d = 2. The remaining problems can be solved simi-
larly.

The idea of GPs modeling is, without parameterizing
mapping function, to place a probability distribution di-
rectly on the space of functions. Based on the idea of GP
model, we assume the geometric mapping function is dis-
tributed as posterior GP model, which implicitly means:
”A form of mapping function is implicitly selected and the
computation of optimal parameter for mapping model is
replace by the procedure of adaptation of GP”. Firstly,
the mapping function is distributed as prior GP model,
which does not depend on corresponding point-sets but
specifies some properties of mapping function. This prior
GP is fully specified by a mean and a covariance func-
tion. The mean is usually assumed to be zero. Based on
experiments by Williams and Rasmussen [7], we choose
the commonly used covariance function in our case, which
can be written as:

c(pi, pj) = υ0exp{−
1

2

2
∑

l=1

αl(p
l
i − pl

j)
2}

+ a0 + a1

2
∑

l=1

pl
ip

l
j + υ1δij (6)

The covariance function consists of three parts: the first
term, a linear regression term and a noise term. The first
term expresses the idea that cases with nearby inputs will
have highly correlated outputs; the αl parameters corre-
sponding to each input characterizes the distance in that
particular direction over which target value is expected to
vary significantly. The value of αl is related to the smooth
degree of mapping function, the smaller the value of αl,
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the more the smoothness of mapping function. The υ0

variable gives the overall scale of the local correlations.
The values of a0 and a1 control the scale of the bias and
linear contributions to the covariance. The variable υ1 is
the variance of the noise.

Then, this prior GP is updated to a posterior GP in the
light of known corresponding point-sets by Bayesian in-
ference. The final actual mapping function is assuming to
be one sample from the posterior GPs. In order to deter-
mine the surface, we construct the mapping function by
institute the training data (p1

i , p
2
i , q

1
i ) into Eq. (2). The

value at a new data point p̃ in mapping function is dis-
tributed as a Gaussian distribution, which can be written
as:

f(p̃) ∼ N(µ(p̃), σ2
p̃) (7)

µ(p̃) = k
T
C

−1
t

σ2
p̃ = κ − k

T
C

−1
k

where

k
T = (c(p̃, p1), c(p̃, p2), . . . , c(p̃, pK))

C = c(pi, pj)K∗K

t = (q1
1 , q1

2 , . . . , q
1
K)T

κ = c(p̃, p̃)

By substituting the covariance function in Eq. (6) into
Eq. (7), the posterior GPs model can be inferred very
easily.

Furthermore, the properties of the prior GP can be
learned in the light of known corresponding point sets
by Bayesian inference. This learning procedure actually
corresponds to the computation of optimal values of hy-
perparameters in a transformation model. To find best
hyperparameters precisely, a gradient-based optimization
package was used in order to obtain a local maximum of
marginal likelihood. The most obvious implementation
of the gradient computation is to evaluate the inverse of
the covariance matrix exactly. This was done using a
variety of method such as Cholesky decomposition, LU
decomposition or Gauss-Jordan Elimination.

4 Experiments Results

To illustrate the properties of the proposed estimation
technique, we present two series of experiments. In the
first series of experiments, we conduct different degrees of
warping on synthetic data to test the algorithm’s perfor-
mance on solving different deformations and compare the
proposed method with the TPS. After a template point-
set is chosen, we apply a randomly generated non-rigid
transformation to warp it. Gaussian radial basis func-
tions (RBF) are selected as the random transformation.
By assuming the coefficients of RBF belong to a Gaussian
distribution with a zero mean and increasing the standard

Figure 1: Synthetic Experiment Examples. Each row
shows one example. Each row includes three parts
arranged from left to right. First: Template and target
(the warped template); Second: GP result; Third: TPS
result.

deviation, larger deformation can be generated. The er-
rors are computed as the mean square distance between
the warped template using GP and TPS and the warped
template using the ground truth Gaussian RBF. 150 ran-
dom experiments were repeated for each degree deforma-
tion. The template that we choose comes from a Chinese
character (blessing) [3]. In GP model, twelve runs were
performed with different initial conditions. For each run
the initial values of the hyperparameters were sampled
from their priors and then a conjugate gradient optimiza-
tion routine was used to solve the Eq. (4). Substituting
these hyperparameters values back into Eq. (7) and com-
puting and rounding mapping functions at each point co-
ordinate, we obtain the point matching result. Some of
the experiments are shown in Fig. 1. The error means
and standard deviations are shown in Fig. 2. It is obvi-
ous that the GP algorithm has better performance than
TPS when the degree of deformation becomes larger.

In medical image registration, non-grid geometric trans-
formation is always considered. We have applied the pro-
posed algorithm to real sagittal images registration prob-
lem. As shown in Fig. 3, one can find that obvious
deformation is contained between the two images. To
determine mapping function, 35 pairs of corresponding
points were selected manually or automatically [4]. Then
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Figure 2: Statistics of the Synthetic Experiments.

(a) (b) (c)

Figure 3: Registration of a pair of sagittal images from
two different patients. (a) sensed image; (b) reference
image; (c) registration result using the proposed method.

the proposed algorithm was used to remove geometric de-
formation. The result is shown in Fig. 3. It can be seen
that there is a significant shift in the registration result
of sensed image and the visual difference between the ref-
erence image and the registration result is reduced. The
average error at the corresponding points was only 0.02
pixels.

5 Conclusions

We have considered the transformation model estimation
problem in point matching. Our aim is to use Gaussian
processes model to solve the problem. An interesting
characteristic of our approach is that the choice of map-
ping function and the hyperparameters optimization are
both integrated into a Bayesian framework within a GPs
model. Another key characteristic is that the hyper-
parameters of covariance function can be optimized by
maximizing the evidence from given point-sets correspon-
dences. These characteristics do not appear in other ker-
nel based learning methods such as TPS and LS-SVM.
The experimentation results demonstrate the good ca-
pacities of this approach on both synthetic point set with
varying degrees of deformation, and real images
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