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Abstract – In this paper we perform a t-test for 

significant gene expression analysis in different dimensions 
based on molecular profiles from microarray data, and 
compare several computational intelligent techniques for 
classification accuracy on Leukemia, Lymphoma and 
Prostate cancer datasets of broad institute and Colon cancer 
dataset from Princeton gene expression project.  

This paper also describes results concerning the 
robustness and generalization capabilities of kernel 
methods in classifying. We use traditional support vector 
machines (SVM), biased support vector machine (BSVM) 
and leave-one-out model selection for support vector 
machines (looms) for model selection. We also evaluate the 
impact of kernel type and parameter values on the accuracy 
of a support vector machine (SVM) performing tumor 
classification. Through a variety of comparative 
experiments, it is found that SVM performs the best for 
detecting Leukemia and Lymphoma, BSVM performs the 
best for Colon and Prostate cancers.  

We show that classification accuracy varies with the 
kernel type and the parameter values; thus, with 
appropriately chosen parameter values, tumors can be 
classified by kernel machines with higher accuracy and 
lower false alarms. Our results demonstrate the potential of 
using learning machines in diagnosis of the malignancy of 
a tumor.  

Index Terms— Gene selection, Tumor classification, 
Kernel machines, Support vector machines 

I. INTRODUCTION 
hough most cells in our bodies contain the same 
genes, not all of the genes are used in each cell. 
Some genes are turned on, or “expressed” when 

needed. Many genes are used to specify features 
unique to each type of cell. Microarray technology 
looks at many genes at once and determines which 
are expressed in a particular cell type. Using DNA 
microarray analysis thousands of individual genes 
can be spotted on a single square inch slide. DNA 
targets are arrayed onto glass slides (or membranes) 
and explored with fluorescent or radioactively 
labeled probes [1]. Obtaining genome-wide 
expression data from cancerous tissues gives insight 
into the gene expression variation of various tumor 
types, thus providing clues for cancer classification 
of individual samples. One of the key challenges of 
microarray studies is to derive biological insights 
from the unprecedented quantities of data on gene 

expression patterns. Partitioning genes into closely 
related groups has become an element of practically 
all analyses of microarray data [2]. But identification 
of genes faces with many challenges. The main 
challenge is the overwhelming number of genes 
compared to the smaller number of available training 
samples. In machine learning terminology, these data 
sets have high dimension and small sample size. And 
many of these genes are irrelevant to the distinction 
of samples. These irrelevant genes have negative 
effect on the accuracies of the classifier. Another 
challenge is that DNA array data contain technical 
and biological noise. Thus, it is critical to identify a 
subset of informative genes from a large data that 
will give higher classification accuracy. 

Many methods have been proposed in the past to 
reduce the dimensionality of gene expression data [3]. 
Several machine learning techniques have been 
successfully applied to cancer classification using 
microarray data [4]. One of the early methods is a 
hierarchical algorithm developed by Eisen et al. [5]. 
Other popular algorithms, such as neural networks, 
K-Nearest Neighbor (KNN), support vector machines, 
kernel based classifiers, genetic algorithms and Self-
Organizing Maps (SOM) are widely applied for 
tumor classification [3, 6]. 

Although several groups have extensively 
considered model selection in SVMs, optimal 
parameters are usually domain specific. In this paper, 
we present a methodology to evaluate the impact of 
model selection (kernel types and parameter values) 
on the performance of different SVM 
implementations to classify tumors.  

The problem of multiclass classification, 
especially for systems like SVMs, doesn’t present an 
easy solution. It is generally simpler to construct 
classifier theory and algorithms for two mutually-
exclusive classes than for N mutually-exclusive 
classes. In this paper, we use BSVM that constructs 
N-class SVMs [7,8]. Most existing approaches for 
model selection use the leave-one-out (loo) related 
estimators which are considered computationally 
expensive. In this paper, we use Leave-one-out model 
selection for support vector machines (looms) that 
uses advance numerical methods which lead to 
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efficient calculation of loo rates of different models 
[9]. 

II. GENE EXPRESSION DATA SELECTION 
For a given classifier and a training set, the 
optimality of a gene identification algorithm can be 
ensured by an exhaustive search over all possible 
gene subsets.  For a data set with n genes, there are 2n 
gene subsets. Due to the high dimension of 
microarrays data, it is impractical to search whole 
space exhaustively. In our experiments, we choose 
the significant data based on Student’s t-test. 

Student’s t-test deals with the problems 
associated with inference based on “small” samples. 
The unpaired t method tests the null hypothesis that 
the population means related to two independent, 
random samples from an approximately normal 
distribution are equal [11].  

Under the assumption of equal underlying 
population means, if t < 0, “P(T <= t) one-tail” gives 
the probability that a value of the t-Statistic would be 
observed that is more negative than t. If t >=0, “P(T 
<= t) one-tail” gives the probability that a value of 
the t-Statistic would be observed that is more positive 
than t. “t Critical one-tail” gives the cutoff value so 
that the probability of observing a value of the t-
Statistic greater than or equal to “t Critical one-tail” 
is Alpha. 

“P(T <= t) two-tail” gives the probability that a 
value of the t-Statistic would be observed that is 
larger in absolute value than t. “P Critical two-tail” 
gives the cutoff value so that the probability of an 
observed t-Statistic larger in absolute value than “P 
Critical two-tail” is Alpha. 
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III. DATA USED for EXPERIMENTS 
Leukemia, Lymphoma and Prostate cancer data sets 
are obtained from broad institute [12]. Colon cancer 
data set is obtained from Princeton gene expression 
project [13]. Significant gene data obtained from t-
test is used for measuring the performance of the 
classifiers. Fifty percent of the data is used for 
training and the rest is used for testing. Leukemia 
data set has (37 training samples and 38 testing 
samples).  Lymphoma data set has (40 training 
samples and 39 testing samples). Prostate data set has 
(52 training samples and 52 testing samples).  Colon 
data set has (32 training samples and 32 testing 
samples). 

Data sets used in our experiments.  

 Leukemia data set comes from a study of gene 
expression in two types of acute Leukemia: 48 
acute lymphoblastic Leukemia (ALL) samples 
and 25 acute myeloblastic Leukemia (AML) 
samples. It was studied in [14]. 

 Lymphoma data set consists of 58 diffuse large 
B-cell lymphoma (DLBCL) samples and 19 
follicular lymphoma (FL) samples. It was 
studied in [15]. The data file, 
lymphoma_8_lbc_fscc2_rn.res, and the class 
label file, lymphoma_8_lbc_fscc2.cls are used in 
our experiments for identifying DLBCL and FL.  

 Prostate data set in [16] contains 52 prostate 
tumor samples and 50 non-tumor prostate 
samples.  

 The Colon data set in [17] consists of 40 tumor 
and 22 normal colon tissues. 

 
Fig.1. Significant features for leukemia 

 
Fig.2. Significant features for colon 

 
Fig.3. Significant features for lymphoma 

 
Fig.4. Significant features for prostate 
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IV. MODEL SELECTION (SVMs) 
In any predictive learning, such as classification, both 
a model and a parameter estimation method should 
be selected in order to achieve a high level of 
performance. Recent approaches allow a wide class 
of models of varying complexity to be chosen. Then 
the task of learning amounts to selecting the sought-
after model of optimal complexity and estimating 
parameters from training data [8,9]. 

Within the SVMs approach, usually parameters 
to be chosen are (i) the penalty term  C  which 
determines the trade-off between the complexity of 
the decision function and the number of training 
examples misclassified; (ii) the mapping function  ;Φ   
and  (iii) the kernel function such that  

)()(),( jijiK xxxx Φ⋅Φ= . In the case of RBF kernel, the 
width, which implicitly defines the high dimensional 
feature space, is the other parameter to be selected.  

We performed a grid search using 5-fold cross 
validation for each of the faults in our data set. We 
achieved the search of parameters C and γ   in a 
coarse scale. Model selection results obtained 
through grid search using LIBSVM is given in 
figures 5-8. 
 

 
Fig.5. SVM model for leukemia 

 
Fig.6. SVM model for colon 

 
Fig.7. SVM model for lymphoma 

 
Fig.8. SVM model for prostate 

Within the SVMs approach, usually parameters 
to be chosen are (i) the penalty term  C  which 
determines the trade-off between the complexity of 
the decision function and the number of training 
examples misclassified; (ii) the mapping function  ;Φ   
and  (iii) the kernel function such that  

)()(),( jijiK xxxx Φ⋅Φ= . In the case of RBF kernel, the 
width, which implicitly defines the high dimensional 
feature space, is the other parameter to be selected 
[10].  

We performed a grid search using 10-fold cross 
validation for each of the five faults in our data set. 
First, we achieved the search of parameters C and γ   
in a coarse scale and then we carried through a fine 
tuning into the five detection faults proper space. 
Model selection results obtained through grid search 
are given in figures 5 to 8 Leukemia, Colon, 
Lymphoma, and Prostate data sets, respectively. 

V. BIASED SUPPORT VECTOR MACHINE 
Biased support vector machine (BSVM), a 
decomposition method for support vector machines 
(SVM) for large classification problems [8,9]. BSVM 
uses a decomposition method to solve a bound-
constrained SVM formulation. BSVM Uses a simple 
working set selection which leads to faster 
convergences for difficult cases and a bounded SVM 
formulation and a projected gradient optimization 
solver which allow BSVM to quickly and stably 
identify support vectors. Leave-one-out model 
selection for biased support vector machines is used 
for automatic model selection [10]. 
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Fig.9. Looms model for leukemia 

 
Fig.10. Looms model for colon 

 
Fig.11. Looms model for lymphoma 

 
Fig.12. Looms model for prostate 

Models generated for tumor data using leave-
one-out model for support vector machines (looms) 
are given in figures 9 to 12. 

VI. ROC CURVES 
The Receiver Operating Characteristic (ROC) curves 
are generated by considering the rate at which true 
positives accumulate versus the rate at which false 
positives accumulate with each one corresponding, 

respectively, to the vertical axis and the horizontal 
axis in Figures 13 to 16. 

The point (0,1) is the perfect classifier, since 
it classifies all positive cases and negative cases 
correctly. Thus an ideal system will initiate by 
identifying all the positive examples and so the curve 
will rise to (0,1) immediately, having a zero rate of 
false positives, and then continue along to (1,1). 

 
Fig.13. Classification accuracy for leukemia 

 
Fig.14 Classification accuracy for colon 

 
Fig.15. Classification accuracy for lymphoma 

 
Fig.16. Classification accuracy for prostate 
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Detection rates and false alarms are 
evaluated for tumor datasets described in section 3 
and the obtained results are used to form the ROC 
curves. Figures 13 to 16 show the ROC curves of the 
classification models by malignancy categories as 
well as on all normal samples. In each of these ROC 
plots, the x-axis is the false alarm rate, calculated as 
the percentage of normal considered as tumor; the y-
axis is the classification rate, calculated as the 
percentage of tumors. A data point in the upper left 
corner corresponds to optimal high performance, i.e, 
high classification rate with low false alarm rate. 
Interestingly 100% classification accuracy is 
achieved on leukemia dataset. 

VII. CLASSIFIER PERFORMANCE 
We applied SVMs, BSVMs, and LOOMs to 
Leukemia (6,27,53), Lymphoma (7,28,55), Colon 
(7,15,27,54) and Prostate (6,26,52) cancer data sets, 
for detecting malignancy of a tumor with different 
data dimensionalities given in the parenthesis.  
Classification accuracies are summarized in table 1. 
Table 1. Classification accuracies (%) of different kernel methods 

Class SVM BSVM Looms 
(BSVM) 

Leukemia 100 97.22 97.3 
Colon 86.15 93.54 87.88 

Lymphoma 98.47 94.87 92.1 
Prostate 95.85 98.04 98.03 

VIII. SUMMARY & FUTURE WORK 
Although the performance of the three methods used 
is comparable in all datasets, we found that SVMs 
performs the best on Leukemia, Lymphoma; and 
BSVMs performs the best on Colon and Prostate. 

The classifiers used in this paper showed 
comparable or better performance in some cases 
when compared to the ones reported [artificial neural 
networks, and clustering, etc] in the literature using 
the same datasets. Our results demonstrate the 
potential of using learning machines in diagnosis of 
malignancy of a tumor. As a future work we plan to 
use large datasets of patients. As more inputs are 
added, feature selection will have to follow a more 
stringent scrutiny. 
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