
 
 

  
Abstract—This paper is concerned with the application of a 

conversational agent and expert system to provide a natural 
language interface to a database. Typically, natural language 
database interfaces (NLDI's) use grammatical and/or statistical 
parsing. Conversational agents take a different approach, 
capturing key elements of user input which then trigger 
pre-determined output templates. It is assumed that the type of 
natural language questions which could be asked of a specific 
relational database will contain a limited number of key words 
(attributes), which could be captured by a conversational agent. 
In the proposed system, once a conversational agent has 
identified all relevant attributes and their values, an expert 
system would then apply rule based reasoning on these attributes 
to construct an SQL query. The knowledge base of the expert 
system would contain information on the database structure 
(metadata) and on the different possible structures of SQL 
queries.   This would result in a real time system, which could 
extract both database attributes and attribute values from the 
user input and automatically apply a rule based reasoning system 
to determine the answer the user’s query. 
 

Index Terms—Conversational Agents, Natural Language, SQL  
 

I. INTRODUCTION 

  Typically, natural language database interfaces use parsing 
to identify and categorise the user's input [1]. The parsing 
process requires the creation of a lexicon, which includes both 
database specific and non-database specific terms. Different 
natural language database interfaces (NLDI's) use different 
methods to create the database specific terms. Microsoft 
English Query includes an authoring tool, so that database 
users can populate the lexicon with synonyms and alternative 
phrasings for database elements such as relation and attribute 
names [2]. Additionally, words which define the relationship 
between different database elements can be added (i.e. 
Customers buy products). Masque/SQL takes a similar 
approach, helping users to define the relationships between 
database elements using an “is-a” hierarchy [3]. English 
Language Frontend (ELF) [4] and Precise [5] find database 
specific terms by extracting information on the schema and 
entity names from a database, and using a dictionary to 
identify possible synonyms.  
 In all these cases, once user input has been parsed, the 
relevant elements of user input are identified and related to the 
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corresponding database elements. Various algorithms, with 
rules relating to database structure and/or SQL syntax, are 
then used to transform these elements into a valid SQL query.  
None of these NLDI's are widely used due to the fact that 
generally grammatical parsers do not deal well with incorrect 
grammar and sentence fragments, both of which may be 
present in user input. Also, these NLDI's have, at best, only a 
limited capability for allowing interaction with the user, when 
the user input is unclear or ambiguous. 
 Conversational agents take a different approach to the 
processing of natural language [6..11]. Rather than parsing 
input through the use of a lexicon, a set of scripts is used to 
capture specific attributes and their values from the user input. 
Furthermore, it is possible for conversational agents to be used 
in more purposeful ways, so that the capture of different 
attributes will initiate different actions, such as writing 
specific data to a file, starting up another program etc. This 
paper proposes a novel framework which utilizes a 
conversational agent as a NLDI. The conversational agent is 
used as a means to capture attributes from user input, (i.e. 
database attributes and their associated values, aggregate 
terms etc). The identification of these attributes will trigger the 
start up of an expert system, which will then transform these 
attributes into a valid SQL query. The expert system will 
contain knowledge of the database structure as its domain 
facts, and knowledge of SQL syntax in its rule base. A 
conversational agent will have the advantage over traditional 
NLDI's of being able to deal with ungrammatical input. It will 
also be able to use its conversational capabilities to guide a 
user through a process rather than just extracting attributes 
from the conversational dialogue.  
 The paper is organised as follows: Section II will outline the 
system's architecture; Section III will discuss the syntax of 
SQL, and outline the type of SQL query covered by the 
paper's remit; Section IV will discuss the methods used to 
collect typical questions asked by database users and outline 
the testing carried on the system; Section V will analyse the 
results and section VI will discuss the findings. Finally section 
VII will draw conclusions and highlight areas of future work. 

II. SYSTEM ARCHITECTURE 

A. System Overview 
The proposed system, shown in Fig. 1., will consist of a 
conversational agent (including user interface), an expert 
system, a database, and interfaces between these three 
components and a control module. 
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Fig. 1. System components and the order in which processes take place 

        
1. User enters a natural language statement into the user 

interface, which is passed to the conversational agent. 
2. Attributes and their associated values are extracted 

from the user input by the conversational agent, and 
passed to the control module.  
• If no attributes can be identified the 

conversational agent will engage in a dialogue to 
guide the users through a process aimed at 
capturing an attribute and its value. 

• If the user is uncooperative and fails to cooperate 
with the conversational agent after several 
attempts then the session will end. 

3. The control module passes the attributes and their 
values to the expert system. Rule based reasoning is 
used to construct an SQL statement, which is then 
passed back to the control module. 

4. The control module executes the SQL statement on 
the database, which returns the results. 

5. The control module opens a new window and 
displays the query results. 

 
   Each component will now be described. 
 

B. Conversational Agents 
 The idea that a computer could actually engage in a 
conversation with a human being was thought to be the 
subject of science fiction for many years. That was until 
British mathematician and code-breaker Alan Turing 
published a seminal paper, Computing Machinery and 
Intelligence which discussed the question “Can machines 
logically process information?”[12]. Since then the ability to 
create a computer that could understand and communicate 
using natural language has been the main thrust of scientists 
worldwide. This has led to the development of conversational 
agents, computer based agents that can participate in natural 
human dialogue with a user. The implication of this 
technology, even whilst still in its infancy is that a machine 
rather than a human operator can engage in a conversation 

with a person to try and solve their problem(s). The best 
known early conversational agent was Eliza [10]. Eliza's 
main trick was to use questions to draw a conversation out of 
the user with the agent having to perform little contribution. 
However the main criticism of ELIZA as a model for 
artificial intelligence was that it  focused on the program's 
lack of an internal world model that could influence and track 
conversation [6]. Since then many conversational agents have 
been developed such as PARRY [7], ALICE[8]and 
Convagent [9].  
  In the context of the proposed architecture, the role of the 
conversational agent would be to look for each possible 
relevant attribute and any associated value in the user input 
(i.e. words relating to database attribute names, values, SQL 
terms etc). It will do this by creating a specific script for the 
capture for each attribute or combination of attributes which 
could be present in the user input. When user input is passed 
from the user interface to the conversational agent, all the 
different scripts will be called in turn. Each script will 
determine whether a specific attribute and it’s associated 
value is present in the input, and if it is, capture it and assign 
it to a set of variables. These variables will then be passed on 
to the expert system. The system will use a specific existing 
conversational agent [9,11]. However, any conversational 
agent could be used in the proposed architecture, providing it 
has the ability to capture attributes. 

C. Expert System 
 Once the conversational agent has captured the attributes 
present in user input, it will pass them  on to an expert 
system. The role of the expert system will be to transform 
these attributes into an SQL query, using rule based 
reasoning. The expert system will contain  

• database metadata describing the current domain 
• a rule base 
• an inference engine, 

which will work together to create an SQL statement from 
the attributes. The rule base and inference engine are based 
on elements of an expert system described in Bigus & Bigus 
[13]. 
In order for an expert system to construct an SQL query, the 
rule base will need to contain some knowledge of SQL 
syntax. SQL was chosen as it is the language most widely 
used for the creation and manipulation of relational databases 
[14]. Section III will provide more detail about the SQL 
syntax and types of SQL query which the system was set up 
to deal with. 
 Knowledge of the database schema will be built into the 
expert system by making elements of the database, such as 
relations and database attributes into objects. For example, a 
database attribute will have data variables such as name, data 
type, foreign/primary key, which relations(s) it belongs to etc. 
Relations will have details of other relations which they are 
linked to, and which database attributes they contain. Once 
all database attributes, values, comparative terms etc. have 
been identified, rule based reasoning will be used to 
determine how these attributes could make up an SQL query. 
For example, knowing database attributes and values will 
determine which relations need to be included. Knowing 
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about how relations are linked will allow join clauses to be 
written. “WHERE” clauses will be made up of a database 
attribute, a comparison term and a value from that database 
attribute, or a numeric or date value (which means that the 
database attribute will need to be of the same data type). The 
rule based reasoning strategy is based on the concepts of 
forward chaining, so that once certain facts have been 
established about user input, these facts can then trigger the 
firing of other rules. The key elements of the rule construct 
used in the expert system are shown in (1), which is an 
example of one of the rules present in the rule base. This 
particular rule ensures that, if both an aggregated and 
non-aggregated attribute(s) are present in the SELECT clause 
of the SQL query, the non-aggregated attribute(s) is also 
included in a GROUP BY clause: 
 
IF the user input contains an aggregated attribute and 
a non-aggregated attribute(s),  
THEN add all non-aggregated attributes to the Group 
By clause   
                        (1) 
 

D.  Database 
 For the purpose of this work, a relational database was 
implemented using MySQL. However, the architecture has 
been designed to incorporate the use of any database 
management system. The Northwind Traders sample database 
which is supplied with Microsoft Access 2003 was taken as a 
model, as the sales domain is one which is commonly used in 
real life.  However, in order to keep the system relatively 
simple, the number of relations was reduced and the number 
of database attributes in each relation was reduced. In this way, 
the database could simulate a real life situation, but focus on 
just the key elements. The database which was implemented 
comprised of the following relational schema: 
 
• customer (customer_no, customer_name, company_type, 

country)  
• product (product_no,  product_name, product_type, 

product_price, number_in_stock) 
• order (order_no*, product_no*, no_of_products, 

total_price) 
• total_order (order_no, customer_no*, date_ordered) 
 

E. Control Module 
 The control module will detect when the conversational 
agent has processed the user input and will then pass the 
information, (e.g. database attribute names, database values, 
aggregate terms etc.) on to the expert system. Once the expert 
system has produced an SQL query, this will be passed back 
to the control module, which will execute the query on the 
database. It will also handle the display of database results in 
a new window 
 

 

III. ANALYSIS OF SQL QUERIES 

A.  Overview of SQL 
 SQL statements can be divided into 5 main types; data 
retrieval and data manipulation (DML), data definition 
(DDL), transaction control and data control language (DCL). 
Data retrieval and data manipulation cover the types of 
procedure which are commonly performed on databases by 
database users, i.e. finding specific data, adding records etc. 
Data definition, transaction control and data control language 
cover procedures more likely to be used by database 
developers or administrators, i.e. controlling access etc. [15]. 
 

B. Capturing Natural Language Queries 
 This paper focuses on the type of queries which typical 
databases users would ask for a specific domain. In order to 
collect a range of real life natural language requests which 
might be made of a database, questionnaires were distributed 
to 10 people who regularly use databases in their main job 
function. The respondents used a range of database 
management systems in different domains. However this 
helped in determining whether particular words or phrases 
came up regularly, or whether particular query types were 
common, regardless of database content. 
 The questionnaire asked some closed questions, to 
determine the user's job role and the type of queries they made. 
Open questions were then used to ask for a description of their 
database, and to give, up to 5 examples of questions/requests, 
which they might use if they could communicate with the 
database in English.  Users were also asked to provide any 
alternative phrasing for each question or request. This was to 
achieve a wider range of possible ways in which different 
wording could be used. Two aspects of the questionnaire 
results were evaluated; the language used and the type of 
resulting SQL query. As the people completing the 
questionnaires used different databases, only language which 
referred to database-independent SQL terms was analysed.  
 The results were used to identify the words which people 
most commonly use when referring to SQL terms. For 
example,  the use of the words “total”, “amount”, “how 
much” etc. indicated that the SQL query would include the 
term SUM. These findings (summarised in Table I) were used 
as starting point for creating scripts in the conversational 
agent. 
  
Table I Summary of Relevant Words Used in Questionnaires 
 

SQL TERM Words used in questionnaires 

COUNT Count, number, how many 
SUM Total, amount, how much 
AVERAGE average 
< under 
> over 
GROUP Breakdown, per, each 
DATE VALUES This week/month etc, last week/month 

etc, today, actual date, i.e. May 2006 
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 The second point considered was with regards to natural 
language was the respondents' use of "alternative phrasing". 
Often the alternative phrasing actually asked a slightly 
different question. The most common example of this was 
when respondents asked for both a listing and a count of 
attributes which met a certain criteria. For example: 
“How many organisations are in MAIN?”/”Which 
organisations are in MAIN?” 
This would seem to indicate that the respondent can be 
flexible about the exact format of the query results, so long as 
it gives them the information which they need.  Some 
respondents also used the “alternative phrasing” section to add 
criteria, indicating that they might start with a simple query 
but then make this more complex and specific.  
 

C.  Type of SQL query 
The results showed that all the requests were concerned with 
data retrieval, and could be mapped onto “SELECT” queries. 
The most common type of queries identified from this study 
can be categorized  into two templates:  
 
a) Limiting selection by using a comparison condition or 

conditions. E.g. 
SELECT att1 (att2 etc) 
FROM table(s) 
WHERE another_att MEETS CRITERIA (=/</> 
BETWEEN values) 
Examples : 
"List of students on a specific course with their addresses 
and contact details"/"Which organisations give 
employment advice?" 

 
b) Counting the number of rows/summing the numeric 

values of rows which meet a comparison condition or 
conditions  
SELECT SUM/COUNT (att1) att2 etc 
FROM table(s) 
WHERE another_att MEETS CRITERIA (=/</> 
BETWEEN values) 
GROUP BY att2 etc. 
Examples: 
"How many students are on a particular course?"/"How 
much money have we made from courses in the last 
month?"/How much does it cost the surgery each month 
for paying prescriptions" 

The most common criteria specified were: 
• Database attribute with a text data type equals a 

particular text value.  
• Database attribute with a date data type falls between 

two date values. 
• Database attribute with a numeric data type is greater 

or less than a numeric value. 
 As only a relatively small range of natural language 
questions were collected from the questionnaires, further types 
of natural language questions were collected from the ELF 
website, where the makers of ELF have tested its performance 
compared to Microsoft English Query and Linguistic 
Technology's English Wizard [16]. These included some more 

complex queries, such as nested SELECT statements (i.e. 
“What products have sold more than onions”), finding absence 
of data (i.e. “Who has not bought wine”), and finding records 
which all meet only one criteria (i.e. “Who has only bought 
wine”).  
 Data analysed from the questionnaires, and from the ELF 
website have indicated that a large number of queries can be 
mapped onto the two SQL templates, (a) and (b). 
Consequently, this paper will focus on these relatively simple 
types of SQL SELECT queries, as they provide sufficient 
coverage of real life data retrieval requests made by database 
users. There are a number of rules which need to be followed 
to construct the (a) and (b) SQL templates. Every SQL 
SELECT query must contain at least one database attribute in 
its SELECT clause and at least one relation in its  FROM 
clause. If a WHERE clause is present, it must contain at least 
one database attribute, with a corresponding comparison term 
(=/</>/BETWEEN) and a text, numeric or date value. If both 
an aggregated and non-aggregated database attribute(s) are 
present in the SELECT clause, then the non-aggregated 
database attribute(s) must also appear in a GROUP BY clause. 
Finally, if more than one relation is present in the FROM 
clause, the WHERE clause must contain details of the 
database attributes on which the tables are joined, i.e.WHERE 
customers.customer_id = orders.customer_id [17]. The expert 
system's rule base must ensure that these rules are followed. It 
can also use these rules to determine where the different 
elements of user input will fit into an SQL query. For example, 
if a text value is present in user input, and also present in the 
database, it will be put into the WHERE clause, along with the 
database attribute which contains it, and the “=” sign, i.e. 
WHERE customer_name='Tesco'. 

IV. EXPERIMENTAL METHODOLOGY 

A. Creating a dataset 
 It was necessary to create a dataset of natural language 
questions to be used on the system during development. This 
was done by determining which of the natural language 
requests from the questionnaires  were simple enough to map 
onto the two SQL templates which had been identified. These 
then had to be adapted so that they related to the content of the 
system's database. Examples of adapted questions and 
corresponding SQL queries are shown in Table II. 
 
Table II: Sample Natural Language Queries 
 
Type (a)Questions 
 
Which customers are based in 
France?  
 
 
Show all the products which 
have more than 2000 in stock. 
 
How much does instant coffee 
cost? 

SQL 
 
SELECT customer_name  
FROM customers WHERE 
country='France'; 
 
SELECT product_name FROM 
products WHERE no_in_stock>2000; 
 
SELECT  product_price from products 
WHERE product_name='instant 
coffee'; 
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Type (b) Questions 
 
How many large customers 
do we have? 
 
How many products cost 
less than £4.00? 
 
 
How much steak have we 
sold? 
 
 
 

SQL 
 
SELECT COUNT(customer_name) FROM 
customers WHERE company_type='large'; 
 
SELECT COUNT(product_name) FROM products 
WHERE product_price<?4.00; 
 
 
SELECT SUM (no_of_products), SUM 
(total_price) FROM products p, order_details od 
WHERE p.product_name=od.product_name AND 
product_name='steak'; 

 

B. Developing Conversational Agent Scripts 
 The system has to identify all the relevant attributes of user 
input, such as database attribute names, database values, 
numbers, dates, comparative terms such as “more than”, “less 
than” etc. This will be done by the conversational agent, 
which will detect and capture key attributes in user input. 
A different script was developed to identify the presence or 
absence of each possible relevant attribute in user input.  
 The conversational agent was developed to capture the 
following: 

• Any reference to database attributes or values  
• Any reference to aggregate terms, such as “how 

much”, “total”, “sum” etc. It is also necessary to 
determine which database attribute or value the 
aggregate term refers to. Analysis of the 
questionnaires showed that the element being 
counted or summed is normally the first element 
which is mentioned after the counted or summed 
term.  

• Any reference to numerical, date or currency values. 
It is also necessary to determine which comparative 
term is being used in reference to these values, i.e. 
more than, less than, or equals. Therefore three 
different scripts were written for each of the three 
value types. 
 

 Once the conversational agent had identified all the relevant 
elements of user input, these are passed on, as text, to a class 
which sets them as string variables, i.e. if the user has referred 
to customers, a string variable is set to “customer_name” and 
added to a corresponding Vector; if an aggregate term has 
been used in relation to a database value (i.e. “How many 
apples”), then two corresponding string variables are set to the 
name of the value itself, and the name of the database attribute 
it belongs to. These variables are then passed on to the expert 
system, which  uses rule based reasoning to build an SQL 
query from them, as described in Section II. 
 

C. Testing strategies 
 Testing was done by a number of people who use databases 
regularly in their major job function. The testers were given a 
description of the system database, and an explanation of the 
types of questions which the system could deal with. They 
were then asked to type a number of questions of their own 

choice, using their own words, into the conversational agent 
interface. The query results were then displayed in a new 
window. At the same time, the users' questions were 
automatically written to a log file, along with data which 
demonstrated how different attributes were captured by the 
conversational agent during the process. After each tester had 
completed testing, the log file produced by the conversational 
agent was saved to be analysed later.  

V. RESULTS AND DISCUSSION 
 73 questions were asked by users during testing. 24 of these 
questions were disregarded as they had not been covered in 
the domain of the prototype system. Of the 49 suitable 
questions, 42 resulted in a correct SQL query. Analysis of 
these questions and the queries which were generated revealed 
the following: 
 

• 30 of the suitable questions processed by the system 
gave correct results which displayed only relevant 
information. This included questions with multiple 
criteria, for example, “What amount of onions did 
Tesco buy in May”.  

• 12 of the suitable questions processed by the system 
gave correct results, but also displayed information not 
asked for in the question. The most common example 
of this was when sales totals were displayed when they 
were not requested. The conversational agent identifies 
any words connected with sales (i.e. “sold”, “bought”, 
“distributed” etc.) and the expert system interprets this 
as a request for sales totals (both total cost and number 
of products sold). However, while in some cases, a 
reference to sales does require sales totals (i.e. How 
many apples were sold in June?”), other do not, (i.e. 
“what products are sold by Tesco”). The scope of this 
prototype system failed to detect this subtle distinction, 
and so the question “What products are sold by 
Tesco?” displays the product names and the sales totals 
for each product.  

• 3 questions failed to answer the user’s question. For 
example one question, “how many products do we 
distribute”, returned the total number of units sold 
rather than distribute. In this instance the expert system 
interpreted this as a request for sales totals.  A further 
question, “which products are sold by Aldi that cost 
over £2.50”, failed because the database contained 
more than one database attribute with a currency data 
type. In this instance further clarification was required 
with the user through the conversational agent as the 
expert system could not determine which of these 
databases attributes the value of £2.50 referred too.  

• 4 questions failed because there was not enough 
information in the question, i.e. “describe my 
customers”, “What information do we have about 
vegetables”.  

 
 There were a number of testers' questions which were not 
grammatically correct, i.e. “What large customers are they” 
and “list all amount of sales in May”. The system dealt with 
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these questions successfully, as it could still identify specific 
attributes. Another issue which arose during testing was the 
ambiguous nature of some of the testers' questions. For 
example in the question “What was the total amount of orders 
placed by Spain”, it is unclear whether the user required the 
total number of orders placed, or the total cost of these orders. 
Also, the question, “What are the sizes of customer that we 
deal with” does not make it clear whether the user wants just a 
list of the different sizes which exist in the database, or 
whether they want all customer names and their corresponding 
sizes.  
 The simple errors identified during the testing phase were 
due to the limited scope of the scripts written for this specific 
application and not an inherent failure of the proposed system.  
The errors can easily be avoided in future prototypes by the 
development of a complete set of scripts for the conversational 
agent. In all these instances the benefits of using a 
conversational agent were obvious in any ambiguity in the 
users’ natural language request could be rectified through 
further interaction. 
 

VI. CONCLUSIONS AND FURTHER WORK 
 
 This paper has proposed and shown that a conversational 
agent and expert system can be used as a NLDI. The 
conversational agent can capture key attributes of user input, 
such as database attributes and associated values, aggregate 
terms etc. which the expert system can then transform into an 
SQL query, using rule based reasoning. The prototype system 
had a success rate of 85.7% during user testing.  100% 
accuracy is difficult to achieve in the area of natural language 
as user input can be ambiguous. However a conversational 
agent is only as good as the effort which is put into the 
scripting process. The errors in the prototype system were 
mainly caused by the limited scope of the scripts that were 
written. The interactive potential of a conversational agent 
could be developed further to deal with this problem. When 
the system returned incorrect results, they were normally close 
to a correct answer, often simply omitting some required 
database attributes or returning unnecessary ones. It would be 
useful if the system could return an explanation of the results, 
so that the user could check that the system has interpreted 
their request correctly. A facility could then be included to 
allow the user to modify the results, i.e. adding or removing a 
database attribute, if the system has misinterpreted their 
question. Allowing users to modify inaccurate results in this 
way would also allow the modification of correct results, for 
example, if the user wanted to change one element, or add 
further criteria.  
 While the results are promising, clearly, more research 
would need to be done in order to develop this system further. 
A much larger survey would need to be done with database 
users, in order to collect a wider range of example natural 
language questions in order to exploit the interactive 
capability of the conversational agent. A more interactive 
system would therefore require extensive user involvement 
during development.. It would also be beneficial to conduct 

more research on a range of real life databases, to discover 
whether databases with different type’s content still share any 
similarities in their schema, and how this relates to the type of 
questions which their users ask. 
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