

Abstract—This paper is concerned with the application of a

conversational agent and expert system to provide a natural
language interface to a database. Typically, natural language
database interfaces (NLDI's) use grammatical and/or statistical
parsing. Conversational agents take a different approach,
capturing key elements of user input which then trigger
pre-determined output templates. It is assumed that the type of
natural language questions which could be asked of a specific
relational database will contain a limited number of key words
(attributes), which could be captured by a conversational agent.
In the proposed system, once a conversational agent has
identified all relevant attributes and their values, an expert
system would then apply rule based reasoning on these attributes
to construct an SQL query. The knowledge base of the expert
system would contain information on the database structure
(metadata) and on the different possible structures of SQL
queries. This would result in a real time system, which could
extract both database attributes and attribute values from the
user input and automatically apply a rule based reasoning system
to determine the answer the user’s query.

Index Terms—Conversational Agents, Natural Language, SQL

I. INTRODUCTION

 Typically, natural language database interfaces use parsing
to identify and categorise the user's input [1]. The parsing
process requires the creation of a lexicon, which includes both
database specific and non-database specific terms. Different
natural language database interfaces (NLDI's) use different
methods to create the database specific terms. Microsoft
English Query includes an authoring tool, so that database
users can populate the lexicon with synonyms and alternative
phrasings for database elements such as relation and attribute
names [2]. Additionally, words which define the relationship
between different database elements can be added (i.e.
Customers buy products). Masque/SQL takes a similar
approach, helping users to define the relationships between
database elements using an “is-a” hierarchy [3]. English
Language Frontend (ELF) [4] and Precise [5] find database
specific terms by extracting information on the schema and
entity names from a database, and using a dictionary to
identify possible synonyms.
 In all these cases, once user input has been parsed, the
relevant elements of user input are identified and related to the

 1The Intelligent Systems Group, Department of Computing and

Mathematics, The Manchester Metropolitan University, Chester Street,
Manchester, M1 5GD, UK (phone: +44 161 247 1497; fax +44 161 247 1483;
corresponding author email K.Crockett@mmu.ac.uk).

corresponding database elements. Various algorithms, with
rules relating to database structure and/or SQL syntax, are
then used to transform these elements into a valid SQL query.
None of these NLDI's are widely used due to the fact that
generally grammatical parsers do not deal well with incorrect
grammar and sentence fragments, both of which may be
present in user input. Also, these NLDI's have, at best, only a
limited capability for allowing interaction with the user, when
the user input is unclear or ambiguous.
 Conversational agents take a different approach to the
processing of natural language [6..11]. Rather than parsing
input through the use of a lexicon, a set of scripts is used to
capture specific attributes and their values from the user input.
Furthermore, it is possible for conversational agents to be used
in more purposeful ways, so that the capture of different
attributes will initiate different actions, such as writing
specific data to a file, starting up another program etc. This
paper proposes a novel framework which utilizes a
conversational agent as a NLDI. The conversational agent is
used as a means to capture attributes from user input, (i.e.
database attributes and their associated values, aggregate
terms etc). The identification of these attributes will trigger the
start up of an expert system, which will then transform these
attributes into a valid SQL query. The expert system will
contain knowledge of the database structure as its domain
facts, and knowledge of SQL syntax in its rule base. A
conversational agent will have the advantage over traditional
NLDI's of being able to deal with ungrammatical input. It will
also be able to use its conversational capabilities to guide a
user through a process rather than just extracting attributes
from the conversational dialogue.
 The paper is organised as follows: Section II will outline the
system's architecture; Section III will discuss the syntax of
SQL, and outline the type of SQL query covered by the
paper's remit; Section IV will discuss the methods used to
collect typical questions asked by database users and outline
the testing carried on the system; Section V will analyse the
results and section VI will discuss the findings. Finally section
VII will draw conclusions and highlight areas of future work.

II. SYSTEM ARCHITECTURE

A. System Overview
The proposed system, shown in Fig. 1., will consist of a
conversational agent (including user interface), an expert
system, a database, and interfaces between these three
components and a control module.

Karen Pudner1, Keeley Crockett1 Member IEEE, Zuhair Bandar1

An Intelligent Conversational Agent Approach
to Extracting Queries from Natural Language

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

Fig. 1. System components and the order in which processes take place

1. User enters a natural language statement into the user

interface, which is passed to the conversational agent.
2. Attributes and their associated values are extracted

from the user input by the conversational agent, and
passed to the control module.
• If no attributes can be identified the

conversational agent will engage in a dialogue to
guide the users through a process aimed at
capturing an attribute and its value.

• If the user is uncooperative and fails to cooperate
with the conversational agent after several
attempts then the session will end.

3. The control module passes the attributes and their
values to the expert system. Rule based reasoning is
used to construct an SQL statement, which is then
passed back to the control module.

4. The control module executes the SQL statement on
the database, which returns the results.

5. The control module opens a new window and
displays the query results.

 Each component will now be described.

B. Conversational Agents
 The idea that a computer could actually engage in a
conversation with a human being was thought to be the
subject of science fiction for many years. That was until
British mathematician and code-breaker Alan Turing
published a seminal paper, Computing Machinery and
Intelligence which discussed the question “Can machines
logically process information?”[12]. Since then the ability to
create a computer that could understand and communicate
using natural language has been the main thrust of scientists
worldwide. This has led to the development of conversational
agents, computer based agents that can participate in natural
human dialogue with a user. The implication of this
technology, even whilst still in its infancy is that a machine
rather than a human operator can engage in a conversation

with a person to try and solve their problem(s). The best
known early conversational agent was Eliza [10]. Eliza's
main trick was to use questions to draw a conversation out of
the user with the agent having to perform little contribution.
However the main criticism of ELIZA as a model for
artificial intelligence was that it focused on the program's
lack of an internal world model that could influence and track
conversation [6]. Since then many conversational agents have
been developed such as PARRY [7], ALICE[8]and
Convagent [9].
 In the context of the proposed architecture, the role of the
conversational agent would be to look for each possible
relevant attribute and any associated value in the user input
(i.e. words relating to database attribute names, values, SQL
terms etc). It will do this by creating a specific script for the
capture for each attribute or combination of attributes which
could be present in the user input. When user input is passed
from the user interface to the conversational agent, all the
different scripts will be called in turn. Each script will
determine whether a specific attribute and it’s associated
value is present in the input, and if it is, capture it and assign
it to a set of variables. These variables will then be passed on
to the expert system. The system will use a specific existing
conversational agent [9,11]. However, any conversational
agent could be used in the proposed architecture, providing it
has the ability to capture attributes.

C. Expert System
 Once the conversational agent has captured the attributes
present in user input, it will pass them on to an expert
system. The role of the expert system will be to transform
these attributes into an SQL query, using rule based
reasoning. The expert system will contain

• database metadata describing the current domain
• a rule base
• an inference engine,

which will work together to create an SQL statement from
the attributes. The rule base and inference engine are based
on elements of an expert system described in Bigus & Bigus
[13].
In order for an expert system to construct an SQL query, the
rule base will need to contain some knowledge of SQL
syntax. SQL was chosen as it is the language most widely
used for the creation and manipulation of relational databases
[14]. Section III will provide more detail about the SQL
syntax and types of SQL query which the system was set up
to deal with.
 Knowledge of the database schema will be built into the
expert system by making elements of the database, such as
relations and database attributes into objects. For example, a
database attribute will have data variables such as name, data
type, foreign/primary key, which relations(s) it belongs to etc.
Relations will have details of other relations which they are
linked to, and which database attributes they contain. Once
all database attributes, values, comparative terms etc. have
been identified, rule based reasoning will be used to
determine how these attributes could make up an SQL query.
For example, knowing database attributes and values will
determine which relations need to be included. Knowing

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

about how relations are linked will allow join clauses to be
written. “WHERE” clauses will be made up of a database
attribute, a comparison term and a value from that database
attribute, or a numeric or date value (which means that the
database attribute will need to be of the same data type). The
rule based reasoning strategy is based on the concepts of
forward chaining, so that once certain facts have been
established about user input, these facts can then trigger the
firing of other rules. The key elements of the rule construct
used in the expert system are shown in (1), which is an
example of one of the rules present in the rule base. This
particular rule ensures that, if both an aggregated and
non-aggregated attribute(s) are present in the SELECT clause
of the SQL query, the non-aggregated attribute(s) is also
included in a GROUP BY clause:

IF the user input contains an aggregated attribute and
a non-aggregated attribute(s),
THEN add all non-aggregated attributes to the Group
By clause
 (1)

D. Database
 For the purpose of this work, a relational database was
implemented using MySQL. However, the architecture has
been designed to incorporate the use of any database
management system. The Northwind Traders sample database
which is supplied with Microsoft Access 2003 was taken as a
model, as the sales domain is one which is commonly used in
real life. However, in order to keep the system relatively
simple, the number of relations was reduced and the number
of database attributes in each relation was reduced. In this way,
the database could simulate a real life situation, but focus on
just the key elements. The database which was implemented
comprised of the following relational schema:

• customer (customer_no, customer_name, company_type,

country)
• product (product_no, product_name, product_type,

product_price, number_in_stock)
• order (order_no*, product_no*, no_of_products,

total_price)
• total_order (order_no, customer_no*, date_ordered)

E. Control Module
 The control module will detect when the conversational
agent has processed the user input and will then pass the
information, (e.g. database attribute names, database values,
aggregate terms etc.) on to the expert system. Once the expert
system has produced an SQL query, this will be passed back
to the control module, which will execute the query on the
database. It will also handle the display of database results in
a new window

III. ANALYSIS OF SQL QUERIES

A. Overview of SQL
 SQL statements can be divided into 5 main types; data
retrieval and data manipulation (DML), data definition
(DDL), transaction control and data control language (DCL).
Data retrieval and data manipulation cover the types of
procedure which are commonly performed on databases by
database users, i.e. finding specific data, adding records etc.
Data definition, transaction control and data control language
cover procedures more likely to be used by database
developers or administrators, i.e. controlling access etc. [15].

B. Capturing Natural Language Queries
 This paper focuses on the type of queries which typical
databases users would ask for a specific domain. In order to
collect a range of real life natural language requests which
might be made of a database, questionnaires were distributed
to 10 people who regularly use databases in their main job
function. The respondents used a range of database
management systems in different domains. However this
helped in determining whether particular words or phrases
came up regularly, or whether particular query types were
common, regardless of database content.
 The questionnaire asked some closed questions, to
determine the user's job role and the type of queries they made.
Open questions were then used to ask for a description of their
database, and to give, up to 5 examples of questions/requests,
which they might use if they could communicate with the
database in English. Users were also asked to provide any
alternative phrasing for each question or request. This was to
achieve a wider range of possible ways in which different
wording could be used. Two aspects of the questionnaire
results were evaluated; the language used and the type of
resulting SQL query. As the people completing the
questionnaires used different databases, only language which
referred to database-independent SQL terms was analysed.
 The results were used to identify the words which people
most commonly use when referring to SQL terms. For
example, the use of the words “total”, “amount”, “how
much” etc. indicated that the SQL query would include the
term SUM. These findings (summarised in Table I) were used
as starting point for creating scripts in the conversational
agent.

Table I Summary of Relevant Words Used in Questionnaires

SQL TERM Words used in questionnaires

COUNT Count, number, how many
SUM Total, amount, how much
AVERAGE average
< under
> over
GROUP Breakdown, per, each
DATE VALUES This week/month etc, last week/month

etc, today, actual date, i.e. May 2006

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

 The second point considered was with regards to natural
language was the respondents' use of "alternative phrasing".
Often the alternative phrasing actually asked a slightly
different question. The most common example of this was
when respondents asked for both a listing and a count of
attributes which met a certain criteria. For example:
“How many organisations are in MAIN?”/”Which
organisations are in MAIN?”
This would seem to indicate that the respondent can be
flexible about the exact format of the query results, so long as
it gives them the information which they need. Some
respondents also used the “alternative phrasing” section to add
criteria, indicating that they might start with a simple query
but then make this more complex and specific.

C. Type of SQL query
The results showed that all the requests were concerned with
data retrieval, and could be mapped onto “SELECT” queries.
The most common type of queries identified from this study
can be categorized into two templates:

a) Limiting selection by using a comparison condition or

conditions. E.g.
SELECT att1 (att2 etc)
FROM table(s)
WHERE another_att MEETS CRITERIA (=/</>
BETWEEN values)
Examples :
"List of students on a specific course with their addresses
and contact details"/"Which organisations give
employment advice?"

b) Counting the number of rows/summing the numeric

values of rows which meet a comparison condition or
conditions
SELECT SUM/COUNT (att1) att2 etc
FROM table(s)
WHERE another_att MEETS CRITERIA (=/</>
BETWEEN values)
GROUP BY att2 etc.
Examples:
"How many students are on a particular course?"/"How
much money have we made from courses in the last
month?"/How much does it cost the surgery each month
for paying prescriptions"

The most common criteria specified were:
• Database attribute with a text data type equals a

particular text value.
• Database attribute with a date data type falls between

two date values.
• Database attribute with a numeric data type is greater

or less than a numeric value.
 As only a relatively small range of natural language
questions were collected from the questionnaires, further types
of natural language questions were collected from the ELF
website, where the makers of ELF have tested its performance
compared to Microsoft English Query and Linguistic
Technology's English Wizard [16]. These included some more

complex queries, such as nested SELECT statements (i.e.
“What products have sold more than onions”), finding absence
of data (i.e. “Who has not bought wine”), and finding records
which all meet only one criteria (i.e. “Who has only bought
wine”).
 Data analysed from the questionnaires, and from the ELF
website have indicated that a large number of queries can be
mapped onto the two SQL templates, (a) and (b).
Consequently, this paper will focus on these relatively simple
types of SQL SELECT queries, as they provide sufficient
coverage of real life data retrieval requests made by database
users. There are a number of rules which need to be followed
to construct the (a) and (b) SQL templates. Every SQL
SELECT query must contain at least one database attribute in
its SELECT clause and at least one relation in its FROM
clause. If a WHERE clause is present, it must contain at least
one database attribute, with a corresponding comparison term
(=/</>/BETWEEN) and a text, numeric or date value. If both
an aggregated and non-aggregated database attribute(s) are
present in the SELECT clause, then the non-aggregated
database attribute(s) must also appear in a GROUP BY clause.
Finally, if more than one relation is present in the FROM
clause, the WHERE clause must contain details of the
database attributes on which the tables are joined, i.e.WHERE
customers.customer_id = orders.customer_id [17]. The expert
system's rule base must ensure that these rules are followed. It
can also use these rules to determine where the different
elements of user input will fit into an SQL query. For example,
if a text value is present in user input, and also present in the
database, it will be put into the WHERE clause, along with the
database attribute which contains it, and the “=” sign, i.e.
WHERE customer_name='Tesco'.

IV. EXPERIMENTAL METHODOLOGY

A. Creating a dataset
 It was necessary to create a dataset of natural language
questions to be used on the system during development. This
was done by determining which of the natural language
requests from the questionnaires were simple enough to map
onto the two SQL templates which had been identified. These
then had to be adapted so that they related to the content of the
system's database. Examples of adapted questions and
corresponding SQL queries are shown in Table II.

Table II: Sample Natural Language Queries

Type (a)Questions

Which customers are based in
France?

Show all the products which
have more than 2000 in stock.

How much does instant coffee
cost?

SQL

SELECT customer_name
FROM customers WHERE
country='France';

SELECT product_name FROM
products WHERE no_in_stock>2000;

SELECT product_price from products
WHERE product_name='instant
coffee';

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

Type (b) Questions

How many large customers
do we have?

How many products cost
less than £4.00?

How much steak have we
sold?

SQL

SELECT COUNT(customer_name) FROM
customers WHERE company_type='large';

SELECT COUNT(product_name) FROM products
WHERE product_price<?4.00;

SELECT SUM (no_of_products), SUM
(total_price) FROM products p, order_details od
WHERE p.product_name=od.product_name AND
product_name='steak';

B. Developing Conversational Agent Scripts
 The system has to identify all the relevant attributes of user
input, such as database attribute names, database values,
numbers, dates, comparative terms such as “more than”, “less
than” etc. This will be done by the conversational agent,
which will detect and capture key attributes in user input.
A different script was developed to identify the presence or
absence of each possible relevant attribute in user input.
 The conversational agent was developed to capture the
following:

• Any reference to database attributes or values
• Any reference to aggregate terms, such as “how

much”, “total”, “sum” etc. It is also necessary to
determine which database attribute or value the
aggregate term refers to. Analysis of the
questionnaires showed that the element being
counted or summed is normally the first element
which is mentioned after the counted or summed
term.

• Any reference to numerical, date or currency values.
It is also necessary to determine which comparative
term is being used in reference to these values, i.e.
more than, less than, or equals. Therefore three
different scripts were written for each of the three
value types.

 Once the conversational agent had identified all the relevant
elements of user input, these are passed on, as text, to a class
which sets them as string variables, i.e. if the user has referred
to customers, a string variable is set to “customer_name” and
added to a corresponding Vector; if an aggregate term has
been used in relation to a database value (i.e. “How many
apples”), then two corresponding string variables are set to the
name of the value itself, and the name of the database attribute
it belongs to. These variables are then passed on to the expert
system, which uses rule based reasoning to build an SQL
query from them, as described in Section II.

C. Testing strategies
 Testing was done by a number of people who use databases
regularly in their major job function. The testers were given a
description of the system database, and an explanation of the
types of questions which the system could deal with. They
were then asked to type a number of questions of their own

choice, using their own words, into the conversational agent
interface. The query results were then displayed in a new
window. At the same time, the users' questions were
automatically written to a log file, along with data which
demonstrated how different attributes were captured by the
conversational agent during the process. After each tester had
completed testing, the log file produced by the conversational
agent was saved to be analysed later.

V. RESULTS AND DISCUSSION
 73 questions were asked by users during testing. 24 of these
questions were disregarded as they had not been covered in
the domain of the prototype system. Of the 49 suitable
questions, 42 resulted in a correct SQL query. Analysis of
these questions and the queries which were generated revealed
the following:

• 30 of the suitable questions processed by the system
gave correct results which displayed only relevant
information. This included questions with multiple
criteria, for example, “What amount of onions did
Tesco buy in May”.

• 12 of the suitable questions processed by the system
gave correct results, but also displayed information not
asked for in the question. The most common example
of this was when sales totals were displayed when they
were not requested. The conversational agent identifies
any words connected with sales (i.e. “sold”, “bought”,
“distributed” etc.) and the expert system interprets this
as a request for sales totals (both total cost and number
of products sold). However, while in some cases, a
reference to sales does require sales totals (i.e. How
many apples were sold in June?”), other do not, (i.e.
“what products are sold by Tesco”). The scope of this
prototype system failed to detect this subtle distinction,
and so the question “What products are sold by
Tesco?” displays the product names and the sales totals
for each product.

• 3 questions failed to answer the user’s question. For
example one question, “how many products do we
distribute”, returned the total number of units sold
rather than distribute. In this instance the expert system
interpreted this as a request for sales totals. A further
question, “which products are sold by Aldi that cost
over £2.50”, failed because the database contained
more than one database attribute with a currency data
type. In this instance further clarification was required
with the user through the conversational agent as the
expert system could not determine which of these
databases attributes the value of £2.50 referred too.

• 4 questions failed because there was not enough
information in the question, i.e. “describe my
customers”, “What information do we have about
vegetables”.

 There were a number of testers' questions which were not
grammatically correct, i.e. “What large customers are they”
and “list all amount of sales in May”. The system dealt with

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

these questions successfully, as it could still identify specific
attributes. Another issue which arose during testing was the
ambiguous nature of some of the testers' questions. For
example in the question “What was the total amount of orders
placed by Spain”, it is unclear whether the user required the
total number of orders placed, or the total cost of these orders.
Also, the question, “What are the sizes of customer that we
deal with” does not make it clear whether the user wants just a
list of the different sizes which exist in the database, or
whether they want all customer names and their corresponding
sizes.
 The simple errors identified during the testing phase were
due to the limited scope of the scripts written for this specific
application and not an inherent failure of the proposed system.
The errors can easily be avoided in future prototypes by the
development of a complete set of scripts for the conversational
agent. In all these instances the benefits of using a
conversational agent were obvious in any ambiguity in the
users’ natural language request could be rectified through
further interaction.

VI. CONCLUSIONS AND FURTHER WORK

 This paper has proposed and shown that a conversational
agent and expert system can be used as a NLDI. The
conversational agent can capture key attributes of user input,
such as database attributes and associated values, aggregate
terms etc. which the expert system can then transform into an
SQL query, using rule based reasoning. The prototype system
had a success rate of 85.7% during user testing. 100%
accuracy is difficult to achieve in the area of natural language
as user input can be ambiguous. However a conversational
agent is only as good as the effort which is put into the
scripting process. The errors in the prototype system were
mainly caused by the limited scope of the scripts that were
written. The interactive potential of a conversational agent
could be developed further to deal with this problem. When
the system returned incorrect results, they were normally close
to a correct answer, often simply omitting some required
database attributes or returning unnecessary ones. It would be
useful if the system could return an explanation of the results,
so that the user could check that the system has interpreted
their request correctly. A facility could then be included to
allow the user to modify the results, i.e. adding or removing a
database attribute, if the system has misinterpreted their
question. Allowing users to modify inaccurate results in this
way would also allow the modification of correct results, for
example, if the user wanted to change one element, or add
further criteria.
 While the results are promising, clearly, more research
would need to be done in order to develop this system further.
A much larger survey would need to be done with database
users, in order to collect a wider range of example natural
language questions in order to exploit the interactive
capability of the conversational agent. A more interactive
system would therefore require extensive user involvement
during development.. It would also be beneficial to conduct

more research on a range of real life databases, to discover
whether databases with different type’s content still share any
similarities in their schema, and how this relates to the type of
questions which their users ask.

ACKNOWLEDGMENT
The authors wish to thank Convagent Ltd for the use of their
conversational agent engine for use within this prototype
system.

REFERENCES
[1] M. Wallace, Communicating with Databases in Natural Language, Ellis

Horwood, Chichester, 1984.
[2] R. A. Bhootra, “Natural Language Interfaces: Comparing English

Language Front End and English Query”, Master's thesis , Virginia
Commonwealth University, 2004.

[3] I. Androutsopoulos, G. Ritchie, P. Thanisch, 'MASQUE/SQL – An
Efficient and Portable Natural Language Query Interfaces for Relational
Databases', in Proceedings of the 6th International Conference on
industrial and Engineering Applications of Artificial Intelligence and
Expert Systems, 1993.

[4] S.A. Knowles, A Natural Language Database Interface for SQL-Tutor,
Honours Project, Nov 1993.

[5] A.Popescu, O. Etzioni, H. Kautz, 'Towards a Theory of Natural
Language Interfaces to Databases', in Proceedings of the 8th
International Conference on Intelligent User Interfaces, Miami, Florida,
2003, pp 149-157.

[6] Mauldin, M. Chatterbots, Tinymuds, And The Turing Test: Entering The
Loebner Prize Competition, AAAI 1994

[7] Colby, K. Artificial Paranoia: A Computer Simulation of Paranoid
Process, Pergamon Press., New York, 1975

[8] ALICE (Artificial Linguistic Internet Computer Entity) Available:
http://www.alicebot.org.

[9] ADAM, Convagent Ltd, Available: http://www.convagent.com
[10] J. Weizenbaum, "ELIZA - A Computer Program for the Study of Natural

Language Communication between Man and Machine,"
Communications of the Association for Computing Machinery 9 (1966):
36-45.

[11] D Michie, C Sammut, Infochat Scripter's Manual, Convagent Ltd,
Manchester, UK, 2001.

[12] Turing, A. Computing Machinery and Intelligence. Mind 49: 433-460,
1950.

[13] J. Bigus & J. Bigus, Constructing Intelligent Agents Using Java, Wiley,
New York, 2001.

[14] S. Cannan, G.Otten, SQL: The Standard Handbook, McGraw-Hill,
London, 1993, p8.

[15] C. Ritchie, Relational Database Principles, Continuum, London, 2002,
p128.

[16] ELF Software CO ELF Software Documentation Series: Examples,
Available
http://www.elfsoft.com/ns/help/accelf/Examples.htm

[17] J.Bowman, S. Emerson, M Darnowsky, The Practical SQL Handbook:
Using SQL Variants, Addison-Wesley , London, 2001.

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

