
IQPI: An Incremental System for Answering
Imprecise Queries Using Approximate
Dependencies and Concept Similarities

S. M. Fakhr Ahmad, M. H. Sadreddini, M. Zolghadri Jahromi

1Abstract—Most of the proposed systems to process queries
over web databases require the user to provide some
information regarding the relative importance of attributes
and the similarities between nominal values. Recently, a new
system called AIMQ has been proposed, which is based on
measuring concept similarities. This system is end-user
independent and can answer imprecise queries. The main
drawback of this system is that it is not incremental. All
computations must be repeated when a tuple is added to the
database. As a solution to this problem, in this article, we
propose an incremental and efficient system called IQPI, which
can be considered as the incremental version of AIMQ. In
IQPI, the set of approximate dependencies between attributes
are mined, first (using our new efficient approach). Using this
set of dependencies, the user's imprecise query is converted
into some precise queries. Each of the precise queries is then
fed into the system and the results are filtered (to obtain most
relevant answers) using concept similarity graphs. These
graphs are constructed in another part of the system and each
edge in a graph represents the similarity between two nominal
values. The structure of the similarity graphs are such that the
least amount of computation is needed for them to be updated,
when database is changed. In dependency mining part of the
system, we present a new incremental algorithm that is based
on logical operations over bit strings. It is crucial for a search
system to be incremental, due to the dynamic nature of the
world-wide web.

Index Terms—Imprecise Query, Relational Database,
Concept Similarity, Approximate Dependency, Incremental

I. INTRODUCTION
 By the fast expansion of the World Wide Web, a large
number of web databases have been accessible to users from
all over the world. The user submits a query containing a
few constraints binding to different fields of the database
and receives a set of tuples as the result of search process
(which seem to be relevant to the query). Most of the
Database query processing models assume users know what
they want and how to formulate the query. As a matter of
fact, the user is usually unable to express his need precisely.
However, he can often tell which tuples are interesting when

1 S. M. Fakhr Ahmad is with the Department of Computer Engineering,

School of Engineering, Islamic Azad University of Shiraz, Shiraz, Iran
(e-mail: mfakhahmad@cse.shirazu.ac.ir)

M. H. Sadreddini is with the Department of Computer Science &
Engineering, School of Engineering, Shiraz University, Shiraz, Iran
(e-mail: sadredin@shirazu.ac.ir)

M. Zolghadri Jahromi is with the Department of Computer Science &
Engineering, School of Engineering, Shiraz University, Shiraz, Iran
(e-mail: zjahromi@shirazu.ac.ir)

receiving a mixed set of results with different degrees of
relevance to the query.

As an example, suppose a user searching for his
interesting car through a car database. Assume that he wants
a car costing about 10000$. If he knows a special case
within this range of price (e.g., Toyota), a feasible query
might be as follows: Q: (Make = 'Toyota' , Price <= 10000).
Submitting this query to the database, a set of tuples
including different models of Toyota and having prices not
over 10000$ will be returned to him, i.e., the user only
receives the answers which precisely satisfy the query
conditions. However, he may also be interested in cars
which are similar to Toyota. Moreover, a model of Toyota
may exist which costs 10010$ (a bit over 10000$), having
many advantages in comparison with the others, but is not
shown to the user. In such cases, the need to a search system
which can process imprecise queries (such as: Q: (Make
Like 'Toyota' , Price around 10000)) is sensed.

Problem Statement: Given a conjunctive query Q over a
relation R, find all tuples of R that satisfy Q above a
threshold of relevance, thresh.

Ans(Q) = {x|x Є R, Sim(Q, x) > thresh} (1)

, where thresh is a real-value number in the unit interval
[0, 1].

The rest of paper is organized as follows. Section 2
introduces some existing approaches for answering
imprecise queries. In section 3, our proposed system is
described and the main algorithms (similarity mining and
dependency mining algorithms) are presented. Experimental
results (containing two different types of experiments) on
some benchmark data sets are shown in section 4. Finally,
we give a conclusion at the end of the paper.

II. RELATED WORK
Many of the proposed systems to process queries over

web databases require the user to provide some information
regarding the relative importance of attributes and the
similarities between nominal values. For example, in [1],
the authors propose a method to provide ranked answers to
queries over Web databases, but some additional guidance
must be provided by the users in deciding the similarity.
These approaches however are not applicable to existing
databases as they require large amounts of domain specific
information either pre-estimated or given by the user of the
query. Many other approaches for retrieving answers to

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

imprecise queries are based on theory of fuzzy sets. Fuzzy
systems [2] contain attributes with imprecise values, like
height= “tall” and color=“blue or red”, and allow the
retrieval with fuzzy query languages. In [3], Motro has
added a similar-to operator using distance metrics over
attribute values in order to interpret vague queries. These
metrics must be provided by database designers. As the
main challenge, for each problem, the optimal number of
fuzzy sets, their type and their parameters must be specified
in order to obtain the best results. Binderberger [4]
investigates methods to extend database systems to support
similarity search and query refinement over arbitrary
abstract data types. Further [4] requires changing the data
models and operators of the underlying database while [1]
requires the database to be represented as a graph.

In [5, 6], authors explore methods to generate new queries
related to the user’s original query by generalizing and
refining the user queries. The abstraction and refinement
rely on the database having explicit hierarchies of the
relations and terms in the domain. In [7], Motro proposes
allowing the user to select directions of relaxation, thereby
indicating which answers may be of interest to the user.

Recently, a new system called AIMQ [8] has been
proposed by Nambiar et al., which is based on measuring
concept similarities. This system is end-user independent
and can answer imprecise queries. The system assumes that
tuples in the base set are all relevant to the imprecise query
and creates new queries. The technique they use is similar to
the pseudo-relevance feedback [9, 10] technique used in IR
systems. The main drawback of this system is that it is not
incremental. As a solution to this problem, in this article, we
propose an incremental and efficient system called IQPI,
which can be considered as the incremental version of
AIMQ. The structures used in the proposed system are such
that the least amount of computation is needed for them to
be updated, when database is changed. In dependency
mining part of the system, we present a new incremental
algorithm that is based on logical operations over bit strings.
Using these two incremental methods in main sections of the
system makes the whole process be much more efficient
than previous systems.

III. THE PROPOSED SYSTEM (IQPI)
In this section, we propose an incremental and efficient

system called IQPI, which can be considered as the
incremental version of AIMQ. The system consists of three
main parts. In the first part, the set of approximate
dependencies between attributes are mined. In this part, we
present a new incremental algorithm that is based on logical
operations over bit strings. The second part of the system is
the similarity miner, whose output is a set of similarity
graphs. Each edge in a typical graph represents the
similarity degree between two nominal values. The structure
of the similarity graphs are such that the least amount of
computation is needed for them to be updated, when
database is changed. The third and central part of the system
is the search engine which uses the results of the other two
parts. In this part, using the set of dependencies, the user's
imprecise query is converted into some precise queries.
Each of the precise queries is then fed into the system and

the results are filtered (to obtain most relevant answers)
using concept similarity graphs. Finally, a set of tuples,
having the relevance degree above a threshold, are returned
to the user.

A. Measuring Concept Similarities
As mentioned before, in each step of expanding the set of

answers, the tuples must be filtered according to their degree
of relevance to the query. Thus we must have a factor to
measure the similarity between a query and a tuple.
Measuring the similarity between two vectors containing
just numeric values is straight forward, using different
factors such as Euclidian distance, etc. However, how can
we measure the similarities between nominal attributes (i.e.,
concept similarity)?! Before illustrating the method, we
present a definition for concept.

concept: An attribute coupled with an assigned value is
called a concept, e.g., Make= 'Toyota' is a concept over the
database CarDB.

Now, we describe the process of measuring the concept
similarity between Make = 'Ford' and Make = 'Toyota' as an
example:
1- Each concept is considered as a query and submitted to
the database, separately. The result of running each query is
a set of tuples which is called a supertuple.
2- Each supertuple is represented in a table which shows the
number of each existing concept (in the supertuple). For
example, consider the supertuple shown in Fig. 1, which is
the result of the query Q: Make = Toyota over the database
CarDB.

The values within the supertuple of Fig. 1 indicate that
There are totally 13 records in the database having Make =
'Toyota'. The first row in this figure shows that from these
13 records, in 7 cases the Model is 'Camry' and in the 6
others it is 'Corolla'. Similar information can be gain from
other rows. The supertuple can be considered as a collection
of 39 non-identical concepts. Similarly, we have such a
structure for the concept Make = 'Ford'.
3- The union and the intersection of the two supertuples
(considering the repeating items) are measured and fed into
the Jaccard similarity formula (shown in equation (3)) to
measure the similarity of the two concepts.

 Sim(A,B) = (SA ∩ SB)/(SA U SB) (2)

, where SX is the supertuple of the concept X. After
computing the concept similarities for each pair of concepts
(related to each attribute), we construct a similarity graph
for each attribute. Each node in this graph represents a
nominal value, which is contained in the domain of the
attribute. Each edge of the graph connecting two concepts is
labeled with two values which are the union and the
intersection of two supertuples related to the two concepts.

 ST(Q:Make="Toyota")
Camry: 7, Corolla: 6 Model
2000:6, 1999:5 , 2001:2 Year
5995:4, 6500:3, 4000:6 Price

Fig. 1. The supertuple obtained from running the query
Make = " Toyota" over the database CarDB

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

Fig. 2 is an example of similarity graphs for the concept
Make = 'Ford'. The values of intersection and union are
shown by I and U, respectively.

As an example, suppose that we want to measure the
similarity between two concepts Make = 'Ford' and Make =
'Toyota'. First, each concept should be submitted to the
database as a query. Assume that the following supertuples
are the results of the queries:

Consequently, the similarity of these concepts is computed
as follows:

SA ∩ SB = 8 , SA U SB = 40
⇒ Sim(Toyota , Ford) = 8/40 = 0.2

A1) Updating Concept Similarities
According to the dynamic nature of the world-wide web,

the similarity mining algorithm must be designed such that
when some change occurs in data, it can update similarity
values without any need to re-scan all data and restart all
computations. Such algorithms are called incremental
algorithms.

In the proposed system, while constructing the graphs, we
save some information about the co-occurrences1 of
different concepts in a table called co-occurrence table. This
table is a symmetric matrix that indicates the co-occurrence
times of each pair of concepts (within a tuple). A part of this

1 Two concepts are called to have co-occurrence if they can be found in a
tuple.

table is shown in Fig. 3. For example, the value 5 shown in
the first row and the first column of this figure implies that
there are 5 cars having make = 'Ford' and Model = 'Focus'.

Suppose that the values for similarity elements (I and U)
of these two concepts have been 8 and 40, respectively.
Now, consider that a new tuple such as (Ford, Focus, 12k,
black, 2006) is added to the database. This new record will
make some affects on the previous results. However, it
should not lead to running all similarity computations. A
key point is that in similarity graphs, only the values related
to the concepts which are present in the new record (e.g.,
Make = 'Ford'), have to be updated. To compute the
similarity of Make = 'Ford' with other concepts such as
Make = 'Toyota' the following steps must be performed:

1- Increment the co-occurrence values of the main
concept (here, Make = 'Ford') and every other
concept existing in the new tuple, by 1 (The first row
in Fig. 3).

2- Count the number of values which have been
incremented and still have a value not more than the
similar value of the other concept (here, Make =
'Toyota'), denote it by k.

3- New values for I and U are computed from the
following formulas:

I = I + k (3)

 U = U + (|R|-1) – k (4)

, where |R| is the number of database attributes.

Fig. 4 shows the new co-occurrence values for the two
mentioned concepts after insertion of the new tuple.
Considering the changed values in the first row and
comparing them with the related values in the other row, the
value of k is found to be 1. Using the equations (3) and (4),
the similarity elements (I and U) are computed as follows:
I = 8 + 1 = 9
U = 40 + (5 - 1) – 1 = 43
new similarity value = 9/43 = 0.21

B. Mining Approximate Dependencies
Functional dependencies (FDs) are defined as

relationships between attributes of a relational scheme R,
and are presented in expressions of the form X → A. In this
expression X (referred to as the Left-Hand Side (LHS) of the
dependency) is a subset of attributes belonging to R and A
(referred to as the Right-Hand Side (RHS) of the
dependency) is an attribute of R. A functional dependency is
said to be valid in a given relation r over R , if for all pairs
of tuples t, u belonging to r, we have

(t[Xi] = u[Xi] , for all Xi in X) ⇒ t[A] = u[A] (5)

Classical Functional dependencies are used in relational
schema design in order to normalize relations to be free of
redundancy and update anomalies. These dependencies don't
allow for exceptions and are sensitive to noisy data.
Approximate Dependencies (ADs) are dependencies which
do not hold over a fraction of data and thus have a higher
flexibility for exceptions and noisy data [11].

Ford

Nissan

Chevrolet Honda

I=8 , U=40

I=5 , U=48

I=5 , U=42 I=12 , U=39

Toyota

Fig. 2. Similarity graph for the concept Make = 'Ford'

Q1 :− CarDB(Make = “Toyota”)

2005 : 2 , 2006:3 , Year

Blue:1, Black:3 , White: Color

10k-15k:4 , 15k-20k: 3 Price

Camry:3 , Corola:4 Model

SA:

Q2 :− CarDB(Make = “Ford”)

2005 : 1 , 2006:4 Year

Blue:2, Red:2 , White: 1 Color

10k-15k:3 , 1k-5k: 2 Price

Focus:2 , F150:3 Model

SB:

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

Year=
2006

Year=
2005

Year=
2004

Color=
‘black’

Color=
‘blue’

Price=
’15-
20k’

Price=
’10-
15k’

Model=
‘Camry’

Model=
‘z13’

Model=
‘Focus’

7 2 4 3 6 4 1 2 3 5 Make=
‘Ford’

1 3 5 3 4 5 2 6 4 3 Make=
‘Toyota’

Fig. 3. A part of co-occurrence table containing two concepts, Make = 'Ford' and Make = 'Toyota'

Year=
2006

Year=
2005

Year=
2004

Color=
‘black’

Color=
‘blue’

Price=
’15-
20k’

Price=
’10-
15k’

Model=
‘Camry’

Model=
‘z13’

Model=
‘Focus’

8 2 4 4 6 4 2 2 3 6 Make=
‘Ford’

1 3 5 3 4 5 2 6 4 3 Make=
‘Toyota’

Fig. 4. A part of co-occurrence table containing two concepts, Make = 'Ford' and Make = 'Toyota' after insertion of a new tuple

In dependency mining part of the system, we present a
new incremental algorithm that is based on logical
operations. It uses logical operations on binary strings to
find the set of minimal dependencies (having an
acceptable accuracy) between attributes. Many of the
dependency mining approaches already proposed are not
incremental and so have to re-scan all data and repeat the
whole computations when a number of records are added
to the database [12]–[16]. In this section, we first present
some definitions, and then the incremental method for
discovery of ADs is described.

B1) Definitions
Definition 1. Membership Binary String of attribute A, for
the discrete value λ (denoted as: MBS(A,λ)) in a relation
r over a relational scheme R, is a binary string having a
length equal to the number of tuples of r. Each bit in this
string is associated with a tuple of the relation and is set
to 1 if attribute A has the value of λ and 0, otherwise.

Example 1. Consider a relational scheme R having four
attributes A, B, C and D. A relation instance r over R is
given in Fig. 5. Using definition 1, the bit string for
MBS(C,'H'), MBS(C,'L') and MBS(C,'M') can be
calculated as:
MBS(C,'H')= 001000001000
MBS(C,'L') = 000110110110
MBS(C,'M') = 110001000001

A B C D
H L M L
H L M L
H L H H
H H L L
H H L L
H M M L
M H L M
M L L M
M L H L
M L L M
M L L M
H H M M

Fig. 5. A discrete-valued relation instance

Definition 2. Membership Binary Set of attribute A
(denoted as MB-Set(A)) is a set having all MBSs of
attribute A as its members.

Example 2. Using the above definition, the MB-Set(C) for
the relation r shown in Fig. 5 is calculated as:
MB-Set(C) = {MBS(C,'H') , MBS(C,'M') , MBS(C,'L')}
 = {001000001000 , 110001000001 , 000110110110}

C. Checking the Validity of an AD
For a relation instance, r, over the relational scheme R,

we first compute the MBS of each attribute in R
according to each discrete value it can take, and then
construct the MB-Sets for all attributes. The complexity
of this operation is O(|R|.|r|). All the information required
to check the validity of a particular dependency is now
available in MB-Sets and even database updates do not
require rescanning of the old data.

In order to measure the validity degree of a particular
dependency, we first construct the set M in the following
way. Any member of M is constructed by performing
logical AND operation on the bit-strings, each selected
from an MB-Set of the LHS attributes. For example, if
the LHS of a dependency has 3 attributes, each having 4
MBSs, then the M set will have 43 members. The result
set, F, is then calculated using some logical operations
given in the algorithm of Fig. 6. This set can then be used
to calculate the accuracy of the dependency under
investigation. For this purpose, we perform logical OR
operation over all members of F. The number of 1-bits in
the resulting string, S, which stands for the number of
exceptions (denoted by e) is counted and inserted in the
equation (6) to calculate the accuracy of the dependency.

|r|
|r|

eAccuracy −
= (6)

Example 3. As an example, consider AB → C over the
relation r (an instance of R(A,B,C,D)), shown in Fig. 5.
By Using the four steps of the algorithm presented in Fig.
6, the accuracy of this dependency can be calculated as
follows:
MB-Set(A) = {(111111000001), (000000111110), (0000000000000)}
MB-Set(B) = {(000110100001), (000001000000), (111000011110)}
MB-Set(C) = {(001000001000), (110001000001), (000110110110)}

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

M = {(000110000001), (000001000000), (111000000000),
(000000100000), (00000000000), (0000000011110), (00000000000),
(00000000000), (00000000000)}
F = {(000000000001), (000000000000), (001000000000),
(000000000000), (000000001000)}
S = 001000001001

In the above example, the M set has been constructed
using AND operation over MB-Set(A) and MB-Set(B),
(i.e., MB-Sets of the LHS attributes). Since both MB-Sets
have 3 members, the M set contains 32 = 9 members.
However, 4 of these members are zero-strings which do
not have any effect on the final result and can be omitted
from M to avoid unnecessary computations. Here, only
the remaining members of M (i.e., 5 non-zero strings)
have been used to construct the F set, and that's why the
F set contains 5 members instead of 9.
 In this example, S contains three 1-bits. These bits
occur at indexes 3, 9 and 12 of the relation instance. One
key feature of the method is that these indexes show the
positions of those tuples that reduce the accuracy of the
dependency (i.e., exceptions). Using equation (6), the
accuracy of this dependency is calculated as:
(12-3)/12 = 75 %.

D. Search Engine
The process of answering an imprecise query involves

the following steps:
1. Converting the query to a precise query

As the first step, the imprecise query is converted to a
precise query. This task is accomplished by converting
each 'like' operator to '=' within the query statement. The
resulting query is called Qpr.
2. Running the Precise Query

The precise query is run and all tuples that exactly
satisfy the query constraints, are retrieved. The result set
of records is called the base set or Abs.
3. Extending the Base Set

Using the base record set, Abs, some other records
which are similar to them, are retrieved and it leads to a
more extended set of tuples, called Aes. The process is
performed as follows:

Each record within Abs is assumed as a query statement
having |R| conditions, where |R| is the number of database
attributes. Each constraint is removed from the query (this
is called query relaxation) in turn and each time a number
of tuples are retrieved. In each iteration, the retrieved
tuples are filtered according to their similarity with the
query and those having a similarity above a threshold are
accepted. A challenge in this step is the order according
to which the attributes are removed from the query. This
order is determined according to the importance degrees
of attributes and the least important attribute is the first
one to be removed. If an attribute highly influences other
attributes then it should be removed last.

D1) Measuring Weights of Attributes
We are now faced with the issue of which attribute to

relax first. We make use of the ADs to decide the
relaxation order within the set of attributes. For each
attribute we determine a weight depending on how
strongly it influences the other attributes. The importance
of an attribute such as X is measured as follows: The
accuracy degrees of all ADs which contain X on their
LHSs are summated. If the LHS of an AD is the single
attribute X, then the accuracy of the AD is counted,
straightly. However, if the LHS is a set of attributes
containing X, the accuracy of AD is divided into the
length of the LHS and then summated. This issue can be
more clarified through the following example.

Example 4. Consider a relation R(A,B,C,D,E). The set of
ADs that hold over this relation, are given.

 A → B : 0.7 , A → C : 0.85 , AD → E : 0.92 ,
C → A : 0.87 , BD → C : 0.98 , BC → E : 0.9

The weights (importance degrees) of attributes are

computed as follows:

Weight(A) = 0.7 + 0.85 + (0.92/2) = 2.01
Weight(B) = (0.98/2) + (0.9/2) = 0.94
Weight(C) = 0.87 + (0.9/2) = 1.32

 Weight(D) = (0.98/2) + (0.92/2) = 0.95

Since The attribute E can not be seen on the LHS of
any AD, so it does not influence the other attributes at all
and has an importance degree = 0. Thus, E is the first
attribute that is selected to be removed from the query.
After E, the attributes A, C, D, B are selected,
respectively.

IV. EXPERIMENTAL RESULTS

A. Evaluating the Efficiency of Similarity Mining
As mentioned before, the main advantage of the

proposed system in comparison with AIMQ is that it is
incremental. In order to observe the time for updating the
similarity graphs, when a new tuple is added to the
database, the two systems (IQPI and AIMQ) were
evaluated via a set of experiments over some real-life
datasets from UCI repository. In each experiment, the
similarity graphs were first constructed using 90% of
data. Then, using the remaining data, the similarity values

Algorithm: Measure-Accuracy
Input: A set of attributes as the LHS and a single attribute as the RHS
of a dependency
Output: Accuracy of the dependency and indices of all tuples not
satisfying the dependency
1. Construct a set by performing logical AND operation over all
 members of MB-Sets of the LHS. Denote the resulting set as M.
 From M, Omit those strings which do not contain any 1.
2. Construct the empty set F
 For each member m of M
 For each member cj of MB-Set of the RHS
 Find fj = m AND (NOT(cj))
 Store fj as temp if it has the minimum number of 1-bits already
 found for the cj.
 End For
 Add temp to F.
 End For
3. Perform logical OR operation over all members of F, Denote the
 resulting string as S.
4. Count the number of 1-bits in S and insert it (as e) into the equation
 (6) to obtain the accuracy.

Fig. 6. Measure-Accuracy: The algorithm for computing the
accuracy of a dependency

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

were updated. The times to compute the new similarity
values are shown in table I.

Since AIMQ is not incremental, when a new tuple is
added to the database, the whole process of constructing
similarity graphs has to be repeated. However, IQPI just
updates a number of values through the method described
in section 3.1.1. The difference is sensible in the results of
this experiment.

Table I. The time to update similarity values when a set of
tuples are added to the database

B. Evaluating the Relevance of the Results
The well-known factor used in IR systems to evaluate

the relevance degree of query answers, is the
Work/ReleventTuple formula, shown in equation (7).

This factor represents the average number of tuples a

user must verify from the result set until he reaches his
favorite answer. Our first experiment was run in order to
compare the rank-based selection of attributes for query
relaxation (used in this work) with the random selection
approach. In this experiment, the similarity threshold was
changed from 0.3 to 0.9. In each case, the two approaches
were executed for 10 different queries over the CarDB
database and the average value (through 10 queries) of
Work/ReleventTuple was computed. The results show that
the above factor is higher in case of random-selection. It
can also be seen that the random-selection approach is
very sensitive to the value of the similarity threshold, i.e.,
the number of tuples that are recognized as relevant and
returned to the user increases more significantly as the
value of the threshold decreases. This problem is not seen
in rank-based selection.

Fig. 7. comparing the rank-based selection of attributes for
query relaxation with the random selection approach

V. CONCLUSION
In this article, we proposed an incremental and

efficient system called IQPI, which is similar to another
proposed system, AIMQ. The main drawback of AIMQ is
that it is not incremental and all computations must be

repeated when a tuple is added to the database. The
proposed system in this article can be considered as the
incremental version of AIMQ. In IQPI, the set of
approximate dependencies between attributes are mined,
first. Using this set of dependencies, the user's imprecise
query is converted into some precise queries. Each of the
precise queries is then fed into the system and the results
are filtered (to obtain most relevant answers) using
concept similarity graphs. These graphs are constructed in
another part of the system and each edge in a graph
represents the similarity between two nominal values.
The structure of the similarity graphs are such that the
least amount of computation is needed for them to be
updated, when database is changed. In dependency
mining part of the system, we present a new incremental
algorithm that is based on logical operations over bit
strings. In order to evaluate the relative efficiency of the
system, a set of experiments over some real-life data sets,
were conducted and we compared the time for updating
the similarity graphs by IQPI and AIMQ, when a set of
tuples are added to the database. The results show an
acceptable relative efficiency for the proposed system.

REFERENCES
[1] R. Goldman, N .Shivakumar, S. Venkatasubramanian, and H.

Garcia-Molina. Proximity search in databases. VLDB, 1998.
[2] J.M. Morrissey. (1990, April). Imprecise information and

uncertainty in information systems. ACM Transactions on
Information Systems. 8. pp. 159–180.

[3] A. Motro. Vague. (1998). A user interface to relational databases
that permits vague queries. ACM Transactions on Office
Information Systems, 6(3). pp. 187–214.

[4] M. Ortega-Binderberger. Integrating Similarity Based Retrieval
and Query Refinement in Databases. PhD thesis, UIUC, 2003.

[5] W.W. Chu, Q. Chen, and R. Lee. (1991). Cooperative query
answering via type abstraction hierarchy. Cooperative Knowledge
Based Systems. pp. 271–290.

[6] W.W. Chu, Q. Chen, and R. Lee. A structured approach for
cooperative query answering. IEEE TKDE, 1992.

[7] A. Motro. Flex: A tolerant and cooperative user interface to
database. IEEE TKDE, 1990, pp. 231–245.

[8] U. Nambiar, and S. Kambhampati, Answering Imprecise Queries
over Autonomous Web Databases, In: Proc. ICDE 2006, 22nd
International Conference on Data Engineering, 2006.

[9] C. Buckley, G. Salton, and J. Allan. Automatic Retrieval with
Locality Information Using Smart. TREC-1, National Institute of
Standards and Technology, Gaithersburg, MD, 1992.

[10] N.E. Efthimiadis. Query Expansion. In Annual Review of
Information Systems and Technology, Vol. 31, 1996, pp. 121–187.

[11] P. Bosc, L. Lietard, and O. Pivert, Functional dependencies
revisited under graduality and imprecision, NAFIPS, 1997, pp. 57–
62.

[12] P. A. Flach and I. Savnik. (1999). Database dependency discovery:
a machine learning approach, AI communications, 12(3). pp. 139–
160.

[13] Y. Huhtala, J. Kärkkäinen, P. Porkka and H. Toivonen. (1999)
TANE: An Efficient Algorithm for Discovering Functional and
Approximate Dependencies. The Computer Journal. 42(2). pp.
100–111.

[14] Y. Huhtala , J. Kärkkäinen , P. Porkka and H. Toivonen, Efficient
Discovery of Functional and Approximate Dependencies Using
Partitions, In: Proc. the Fourteenth International Conference on
Data Engineering, (February 1998), pp. 392 - 401.

[15] S. Lopes , J.M. Petit , L. Lakhal, Efficient Discovery of Functional
Dependencies and Armstrong Relations, in: Proc. ICDT 2000, the
7th International Conference on Extending Database Technology:
Advances in Database Technology, vol 1777(March 27–31, 2000)
350 - 364.

[16] S.L. Wang, J.S. Tsai, B.C. Chang, "Mining Approximate
Dependencies using partitions on Similarity-Relation-based Fuzzy
databases", in : Proc. IEEE SMC'99, Vol. 6, pp. 871–875, 1999.

Time (sec)

Flare Letter
recognition Adult Nursery CarDB

 6 34 42 27 24 IQPI
31 356 578 190 167 AIMQ

(7)number of all retrieved tuples
number of relevant tuples retrieved = Work/ReleventTuple

0

100

200

300

400

500

600

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Similarity thresholdُ

W
or

k/
R

el
ev

an
t

random selection

rank_based selection

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

