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1Abstract—Most of the proposed systems to process queries 
over web databases require the user to provide some 
information regarding the relative importance of attributes 
and the similarities between nominal values. Recently, a new 
system called AIMQ has been proposed, which is based on 
measuring concept similarities. This system is end-user 
independent and can answer imprecise queries. The main 
drawback of this system is that it is not incremental. All 
computations must be repeated when a tuple is added to the 
database. As a solution to this problem, in this article, we 
propose an incremental and efficient system called IQPI, which 
can be considered as the incremental version of AIMQ. In 
IQPI, the set of approximate dependencies between attributes 
are mined, first (using our new efficient approach). Using this 
set of dependencies, the user's imprecise query is converted 
into some precise queries. Each of the precise queries is then 
fed into the system and the results are filtered (to obtain most 
relevant answers) using concept similarity graphs. These 
graphs are constructed in another part of the system and each 
edge in a graph represents the similarity between two nominal 
values. The structure of the similarity graphs are such that the 
least amount of computation is needed for them to be updated, 
when database is changed. In dependency mining part of the 
system, we present a new incremental algorithm that is based 
on logical operations over bit strings. It is crucial for a search 
system to be incremental, due to the dynamic nature of the 
world-wide web. 
 

Index Terms—Imprecise Query, Relational Database, 
Concept Similarity, Approximate Dependency, Incremental 
 

I.   INTRODUCTION 
  By the fast expansion of the World Wide Web, a large 
number of web databases have been accessible to users from 
all over the world. The user submits a query containing a 
few constraints binding to different fields of the database 
and receives a set of tuples as the result of search process 
(which seem to be relevant to the query).  Most of the 
Database query processing models assume users know what 
they want and how to formulate the query. As a matter of 
fact, the user is usually unable to express his need precisely. 
However, he can often tell which tuples are interesting when 
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receiving a mixed set of results with different degrees of 
relevance to the query.  

As an example, suppose a user searching for his 
interesting car through a car database. Assume that he wants 
a car costing about 10000$. If he knows a special case 
within this range of price (e.g., Toyota), a feasible query 
might be as follows: Q: (Make = 'Toyota' , Price <= 10000). 
Submitting this query to the database, a set of tuples 
including different models of Toyota and having prices not 
over 10000$ will be returned to him, i.e., the user only 
receives the answers which precisely satisfy the query 
conditions. However, he may also be interested in cars 
which are similar to Toyota. Moreover, a model of Toyota 
may exist which costs 10010$ (a bit over 10000$), having 
many advantages in comparison with the others, but is not 
shown to the user. In such cases, the need to a search system 
which can process imprecise queries (such as: Q: (Make 
Like 'Toyota' , Price around 10000)) is sensed.   
 
Problem Statement: Given a conjunctive query Q over a 
relation R, find all tuples of R that satisfy Q above a 
threshold of relevance, thresh.  

Ans(Q) = {x|x Є R, Sim(Q, x) > thresh}                            (1) 

, where thresh is a real-value number in the unit interval    
[0, 1]. 

The rest of paper is organized as follows. Section 2 
introduces some existing approaches for answering 
imprecise queries. In section 3, our proposed system is 
described and the main algorithms (similarity mining and 
dependency mining algorithms) are presented. Experimental 
results (containing two different types of experiments) on 
some benchmark data sets are shown in section 4. Finally, 
we give a conclusion at the end of the paper. 
 

II.   RELATED WORK 
Many of the proposed systems to process queries over 

web databases require the user to provide some information 
regarding the relative importance of attributes and the 
similarities between nominal values. For example, in [1], 
the authors propose a method to provide ranked answers to 
queries over Web databases, but some additional guidance 
must be provided by the users in deciding the similarity. 
These approaches however are not applicable to existing 
databases as they require large amounts of domain specific 
information either pre-estimated or given by the user of the 
query. Many other approaches for retrieving answers to 
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imprecise queries are based on theory of fuzzy sets. Fuzzy 
systems [2] contain attributes with imprecise values, like 
height= “tall” and color=“blue or red”, and allow the 
retrieval with fuzzy query languages. In [3], Motro has 
added a similar-to operator using distance metrics over 
attribute values in order to interpret vague queries. These 
metrics must be provided by database designers. As the 
main challenge, for each problem, the optimal number of 
fuzzy sets, their type and their parameters must be specified 
in order to obtain the best results. Binderberger [4] 
investigates methods to extend database systems to support 
similarity search and query refinement over arbitrary 
abstract data types. Further [4] requires changing the data 
models and operators of the underlying database while [1] 
requires the database to be represented as a graph. 

In [5, 6], authors explore methods to generate new queries 
related to the user’s original query by generalizing and 
refining the user queries. The abstraction and refinement 
rely on the database having explicit hierarchies of the 
relations and terms in the domain. In [7], Motro proposes 
allowing the user to select directions of relaxation, thereby 
indicating which answers may be of interest to the user.  

Recently, a new system called AIMQ [8] has been 
proposed by Nambiar et al., which is based on measuring 
concept similarities. This system is end-user independent 
and can answer imprecise queries. The system assumes that 
tuples in the base set are all relevant to the imprecise query 
and creates new queries. The technique they use is similar to 
the pseudo-relevance feedback [9, 10] technique used in IR 
systems. The main drawback of this system is that it is not 
incremental. As a solution to this problem, in this article, we 
propose an incremental and efficient system called IQPI, 
which can be considered as the incremental version of 
AIMQ. The structures used in the proposed system are such 
that the least amount of computation is needed for them to 
be updated, when database is changed. In dependency 
mining part of the system, we present a new incremental 
algorithm that is based on logical operations over bit strings. 
Using these two incremental methods in main sections of the 
system makes the whole process be much more efficient 
than previous systems.  
 

III.   THE PROPOSED SYSTEM (IQPI) 
In this section, we propose an incremental and efficient 

system called IQPI, which can be considered as the 
incremental version of AIMQ. The system consists of three 
main parts. In the first part, the set of approximate 
dependencies between attributes are mined. In this part, we 
present a new incremental algorithm that is based on logical 
operations over bit strings. The second part of the system is 
the similarity miner, whose output is a set of similarity 
graphs. Each edge in a typical graph represents the 
similarity degree between two nominal values. The structure 
of the similarity graphs are such that the least amount of 
computation is needed for them to be updated, when 
database is changed. The third and central part of the system 
is the search engine which uses the results of the other two 
parts. In this part, using the set of dependencies, the user's 
imprecise query is converted into some precise queries. 
Each of the precise queries is then fed into the system and 

the results are filtered (to obtain most relevant answers) 
using concept similarity graphs. Finally, a set of tuples, 
having the relevance degree above a threshold, are returned 
to the user. 

A.   Measuring Concept Similarities 
As mentioned before, in each step of expanding the set of 

answers, the tuples must be filtered according to their degree 
of relevance to the query. Thus we must have a factor to 
measure the similarity between a query and a tuple. 
Measuring the similarity between two vectors containing 
just numeric values is straight forward, using different 
factors such as Euclidian distance, etc. However, how can 
we measure the similarities between nominal attributes (i.e., 
concept similarity)?! Before illustrating the method, we 
present a definition for concept.  

concept: An attribute coupled with an assigned value is 
called a concept, e.g., Make= 'Toyota' is a concept over the 
database CarDB. 

Now, we describe the process of measuring the concept 
similarity between Make = 'Ford' and Make = 'Toyota' as an 
example: 
1- Each concept is considered as a query and submitted to 
the database, separately. The result of running each query is 
a set of tuples which is called a supertuple.  
2- Each supertuple is represented in a table which shows the 
number of each existing concept (in the supertuple). For 
example, consider the supertuple shown in Fig. 1, which is 
the result of the query Q: Make = Toyota over the database 
CarDB.  
 
 
 
 
 
 
 
 
 

The values within the supertuple of Fig. 1 indicate that 
There are totally 13 records in the database having Make = 
'Toyota'. The first row in this figure shows that from these 
13 records, in 7 cases the Model is 'Camry' and in the 6 
others it is 'Corolla'. Similar information can be gain from 
other rows. The supertuple can be considered as a collection 
of 39 non-identical concepts. Similarly, we have such a 
structure for the concept Make = 'Ford'. 
3- The union and the intersection of the two supertuples 
(considering the repeating items) are measured and fed into 
the Jaccard similarity formula (shown in equation (3)) to 
measure the similarity of the two concepts. 
 
  Sim(A,B) = (SA ∩ SB)/( SA U SB)                                     (2) 
 
, where SX is the supertuple of the concept X. After 
computing the concept similarities for each pair of concepts 
(related to each attribute), we construct a similarity graph 
for each attribute. Each node in this graph represents a 
nominal value, which is contained in the domain of the 
attribute. Each edge of the graph connecting two concepts is 
labeled with two values which are the union and the 
intersection of two supertuples related to the two concepts. 

 ST(Q:Make="Toyota") 
Camry: 7,    Corolla: 6  Model  
2000:6,  1999:5 ,   2001:2 Year 
5995:4,   6500:3,  4000:6 Price 

Fig. 1. The supertuple obtained from running the query 
Make = " Toyota" over the database CarDB
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Fig. 2 is an example of similarity graphs for the concept 
Make = 'Ford'. The values of intersection and union are 
shown by I and U, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 

As an example, suppose that we want to measure the 
similarity between two concepts Make = 'Ford' and Make = 
'Toyota'. First, each concept should be submitted to the 
database as a query. Assume that the following supertuples 
are the results of the queries: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consequently, the similarity of these concepts is computed 
as follows: 
 
SA ∩ SB = 8   ,     SA U SB = 40        
⇒   Sim(Toyota , Ford) = 8/40 = 0.2 
 

A1) Updating Concept Similarities 
According to the dynamic nature of the world-wide web, 

the similarity mining algorithm must be designed such that 
when some change occurs in data, it can update similarity 
values without any need to re-scan all data and restart all 
computations. Such algorithms are called incremental 
algorithms.  

In the proposed system, while constructing the graphs, we 
save some information about the co-occurrences1 of 
different concepts in a table called co-occurrence table. This 
table is a symmetric matrix that indicates the co-occurrence 
times of each pair of concepts (within a tuple). A part of this 

 
1 Two concepts are called to have co-occurrence if they can be found in a 
tuple.  

table is shown in Fig. 3. For example, the value 5 shown in 
the first row and the first column of this figure implies that 
there are 5 cars having make = 'Ford' and Model = 'Focus'. 

Suppose that the values for similarity elements (I and U) 
of these two concepts have been 8 and 40, respectively. 
Now, consider that a new tuple such as (Ford, Focus, 12k, 
black, 2006) is added to the database. This new record will 
make some affects on the previous results. However, it 
should not lead to running all similarity computations. A 
key point is that in similarity graphs, only the values related 
to the concepts which are present in the new record (e.g., 
Make = 'Ford'), have to be updated. To compute the 
similarity of Make = 'Ford' with other concepts such as 
Make = 'Toyota' the following steps must be performed:  

1- Increment the co-occurrence values of the main 
concept (here, Make = 'Ford') and every other 
concept existing in the new tuple, by 1 (The first row 
in Fig. 3). 

2- Count the number of values which have been 
incremented and still have a value not more than the 
similar value of the other concept (here, Make = 
'Toyota'), denote it by k. 

3- New values for I and U are computed from the 
following formulas: 

 
I = I + k                                                                       (3) 

       U = U + (|R|-1) – k                                                      (4) 

, where |R| is the number of database attributes. 
 

Fig. 4 shows the new co-occurrence values for the two 
mentioned concepts after insertion of the new tuple. 
Considering the changed values in the first row and 
comparing them with the related values in the other row, the 
value of k is found to be 1. Using the equations (3) and (4), 
the similarity elements (I and U) are computed as follows: 
I = 8 + 1 = 9 
U = 40 + (5 - 1) – 1 = 43 
new similarity value =  9/43 = 0.21 

B.   Mining Approximate Dependencies 
Functional dependencies (FDs) are defined as 

relationships between attributes of a relational scheme R, 
and are presented in expressions of the form  X → A. In this 
expression X (referred to as the Left-Hand Side (LHS) of the 
dependency) is a subset of attributes belonging to R and A 
(referred to as the Right-Hand Side (RHS) of the 
dependency) is an attribute of R. A functional dependency is 
said to be valid in a given relation r over R , if for all pairs 
of tuples  t, u belonging to r, we have  

(t[Xi] = u[Xi] ,   for all Xi in X)    ⇒    t[A] = u[A]               (5) 

Classical Functional dependencies are used in relational 
schema design in order to normalize relations to be free of 
redundancy and update anomalies. These dependencies don't 
allow for exceptions and are sensitive to noisy data. 
Approximate Dependencies (ADs) are dependencies which 
do not hold over a fraction of data and thus have a higher 
flexibility for exceptions and noisy data [11]. 
 

Ford 

Nissan 

Chevrolet Honda 

I=8  ,  U=40 

 
I=5  ,  U=48

I=5  ,  U=42 I=12  ,  U=39 

Toyota 

 

Fig. 2. Similarity graph for the concept Make = 'Ford' 

Q1 :− CarDB(Make = “Toyota”) 

2005 : 2  ,  2006:3  ,  Year 

Blue:1,  Black:3 , White:  Color 

10k-15k:4   ,    15k-20k:  3  Price 

Camry:3  ,   Corola:4 Model  

SA:  

Q2 :− CarDB(Make = “Ford”) 

2005 : 1     ,     2006:4 Year 

Blue:2,  Red:2 , White: 1 Color 

10k-15k:3   ,    1k-5k:  2 Price 

Focus:2  ,   F150:3  Model 

SB: 
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Year= 
2006 

Year= 
2005 

Year= 
2004 

Color= 
‘black’ 

Color= 
‘blue’ 

Price= 
’15-
20k’ 

Price= 
’10-
15k’ 

Model= 
‘Camry’ 

Model= 
‘z13’ 

Model= 
‘Focus’  

7 2 4 3 6 4 1 2 3 5 Make= 
‘Ford’  

1 3  5 3 4 5 2 6 4 3 Make= 
‘Toyota’ 

 
Fig. 3. A part of co-occurrence table containing two concepts, Make = 'Ford' and Make = 'Toyota' 

 
Year= 
2006 

Year= 
2005 

Year= 
2004 

Color= 
‘black’ 

Color= 
‘blue’ 

Price= 
’15-
20k’ 

Price= 
’10-
15k’ 

Model= 
‘Camry’ 

Model= 
‘z13’ 

Model= 
‘Focus’  

8 2 4 4 6 4 2 2 3 6 Make= 
‘Ford’ 

1 3  5 3 4 5 2 6 4 3 Make= 
‘Toyota’ 

 
Fig. 4. A part of co-occurrence table containing two concepts, Make = 'Ford' and Make = 'Toyota' after insertion of a new tuple 

In dependency mining part of the system, we present a 
new incremental algorithm that is based on logical 
operations. It uses logical operations on binary strings to 
find the set of minimal dependencies (having an 
acceptable accuracy) between attributes. Many of the 
dependency mining approaches already proposed are not 
incremental and so have to re-scan all data and repeat the 
whole computations when a number of records are added 
to the database [12]–[16]. In this section, we first present 
some definitions, and then the incremental method for 
discovery of ADs is described. 

B1)   Definitions 
Definition 1. Membership Binary String of attribute A, for 
the discrete value λ (denoted as: MBS(A,λ)) in a relation  
r  over a relational scheme R, is a binary string having a 
length equal to the number of tuples of r. Each bit in this 
string is associated with a tuple of the relation and is set 
to 1 if attribute A has the value of λ and 0, otherwise. 

Example 1. Consider a relational scheme R having four 
attributes A, B, C and D. A relation instance r over R is 
given in Fig. 5. Using definition 1, the bit string for 
MBS(C,'H'), MBS(C,'L') and MBS(C,'M') can be 
calculated as: 
MBS(C,'H')= 001000001000 
MBS(C,'L') = 000110110110 
MBS(C,'M') = 110001000001 
 

A B C D 
H L M L 
H L M L 
H L H H 
H H L L 
H H L L 
H M M L 
M H L M 
M L L M 
M L H L 
M L L M 
M L L M 
H H M M 

 
Fig. 5.  A discrete-valued relation instance 

 
 

Definition 2. Membership Binary Set of attribute A 
(denoted as MB-Set(A)) is a set having all MBSs of 
attribute A as its members.   

Example 2. Using the above definition, the MB-Set(C) for 
the relation r shown in Fig. 5 is calculated as:  
MB-Set(C) = {MBS(C,'H') , MBS(C,'M') , MBS(C,'L')}  
        = {001000001000 , 110001000001 , 000110110110} 

C.   Checking the Validity of an AD 
For a relation instance, r, over the relational scheme R, 

we first compute the MBS of each attribute in R 
according to each discrete value it can take, and then 
construct the MB-Sets for all attributes. The complexity 
of this operation is O(|R|.|r|). All the information required 
to check the validity of a particular dependency is now 
available in MB-Sets and even database updates do not 
require rescanning of the old data.   

In order to measure the validity degree of a particular 
dependency, we first construct the set M in the following 
way. Any member of M is constructed by performing 
logical AND operation on the bit-strings, each selected 
from an MB-Set of the LHS attributes. For example, if 
the LHS of a dependency has 3 attributes, each having 4 
MBSs, then the M set will have 43 members. The result 
set, F, is then calculated using some logical operations 
given in the algorithm of Fig. 6. This set can then be used 
to calculate the accuracy of the dependency under 
investigation. For this purpose, we perform logical OR 
operation over all members of F. The number of 1-bits in 
the resulting string, S, which stands for the number of 
exceptions (denoted by e) is counted and inserted in the 
equation (6) to calculate the accuracy of the dependency.   
 

|r| 
|r| 

eAccuracy −
=                                                    (6) 

Example 3. As an example, consider AB → C over the 
relation r (an instance of R(A,B,C,D)), shown in Fig. 5. 
By Using the four steps of the algorithm presented in Fig. 
6, the accuracy of this dependency can be calculated as 
follows: 
MB-Set(A) = {(111111000001), (000000111110), (0000000000000)} 
MB-Set(B) = {(000110100001), (000001000000), (111000011110)} 
MB-Set(C) = {(001000001000), (110001000001), (000110110110)} 
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M = {(000110000001), (000001000000), (111000000000), 
(000000100000), (00000000000), (0000000011110), (00000000000), 
(00000000000), (00000000000)}  
F = {(000000000001), (000000000000), (001000000000), 
(000000000000), (000000001000)} 
S = 001000001001 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

In the above example, the M set has been constructed 
using AND operation over MB-Set(A) and MB-Set(B), 
(i.e., MB-Sets of the LHS attributes). Since both MB-Sets 
have 3 members, the M set contains 32 = 9 members. 
However, 4 of these members are zero-strings which do 
not have any effect on the final result and can be omitted 
from M to avoid unnecessary computations. Here, only 
the remaining members of M (i.e., 5 non-zero strings) 
have been used to construct the F set, and that's why the 
F set contains 5 members instead of 9.   
    In this example, S contains three 1-bits. These bits 
occur at indexes 3, 9 and 12 of the relation instance. One 
key feature of the method is that these indexes show the 
positions of those tuples that reduce the accuracy of the 
dependency (i.e., exceptions). Using equation (6), the 
accuracy of this dependency is calculated as:  
(12-3)/12 = 75 %.  

D.   Search Engine 
The process of answering an imprecise query involves 

the following steps: 
1. Converting the query to a precise query 

As the first step, the imprecise query is converted to a 
precise query. This task is accomplished by converting 
each 'like' operator to '=' within the query statement. The 
resulting query is called Qpr.  
2. Running the Precise Query 

The precise query is run and all tuples that exactly 
satisfy the query constraints, are retrieved. The result set 
of records is called the base set or Abs.  
3. Extending the Base Set 

Using the base record set, Abs, some other records 
which are similar to them, are retrieved and it leads to a 
more extended set of tuples, called Aes. The process is 
performed as follows: 

Each record within Abs is assumed as a query statement 
having |R| conditions, where |R| is the number of database 
attributes. Each constraint is removed from the query (this 
is called query relaxation) in turn and each time a number 
of tuples are retrieved. In each iteration, the retrieved 
tuples are filtered according to their similarity with the 
query and those having a similarity above a threshold are 
accepted. A challenge in this step is the order according 
to which the attributes are removed from the query. This 
order is determined according to the importance degrees 
of attributes and the least important attribute is the first 
one to be removed. If an attribute highly influences other 
attributes then it should be removed last. 

D1)   Measuring Weights of Attributes 
We are now faced with the issue of which attribute to 

relax first. We make use of the ADs to decide the 
relaxation order within the set of attributes. For each 
attribute we determine a weight depending on how 
strongly it influences the other attributes. The importance 
of an attribute such as X is measured as follows: The 
accuracy degrees of all ADs which contain X on their 
LHSs are summated. If the LHS of an AD is the single 
attribute X, then the accuracy of the AD is counted, 
straightly. However, if the LHS is a set of attributes 
containing X, the accuracy of AD is divided into the 
length of the LHS and then summated. This issue can be 
more clarified through the following example.    

Example 4. Consider a relation R(A,B,C,D,E). The set of 
ADs that hold over this relation, are given.  

     A → B :  0.7 ,          A → C :  0.85  ,        AD → E :   0.92  ,                  
C → A :  0.87 ,         BD → C :  0.98 ,      BC → E :   0.9 

 
The weights (importance degrees) of attributes are 

computed as follows: 

Weight(A) = 0.7 + 0.85 + (0.92/2) = 2.01 
Weight(B) = (0.98/2) + (0.9/2) = 0.94 
Weight(C) = 0.87 + (0.9/2) = 1.32 

        Weight(D) = (0.98/2) + (0.92/2) = 0.95 
 

Since The attribute E can not be seen on the LHS of 
any AD, so it does not influence the other attributes at all 
and has an importance degree = 0. Thus, E is the first 
attribute that is selected to be removed from the query. 
After E, the attributes A, C, D, B are selected, 
respectively.   

 

IV.   EXPERIMENTAL RESULTS 

A.   Evaluating the Efficiency of Similarity Mining       
As mentioned before, the main advantage of the 

proposed system in comparison with AIMQ is that it is 
incremental. In order to observe the time for updating the 
similarity graphs, when a new tuple is added to the 
database, the two systems (IQPI and AIMQ) were 
evaluated via a set of experiments over some real-life 
datasets from UCI repository. In each experiment, the 
similarity graphs were first constructed using 90% of 
data. Then, using the remaining data, the similarity values 

Algorithm: Measure-Accuracy 
Input: A set of attributes as the LHS and a single attribute as the RHS 
of a dependency 
Output: Accuracy of the dependency and indices of all tuples not 
satisfying the dependency 
1. Construct a set by performing logical AND operation over all     
    members of MB-Sets of the LHS. Denote the resulting set as M.   
    From M, Omit those strings which do not contain any 1. 
2. Construct the empty set F 
    For each member m of M 
      For each member cj of MB-Set of the RHS 
            Find  fj  =  m AND (NOT( cj )) 
            Store fj as temp if it has the minimum number of 1-bits already  
            found for the cj. 
      End For 
      Add temp to F. 
    End For 
3. Perform logical OR operation over all members of F, Denote the   
    resulting string as S. 
4. Count the number of 1-bits in S and insert it (as e) into the equation  
    (6) to obtain the accuracy.  

Fig. 6. Measure-Accuracy: The algorithm for computing the 
accuracy of a dependency 
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were updated. The times to compute the new similarity 
values are shown in table I. 

Since AIMQ is not incremental, when a new tuple is 
added to the database, the whole process of constructing 
similarity graphs has to be repeated. However, IQPI just 
updates a number of values through the method described 
in section 3.1.1. The difference is sensible in the results of 
this experiment. 

Table I. The time to update similarity values when a set of 
tuples are added to the database 

 
 
 

B.   Evaluating the Relevance of the Results 
The well-known factor used in IR systems to evaluate 

the relevance degree of query answers, is the 
Work/ReleventTuple formula, shown in equation (7). 

 
 
 
This factor represents the average number of tuples a 

user must verify from the result set until he reaches his 
favorite answer. Our first experiment was run in order to 
compare the rank-based selection of attributes for query 
relaxation (used in this work) with the random selection 
approach. In this experiment, the similarity threshold was 
changed from 0.3 to 0.9. In each case, the two approaches 
were executed for 10 different queries over the CarDB 
database and the average value (through 10 queries) of 
Work/ReleventTuple was computed. The results show that 
the above factor is higher in case of random-selection. It 
can also be seen that the random-selection approach is 
very sensitive to the value of the similarity threshold, i.e., 
the number of tuples that are recognized as relevant and 
returned to the user increases more significantly as the 
value of the threshold decreases. This problem is not seen 
in rank-based selection.  
 
 

 
 
 
 
 
 
 
 

Fig. 7. comparing the rank-based selection of attributes for 
query relaxation with the random selection approach 

 

V.   CONCLUSION 
In this article, we proposed an incremental and 

efficient system called IQPI, which is similar to another 
proposed system, AIMQ. The main drawback of AIMQ is 
that it is not incremental and all computations must be 

repeated when a tuple is added to the database. The 
proposed system in this article can be considered as the 
incremental version of AIMQ. In IQPI, the set of 
approximate dependencies between attributes are mined, 
first. Using this set of dependencies, the user's imprecise 
query is converted into some precise queries. Each of the 
precise queries is then fed into the system and the results 
are filtered (to obtain most relevant answers) using 
concept similarity graphs. These graphs are constructed in 
another part of the system and each edge in a graph 
represents the similarity between two nominal values. 
The structure of the similarity graphs are such that the 
least amount of computation is needed for them to be 
updated, when database is changed. In dependency 
mining part of the system, we present a new incremental 
algorithm that is based on logical operations over bit 
strings. In order to evaluate the relative efficiency of the 
system, a set of experiments over some real-life data sets, 
were conducted and we compared the time for updating 
the similarity graphs by IQPI and AIMQ, when a set of 
tuples are added to the database. The results show an 
acceptable relative efficiency for the proposed system. 
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