
 
 

 

  
Abstract—In recent years, various algorithms for mining closed 

frequent itemsets (CFI) have been proposed. Different structures 
such as prefix sharing are used within these algorithms. However 
the name challenging problem in many of them is the high 
requirement of memory, especially in case of sparse datasets. 
Thus, most of the proposed methods are proper for dense 
datasets. In this paper we present a new approach to mining 
closed frequent itemsets using two structures, namely Patricia 
tree and PTArray. By using these two structures, both the 
response time and also memory consumption are reduced, 
significantly. The proposed method, called PTclose is suitable for 
both dense and sparse datasets. The algorithm is assessed 
throughout a set of experiments. The results narrate for the 
relative efficiency of the algorithm compared to other existing 
methods. 
 
Index Terms—Association rules, closed frequent itemset, 
condensed representation, Patricia tree. 
 

I. INTRODUCTION 
 Mining Association Rules (ARs) is a popular technique for 
discovery of interesting relations between items in large 
databases and transaction warehouses [1], [2], [3], [4], [7], [9], 
[10], [15], [16], [19]. The fundamental part of mining ARs is 
the process of mining frequent itemsets (FIs). The count of an 
itemset X is the number of transactions in D that contain X. The 
support of an itemset X is the proportion of transactions in D 
which contain X. In other words, the support of X is the count 
of X divided by the number of transactions. A FI can be 
roughly defined as a set of items which occur together, 
frequently (its support is greater than or equal to a specific 
threshold), Mining all frequent itemsets might not be a good 
idea. For example, if there is a frequent itemset with size k, then 
all 2k nonempty subsets of the itemset have to be generated. 
However, since any subset of a frequent itemset is frequent, it is 
sufficient to discover only all the maximal frequent itemsets 
(MFIs). A frequent itemset X is called maximal if there is no 
other frequent itemset Y such that X⊆Y. Some existing 
algorithms only mine maximal frequent itemsets. However, 

 
 

ℵ Department of Computer Engineering, School of Engineering, Islamic Azad 
University of Shiraz, Shiraz, Iran, Email: tahmores@gmail.com 

 
♣ Department of Computer Science & Engineering, School of Engineering, 
Shiraz University, Shiraz, Iran, Email: sadredin@shirazu.ac.ir 

 

mining only MFIs has the following problem: Given an MFI 
and its support , s, we know that all its subsets are frequent and 
the support of any of its subset is not less than s, but the exact 
values of their supports are not known. To solve this problem, 
another type of a frequent itemset, called closed frequent 
itemset (CFI), was proposed in [12]. A frequent itemset X is 
closed if none of its proper supersets have the same support. 
Thus, the set of all CFIs contains complete information for 
generating association rules.  

Most of the frequent pattern mining algorithms, including 
Apriori [2], FP-growth [6], H-mine [5], and OP [8], mine all 
frequent itemsets. These algorithms have good performance in 
case that the pattern space is sparse and the value of support 
threshold is set high. However, when the value of support 
threshold drops low, the number of frequent itemsets goes up 
dramatically, and the performance of these algorithms 
deteriorates quickly because of the generation of a huge 
number of patterns.  

The closed itemset mining, which was proposed in [12] for 
the first time, mines only those frequent itemsets having no 
proper superset with the same support. In recent years, many 
efficient algorithms have been proposed for mining frequent 
closed itemsets, such as A-close [12], CLOSET [13], and 
CHARM [20]. Various depth-first and level-wise search 
strategies have been used in these methods. It has been shown 
through a set of experiments that CLOSET+ [17] and FPclose 
[23] have a better performance in comparison with other 
existing mining algorithms, including CLOSET, CHARM and 
OP.  

A typical challenge is that many of the proposed methods are 
suitable just for dense datasets, while many others are proper 
only for sparse ones. In this paper, we propose a new method 
for mining closed frequent itemsets, called PTClose. The 
algorithm constructs a compressed tree in memory, using the 
Patricia tree structure. In order to increase the efficiency, the 
algorithm uses the PTArray structure, which will be illustrated 
later. It will be shown, through a set of experiments, that the 
proposed scheme is proper for both dense and sparse data sets, 
in terms of runtime and memory usage. 

The rest of the paper is organized as follows. In Section 2, a 
brief description of some major topics, including the Patricia 
tree structure, the PTArray and the CFI-tree is given. Section 3 
is devoted to illustration of our proposed method for mining 
closed frequent itemsets. In Section 4, experimental results on 
synthetic and real-life data sets are shown. Finally, Section 5 
concludes the paper. 
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II. DEFINITIONS 
Before illustrating the new CFI mining method, in this 

section, we give some brief definitions for a number of related 
topics, including the Patricia tree, the PTArray and the CFI-tree 
structures. These are the major structures that are used in the 
proposed scheme.  
 

A. Patricia tree structure 
The Patricia tree is a compact tree, used to represent all 

relevant frequency information within a dataset. Each branch of 
the tree represents a frequent itemset. The nodes along the 
branches are stored in decreasing order of frequency from the 
root through the leaves. Overlapping itemsets in a Patricia tree 
share prefixes of the corresponding branches. That's why it is 
known as a compressed structure. The Patricia tree coalesces a 
set of sequential nodes (within a chain), having the same 
support value, c, into a single node with support of c. Each 
Patricia tree is associated with a header table, namely T.header, 
which is used to hold items and their frequencies in decreasing 
order of the counts. Each entry in a header table points to a 
linked list containing identical nodes in the Patricia tree.      

The construction process of the Patricia tree is as follows. 
First, the whole dataset is scanned and the all frequent items are 
identified, sorted by their frequencies and stored in header table 
entries. Infrequent items are then removed from the dataset. In 
the second scan, each transaction is scanned and the set of 
frequent items in it is inserted into the Patricia tree as a branch. 
Each node of a Patricia tree contains a counter to store the 
number of transactions containing the itemset represented by 
the path from the root to that node. If an itemset shares a prefix 
with an itemset already in the tree, the counter is incremented 
by 1, rather than inserting a new node.  

The traversal procedure of the Patricia tree is based on the 
following principle: If X and Y are two itemsets, the count of 
itemset X∪Y in the dataset exactly equals the count of Y in a 
fraction of the dataset that contains X. A restriction of the 
dataset containing X, is called X's conditional pattern base. The 
Patricia tree constructed for the typical itemset, X, with respect 
to the conditional pattern base is called X's conditional Patricia 
tree and denoted by TX.  

Given an item i in TX.header, the linked list is followed 
beginning from i in TX.header (to visit all branches that contain 
item i). The portion of these branches from i to the root forms 
the conditional pattern base of X∪{i}. Thus, the traversal 
obtains all frequent items in this conditional pattern base. Then 
it constructs the conditional Patricia tree TX∪{i} by first 
initializing its header table using the frequent items found, then 
revisiting the branches of TX along the linked list of i and 
inserting the corresponding itemsets in TX∪{i}.  

The above procedure is executed recursively until only one 
branch remains in the resulting Patricia tree. Generation of the 
complete set of closed frequent itemsets can be achieved 
straightforward, from single path Patricia trees.  

Table I shows a transactional data set. Items of each 
transaction are sorted in decreasing order of their frequencies.  
 
 

 
 
 
 
 
 
 
 
 
 
 
In Fig.1, a Patricia tree constructed for this data set is shown. 
 

 

Fig.1 A Patricia tree for the data set of 
Table I 

B. PTArray 
As claimed in [23], through numerous experiments, it has 

been shown that about 80 percent of the CPU time is used for 
traversing trees. By using a simple additional data structure, 
named PTArray, it will be possible to increase the traversal 
speed. As mentioned before, for each item i in the header of a 
conditional Patricia tree TX, two traversals of TX are performed 
in order to construct the new conditional Patricia tree TX∪{i}. 
The first traversal is run to find all frequent items in the 
conditional pattern base of X∪{i} and initializes the Patricia 
tree TX∪{i} by constructing its header table. Through the second 
traversal, the new tree TX∪{i} is constructed. The first scan of TX 
can be easily ignored by constructing the Patricia Tree Array 
called PTArray of T, while building TX.  

PTArray is a matrix, each element of which corresponds to 
the counter of an ordered pair of items in the header table of TX. 
Since the PTArray is a symmetric matrix, there is no need to set 
a counter for both item pairs (ij,ik) and (ik,ij) and thus it is 
enough to store the counters for all pairs (ik,ij) such that k < j. 

  

C. CFI-tree 
The best way we can verify that a generated itemset is closed 

or not, is to use a compressed tree containing previously found 
closed frequent itemsets. If a typical itemset is found to be 
closed, then it can be inserted into the tree. If the current itemset 
Sc can be subsumed by another already found closed itemset 
Sa, they must have the following relationships: (1) Sc and Sa 
have the same support; (2) length of Sc is smaller than that of 

Table I. A transactional data set, items 
sorted in decreasing order of the frequency 
TID Items 
1 B   A   D   F   G   H 
2 B   L 
3 B   A   D   F   L   H 
4 B   A   D   F   L   G 
5 B   L   G   H 
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Sa; and (3) all the items in Sc are contained in Sa. Using these 
heuristics, the structure of tree can be improved. Each closed 
itemset is inserted into the CFI-tree according to the header 
table order, and at each node the path length from the root down 
to the node is also recorded. The fields stored in each node are 
itemID, support, and the length (distance from the root node). 
When several closed itemsets share some common prefixes, the 
support of a node in the common prefix will be the maximum 
one among the supports of itemsets sharing the common prefix. 
Fig.2 shows a CFI-tree constructed for the CFIs found from the 
Patricia tree shown in Fig.1. 

 
 
 
 
 
 
 
 
 
 

Fig.2 A CFI-tree for the CFIs found from the 
Patricia tree of Fig 1 

 

III. THE PROPOSED ALGORITHM: PTCLOSE 
In this section, we present our new algorithm, PTclose which 

can be used for mining of all closed frequent itemsets, having a 
better speed and less requirement of main memory, in 
comparison with the proposed methods in the literature. In this 
algorithm we use a technique called PTArray, which reduces 
the time to scan the Patricia tree, significantly. we use local 
CFI-trees in order to verify the generated closed frequent 
itemsets, whether they are closed or not. This reduces the total 
time of generating closed frequent itemsets, effectively.  

The proposed algorithm is presented in Fig.3. As shown in 
this figure the algorithm has two inputs: a Patricia tree, denoted 
by T and a CFI-tree, denoted by C. The output of the algorithm 
is the completed CFI-tree. In the first call of the algorithm 
(from the main module of the program) the first parameter (T) 
is the Patricia tree constructed for the main dataset and the 
second parameter (C) is an empty tree. As the first step of the 
algorithm it is verified whether T is a single path tree. if so, all 
candidate CFIs are generated from T. For this purpose, the 
following steps are followed: let (i1:c1,i2:c2,…,ik:ck) be a 
representation for the tree path, where ij:cj means that the 
typical item ij has the counter cj. Beginning with i1, the counters 
are compared for each pair of adjacent items (such as ij:cj and 
ij+1:cj+1) if cj does not equal cj+1, we select the itemset 
{i1,i2,…,ij} as a candidate CFI. The candidate itemset is then 
compared with all the CFIs within C. If it is a closed itemset, it 
will be inserted into C and all CFI-tree existing in memory will 
be updated. In other words the candidate CFI is inserted into all 
CFI-trees. This is because the algorithm is called recursively 

and the generated CFI of each iteration must be accessible for 
the previous call environments. On the other hand, if the 
Patricia tree is not single path, the algorithm execution 
continues from line 6. In this part for each item within the 
header table, the lines 7 through 19 are executed. The condition 
mentioned in line 7 implies that there is no closed frequent 
itemset, X, such that T.base and X have the same support value 
and T.base⊆X. In line 8 if the PTArray is defined, it is used to 
compute the conditional pattern base of T.base∪{i} and also 
the support value of items. However, if the PTArray is not 
defined, support of items for T.base∪{i} is measured, by 
traversing of the conditional Patricia tree (shown in line 11). 

 
Algorithm PTclose (T,C) 
Input : T, a Patricia tree 
            C, a CFI-tree for T 
Output : complete CFI-tree 
 

1. if T is single path 
2.     for each CFI cfi in T 
3.         if IsClosed(cfi,C) 
4.             insert cfi into C 
5.             update all CFI-trees in                     
                     memory 
6. else for each i in T.header 

7.     if IsClosed(T.base∪{i},C) 
8.         if T.PTArray is defined 
9.             compute conditional  pattern  
                    base for i from T.PTArray 
10.         else 
11.            compute conditional pattern   
                   base for i from Patricia tree T 
12.        initial Patricia tree TT.base∪{i}  
13.        if PTArrayIsNeeded (TT.base∪{i}) 
14.            initial PTArray AT.base∪{i} 
15.       construct TT.base∪{i} 
16.       if AT.base∪{i} is defined 
17.           fill AT.base∪{i} 
18.       initial CFI-tree CT.base∪{i} 
19.      PTclose(TT.base∪{i},CT.base∪{i})  
20. end 

Fig.3 PTclose: the proposed algorithm for mining 
closed frequent itemsets 

 
The function IsClosed(Y,C) is developed to verify whether 

the itemset Y is closed, using the C tree. The function has the 
following procedure: let Y={i1,i2,…,ip} be an itemset having 
the counter c. Assume the ordering of the items within the 
header table of the current CFI-tree be as follows i1,i2,…,ip. The 
counter of each node within the linked list of ip is compared 
with C. Then using the level field we compare Y with its 
ancestors, in order to verify it for being closed. Here, the level 
parameter in each node is used to reduce the comparison time. 
This function returns a true value, if there is no closed frequent 
itemset, Z in the CFI-tree, such that Z is a superset of Y and the 
counter of Y is greater than or equal to the counter of Z. 
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(a) T40.I10.D100k.N1k.L2k (b) Kosarak (c) Chess 
Fig.4 The execution time of mining closed frequent itemsets 

(a) T40.I10.D100k.N1k.L2k (b) Kosarak (c) Chess 
Fig.5 The memory consumption of mining frequent itemsets 

 
In lines 12 through 18 conditional Patricia tree and the 

conditional CFI-tree for T.base∪{i} are constructed. The 
function PTArrayIsNeeded is used to determine whether the 
PTArray is required or not. The PTArray technique has a 
good performance, especially for sparse and huge datasets. 
PTArray structure reduces the time to scan items. Moreover, 
the Patricia trees of next levels can be initialized directly, 
using this structure. When the dataset is dense, there is no 
need to construct PTArrays, since the generated tree is 
compressed and its traverse can be accomplished quickly.  

Note that datasets or conditional patterns are modified 
during the sequential calls of the recursive function. In order 
to estimate that a dataset is sparse or dense, the nodes in each 
level of the tree are enumerated, during the construction of 
each Patricia tree. If the first quarter part of the tree contains 
less than 15% of all nodes, then the dataset is known to be 
dense, otherwise, it will be identified as sparse [23]. If the 
dataset is dense, we do not construct the PTArray for the 
next level of the Patricia tree, else it will be constructed for 
each Patricia tree of the next iteration. After the algorithm 
execution is completed, C0 includes all of the CFIs, mined 
from the main dataset. 

 

IV. EXPERIMENTAL RESULTS 
 

In order to evaluate the proposed algorithm and compare it 
with other existing methods, we performed an experiment 
over some real-life and synthetic datasets [24]. Chess and 
Kosarak are two real datasets while T40.I10.D100.N1k.L2k 
is synthetic. Chess is a dense dataset and the other two have a 
sparse nature. The general statistics of the datasets are 
presented in Table II. In this experiment our proposed 
algorithm, PTclose, is compared with FPclose and Closet+, 
as two efficient algorithms in this field. The algorithms were 
implemented in C++ and executed in windows XP (Service 
Pack 2) over a system with a 2.66GHz CPU, 256MB of 
RAM and having 512KB cache memory. 

 
Table II. General statistics of datasets used in 

experiments 
Dataset Transactions AvgTS 

Chess 3,196 35.53 
T40.I10.D100k.N1k.L2k 100,000 39.54 
Kosarak 229,148 8.07 
 

A. Execution time 
As the first evaluation factor, we compared the execution 

times of the algorithms for mining all closed frequent 
itemsets over the three mentioned datasets. The experiments 
were performed iteratively, for different values of the 
minimum support threshold. The results of this comparison 
are shown in Fig.4. It can be observed in this figure that the 
proposed algorithm has a much better performance than the 
others for sparse datasets. However the results show that it 
performs similar to FPclose and Closet+, when the dataset is 
dense.  

 

B. Memory consumption 
The other factor considered for evaluation of the 

algorithms, was their requirements for main memory. Fig.5 
indicates the amount of memory consumption of each 
algorithm for different values of minimum support threshold 
(over each dataset). This figure implies that PTclose is 
proper for sparse datasets (with respect to its less memory 
consumption) rather than other algorithms. 

 

V. CONCLUSION 
In this paper we proposed a new algorithm called PTclose 

for mining of closed frequent itemsets with relatively low 
response time and memory consumption. This algorithm 
uses the Patricia tree structure and thus requires a shorter 
time to scan the items, compared to other existing 
algorithms. In this algorithm a new technique, called 

0

20

40

60

80

40 50 60 70 80

support (%)

ex
ec

ut
io

n 
tim

e(
s)

PTclose
FPclose
Closet+

0

20

40

60

80

0 0.25 0.5 0.75 1

support (%)

ex
ec

ut
io

n 
tim

e(
s)

PTclose
FPclose
Closet+

0

50

100

150

0 1 2 3 4 5

support (%)

ex
ec

ut
io

n 
tim

e 
(s

) PTclose
FPclose
Closet+

0

50

100

150

0 10 20
support (%)

m
em

or
y(

M
B)

PTclose
FPclose
Closet+

0

25

50

75

100

0 0.25 0.5 0.75 1
support (%)

m
em

or
y(

M
B)

PTclose
FPclose
Closet+

0

10

20

30

40

50

60

40 50 60 70
support (%)

m
em

or
y(

M
B)

PTclose
FPclose
Closet+

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007



 
 

 

PTArray is used. This technique reduces the scan time of the 
Patricia tree significantly. We use local CFI-trees in order to 
verify whether the generated closed frequent itemsets, are 
closed or not. This reduces the total time of generating 
closed frequent itemsets, effectively. The experimental 
results show that PTclose is a suitable algorithm for both 
dense and sparse datasets with respect to speed and memory 
consumption. It is more efficient for sparse datasets and has 
an equal performance for dense datasets. 

 

REFERENCES 
[1] R. Agrawal, T. Imielinski, and A. Swami, “Mining Association Rules 

between Sets of Items in  Large Databases,” Proc. ACMSIGMOD Int’l 
Conf. Management of Data, pp. 207-216, May 1993. 

[2] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association 
Rules,” Proc. Int’l Conf. Very Large Data Bases, pp. 487-499, Sept. 
1994. 

[3] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Proc. Int’l 
Conf. Data  Eng., pp. 3-14, Mar. 1995. 

[4] C. Borgelt, “Efficient Implementations of Apriori and Eclat,” Proc. 
IEEE ICDM Workshop Frequent Itemset Mining Implementations, 
CEUR Workshop Proc., vol. 80, Nov. 2003. 

[5] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang. Hmine: 
Hyper-structure mining of frequent patterns in large databases. In 
Proc. of IEEE Intl. Conference on Data Mining, pages 441–448, 2001. 

[6] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns without 
Candidate Generation,” Proc. ACM-SIGMOD Int’l Conf. 
Management of Data, pp. 1-12, May 2000. 

[7] M. Kamber, J. Han, and J. Chiang, “Metarule-Guided Mining of 
Multi-Dimensional Association Rules Using Data Cubes,” Proc. ACM 
SIGKDD Int’l Conf. Knowledge Discovery and Data Mining, pp. 
207-210, Aug. 1997. 

[8] J. Liu, Y. Pan, K. Wang, and J. Han. Mining frequent item sets by 
opportunistic projection. In Proc. of the 8th ACM SIGKDD Intl. 
Conference on Knowledge Discovery and Data Mining, pages 
229–238, July 2002. 

[9] H. Mannila, H. Toivonen, and I. Verkamo, “Efficient Algorithms for 
Discovering Association Rules,” Proc. ACM SIGKDD Int’l Conf. 
Knowledge Discovery and Data Mining, pp. 181-192, July 1994. 

[10] H. Mannila, H. Toivonen, and I. Verkamo, “Discovery of Frequent 
Episodes in Event Sequences,” Data Mining and Knowledge 
Discovery, vol. 1, no. 3, pp. 259-289, 1997. 

[11] S. Orlando, C. Lucchese, P. Palmerini, R. Perego, and F. Silvestri, 
“kDCI: A Multi-Strategy Algorithm for Mining Frequent Sets,” Proc. 
IEEE ICDM Workshop Frequent Itemset Mining Implementations, 
CEUR Workshop Proc., vol. 80, Nov. 2003. 

[12] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Discovering 
Frequent Closed Itemsets for Association Rules,” Proc. Int’l Conf. 
Database Theory, pp. 398-416, Jan. 1999. 

[13] J. Pei, J. Han, and R. Mao, “CLOSET: An Efficient Algorithm for 
Mining Frequent Closed Itemsets,” Proc. ACM SIGMOD Workshop 
Research Issues in Data Mining and Knowledge Discovery, pp. 21-30, 
May 2000. 

[14] A. Pietracaprina and D. Zandolin, “Mining Frequent Itemsets Using 
Patricia Tries,” Proc. IEEE ICDM Workshop Frequent Itemset Mining 
Implementations, CEUR Workshop Proc., vol. 80, Nov. 2003. 

[15] A. Savasere, E. Omiecinski, and S. Navathe, “An Efficient Algorithm 
for Mining Association Rules in Large Databases,” Proc. Int’l Conf. 
Very Large Data Bases, pp. 432-443, Sept. 1995. 

[16] H. Toivonen, “Sampling Large Databases for Association Rules,” 
Proc. Int’l Conf. Very Large Data Bases, pp. 134-145, Sept. 1996. 

[17] Wang, J. Han, and J. Pei, “CLOSET+: Searching for the Best 
Strategies for Mining Frequent Closed Itemsets,” Proc. Int’l Conf. 
Knowledge Discovery and Data Mining, pp. 236-245, Aug. 2003. 

[18] Proc. IEEE ICDM Workshop Frequent Itemset Mining 
Implementations, B. Goethals and M.J. Zaki, eds., CEUR Workshop 
Proc., vol. 80, Nov. 2003, Available: 
 http://CEUR-WS.org/Vol-90 

[19] M.J. Zaki, “Scalable Algorithms for Association Mining,” IEEE 
Trans. Knowledge and Data Mining, vol. 12, no. 3, pp. 372-390, 2000. 

[20] M.J. Zaki and C. Hsiao, “CHARM: An Efficient Algorithm for Closed 
Itemset Mining,” Proc. SIAM Int’l Conf. Data Mining, pp. 457-473, 
Apr. 2002. 

[21] M.J. Zaki and K. Gouda, “Fast Vertical Mining Using Diffsets,” Proc. 
ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining, 
pp. 326-335, Aug. 2003. 

[22] Q. Zou, W.W. Chu, and B. Lu, “SmartMiner: A Depth First Algorithm 
Guided by Tail Information for Mining Maximal Frequent Itemsets,” 
Proc. IEEE Int’l Conf. Data Mining, Dec. 2002. 

[23] Gosta Grahne and Jianfei Zhu. Efficiently using prefixtrees in mining 
frequent itemsets. In Proceedings of the IEEE ICDM Workshop on 
Frequent Itemset Mining Implementations, November 2003. 

[24] http://fimi.cs.helsinki.fi, 2003. 

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007


