

Abstract—In recent years, various algorithms for mining closed

frequent itemsets (CFI) have been proposed. Different structures
such as prefix sharing are used within these algorithms. However
the name challenging problem in many of them is the high
requirement of memory, especially in case of sparse datasets.
Thus, most of the proposed methods are proper for dense
datasets. In this paper we present a new approach to mining
closed frequent itemsets using two structures, namely Patricia
tree and PTArray. By using these two structures, both the
response time and also memory consumption are reduced,
significantly. The proposed method, called PTclose is suitable for
both dense and sparse datasets. The algorithm is assessed
throughout a set of experiments. The results narrate for the
relative efficiency of the algorithm compared to other existing
methods.

Index Terms—Association rules, closed frequent itemset,
condensed representation, Patricia tree.

I. INTRODUCTION
 Mining Association Rules (ARs) is a popular technique for
discovery of interesting relations between items in large
databases and transaction warehouses [1], [2], [3], [4], [7], [9],
[10], [15], [16], [19]. The fundamental part of mining ARs is
the process of mining frequent itemsets (FIs). The count of an
itemset X is the number of transactions in D that contain X. The
support of an itemset X is the proportion of transactions in D
which contain X. In other words, the support of X is the count
of X divided by the number of transactions. A FI can be
roughly defined as a set of items which occur together,
frequently (its support is greater than or equal to a specific
threshold), Mining all frequent itemsets might not be a good
idea. For example, if there is a frequent itemset with size k, then
all 2k nonempty subsets of the itemset have to be generated.
However, since any subset of a frequent itemset is frequent, it is
sufficient to discover only all the maximal frequent itemsets
(MFIs). A frequent itemset X is called maximal if there is no
other frequent itemset Y such that X⊆Y. Some existing
algorithms only mine maximal frequent itemsets. However,

ℵ Department of Computer Engineering, School of Engineering, Islamic Azad
University of Shiraz, Shiraz, Iran, Email: tahmores@gmail.com

♣ Department of Computer Science & Engineering, School of Engineering,
Shiraz University, Shiraz, Iran, Email: sadredin@shirazu.ac.ir

mining only MFIs has the following problem: Given an MFI
and its support , s, we know that all its subsets are frequent and
the support of any of its subset is not less than s, but the exact
values of their supports are not known. To solve this problem,
another type of a frequent itemset, called closed frequent
itemset (CFI), was proposed in [12]. A frequent itemset X is
closed if none of its proper supersets have the same support.
Thus, the set of all CFIs contains complete information for
generating association rules.

Most of the frequent pattern mining algorithms, including
Apriori [2], FP-growth [6], H-mine [5], and OP [8], mine all
frequent itemsets. These algorithms have good performance in
case that the pattern space is sparse and the value of support
threshold is set high. However, when the value of support
threshold drops low, the number of frequent itemsets goes up
dramatically, and the performance of these algorithms
deteriorates quickly because of the generation of a huge
number of patterns.

The closed itemset mining, which was proposed in [12] for
the first time, mines only those frequent itemsets having no
proper superset with the same support. In recent years, many
efficient algorithms have been proposed for mining frequent
closed itemsets, such as A-close [12], CLOSET [13], and
CHARM [20]. Various depth-first and level-wise search
strategies have been used in these methods. It has been shown
through a set of experiments that CLOSET+ [17] and FPclose
[23] have a better performance in comparison with other
existing mining algorithms, including CLOSET, CHARM and
OP.

A typical challenge is that many of the proposed methods are
suitable just for dense datasets, while many others are proper
only for sparse ones. In this paper, we propose a new method
for mining closed frequent itemsets, called PTClose. The
algorithm constructs a compressed tree in memory, using the
Patricia tree structure. In order to increase the efficiency, the
algorithm uses the PTArray structure, which will be illustrated
later. It will be shown, through a set of experiments, that the
proposed scheme is proper for both dense and sparse data sets,
in terms of runtime and memory usage.

The rest of the paper is organized as follows. In Section 2, a
brief description of some major topics, including the Patricia
tree structure, the PTArray and the CFI-tree is given. Section 3
is devoted to illustration of our proposed method for mining
closed frequent itemsets. In Section 4, experimental results on
synthetic and real-life data sets are shown. Finally, Section 5
concludes the paper.

PTclose: A novel algorithm for generation of
closed frequent itemsets from dense and

sparse datasets
J. Tahmores Nezhadℵ, M.H.Sadreddini♣

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

II. DEFINITIONS
Before illustrating the new CFI mining method, in this

section, we give some brief definitions for a number of related
topics, including the Patricia tree, the PTArray and the CFI-tree
structures. These are the major structures that are used in the
proposed scheme.

A. Patricia tree structure
The Patricia tree is a compact tree, used to represent all

relevant frequency information within a dataset. Each branch of
the tree represents a frequent itemset. The nodes along the
branches are stored in decreasing order of frequency from the
root through the leaves. Overlapping itemsets in a Patricia tree
share prefixes of the corresponding branches. That's why it is
known as a compressed structure. The Patricia tree coalesces a
set of sequential nodes (within a chain), having the same
support value, c, into a single node with support of c. Each
Patricia tree is associated with a header table, namely T.header,
which is used to hold items and their frequencies in decreasing
order of the counts. Each entry in a header table points to a
linked list containing identical nodes in the Patricia tree.

The construction process of the Patricia tree is as follows.
First, the whole dataset is scanned and the all frequent items are
identified, sorted by their frequencies and stored in header table
entries. Infrequent items are then removed from the dataset. In
the second scan, each transaction is scanned and the set of
frequent items in it is inserted into the Patricia tree as a branch.
Each node of a Patricia tree contains a counter to store the
number of transactions containing the itemset represented by
the path from the root to that node. If an itemset shares a prefix
with an itemset already in the tree, the counter is incremented
by 1, rather than inserting a new node.

The traversal procedure of the Patricia tree is based on the
following principle: If X and Y are two itemsets, the count of
itemset X∪Y in the dataset exactly equals the count of Y in a
fraction of the dataset that contains X. A restriction of the
dataset containing X, is called X's conditional pattern base. The
Patricia tree constructed for the typical itemset, X, with respect
to the conditional pattern base is called X's conditional Patricia
tree and denoted by TX.

Given an item i in TX.header, the linked list is followed
beginning from i in TX.header (to visit all branches that contain
item i). The portion of these branches from i to the root forms
the conditional pattern base of X∪{i}. Thus, the traversal
obtains all frequent items in this conditional pattern base. Then
it constructs the conditional Patricia tree TX∪{i} by first
initializing its header table using the frequent items found, then
revisiting the branches of TX along the linked list of i and
inserting the corresponding itemsets in TX∪{i}.

The above procedure is executed recursively until only one
branch remains in the resulting Patricia tree. Generation of the
complete set of closed frequent itemsets can be achieved
straightforward, from single path Patricia trees.

Table I shows a transactional data set. Items of each
transaction are sorted in decreasing order of their frequencies.

In Fig.1, a Patricia tree constructed for this data set is shown.

Fig.1 A Patricia tree for the data set of
Table I

B. PTArray
As claimed in [23], through numerous experiments, it has

been shown that about 80 percent of the CPU time is used for
traversing trees. By using a simple additional data structure,
named PTArray, it will be possible to increase the traversal
speed. As mentioned before, for each item i in the header of a
conditional Patricia tree TX, two traversals of TX are performed
in order to construct the new conditional Patricia tree TX∪{i}.
The first traversal is run to find all frequent items in the
conditional pattern base of X∪{i} and initializes the Patricia
tree TX∪{i} by constructing its header table. Through the second
traversal, the new tree TX∪{i} is constructed. The first scan of TX
can be easily ignored by constructing the Patricia Tree Array
called PTArray of T, while building TX.

PTArray is a matrix, each element of which corresponds to
the counter of an ordered pair of items in the header table of TX.
Since the PTArray is a symmetric matrix, there is no need to set
a counter for both item pairs (ij,ik) and (ik,ij) and thus it is
enough to store the counters for all pairs (ik,ij) such that k < j.

C. CFI-tree
The best way we can verify that a generated itemset is closed

or not, is to use a compressed tree containing previously found
closed frequent itemsets. If a typical itemset is found to be
closed, then it can be inserted into the tree. If the current itemset
Sc can be subsumed by another already found closed itemset
Sa, they must have the following relationships: (1) Sc and Sa
have the same support; (2) length of Sc is smaller than that of

Table I. A transactional data set, items
sorted in decreasing order of the frequency
TID Items
1 B A D F G H
2 B L
3 B A D F L H
4 B A D F L G
5 B L G H
6 B A D F

B 6

L 2

G 1 H 1

L 2 A

F

D

4

G

H

1

G

H

1

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

Sa; and (3) all the items in Sc are contained in Sa. Using these
heuristics, the structure of tree can be improved. Each closed
itemset is inserted into the CFI-tree according to the header
table order, and at each node the path length from the root down
to the node is also recorded. The fields stored in each node are
itemID, support, and the length (distance from the root node).
When several closed itemsets share some common prefixes, the
support of a node in the common prefix will be the maximum
one among the supports of itemsets sharing the common prefix.
Fig.2 shows a CFI-tree constructed for the CFIs found from the
Patricia tree shown in Fig.1.

Fig.2 A CFI-tree for the CFIs found from the
Patricia tree of Fig 1

III. THE PROPOSED ALGORITHM: PTCLOSE
In this section, we present our new algorithm, PTclose which

can be used for mining of all closed frequent itemsets, having a
better speed and less requirement of main memory, in
comparison with the proposed methods in the literature. In this
algorithm we use a technique called PTArray, which reduces
the time to scan the Patricia tree, significantly. we use local
CFI-trees in order to verify the generated closed frequent
itemsets, whether they are closed or not. This reduces the total
time of generating closed frequent itemsets, effectively.

The proposed algorithm is presented in Fig.3. As shown in
this figure the algorithm has two inputs: a Patricia tree, denoted
by T and a CFI-tree, denoted by C. The output of the algorithm
is the completed CFI-tree. In the first call of the algorithm
(from the main module of the program) the first parameter (T)
is the Patricia tree constructed for the main dataset and the
second parameter (C) is an empty tree. As the first step of the
algorithm it is verified whether T is a single path tree. if so, all
candidate CFIs are generated from T. For this purpose, the
following steps are followed: let (i1:c1,i2:c2,…,ik:ck) be a
representation for the tree path, where ij:cj means that the
typical item ij has the counter cj. Beginning with i1, the counters
are compared for each pair of adjacent items (such as ij:cj and
ij+1:cj+1) if cj does not equal cj+1, we select the itemset
{i1,i2,…,ij} as a candidate CFI. The candidate itemset is then
compared with all the CFIs within C. If it is a closed itemset, it
will be inserted into C and all CFI-tree existing in memory will
be updated. In other words the candidate CFI is inserted into all
CFI-trees. This is because the algorithm is called recursively

and the generated CFI of each iteration must be accessible for
the previous call environments. On the other hand, if the
Patricia tree is not single path, the algorithm execution
continues from line 6. In this part for each item within the
header table, the lines 7 through 19 are executed. The condition
mentioned in line 7 implies that there is no closed frequent
itemset, X, such that T.base and X have the same support value
and T.base⊆X. In line 8 if the PTArray is defined, it is used to
compute the conditional pattern base of T.base∪{i} and also
the support value of items. However, if the PTArray is not
defined, support of items for T.base∪{i} is measured, by
traversing of the conditional Patricia tree (shown in line 11).

Algorithm PTclose (T,C)
Input : T, a Patricia tree
 C, a CFI-tree for T
Output : complete CFI-tree

1. if T is single path
2. for each CFI cfi in T
3. if IsClosed(cfi,C)
4. insert cfi into C
5. update all CFI-trees in
 memory
6. else for each i in T.header

7. if IsClosed(T.base∪{i},C)
8. if T.PTArray is defined
9. compute conditional pattern
 base for i from T.PTArray
10. else
11. compute conditional pattern
 base for i from Patricia tree T
12. initial Patricia tree TT.base∪{i}
13. if PTArrayIsNeeded (TT.base∪{i})
14. initial PTArray AT.base∪{i}
15. construct TT.base∪{i}
16. if AT.base∪{i} is defined
17. fill AT.base∪{i}
18. initial CFI-tree CT.base∪{i}
19. PTclose(TT.base∪{i},CT.base∪{i})
20. end

Fig.3 PTclose: the proposed algorithm for mining
closed frequent itemsets

The function IsClosed(Y,C) is developed to verify whether

the itemset Y is closed, using the C tree. The function has the
following procedure: let Y={i1,i2,…,ip} be an itemset having
the counter c. Assume the ordering of the items within the
header table of the current CFI-tree be as follows i1,i2,…,ip. The
counter of each node within the linked list of ip is compared
with C. Then using the level field we compare Y with its
ancestors, in order to verify it for being closed. Here, the level
parameter in each node is used to reduce the comparison time.
This function returns a true value, if there is no closed frequent
itemset, Z in the CFI-tree, such that Z is a superset of Y and the
counter of Y is greater than or equal to the counter of Z.

B 1 6

H 2 3 A 2 4

D 3 4

F 4 4

L 2 4G 2 3

B:6

A:4

D:4

F:4

L:4

G:3

H:3

Items

pointer

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

(a) T40.I10.D100k.N1k.L2k (b) Kosarak (c) Chess
Fig.4 The execution time of mining closed frequent itemsets

(a) T40.I10.D100k.N1k.L2k (b) Kosarak (c) Chess
Fig.5 The memory consumption of mining frequent itemsets

In lines 12 through 18 conditional Patricia tree and the

conditional CFI-tree for T.base∪{i} are constructed. The
function PTArrayIsNeeded is used to determine whether the
PTArray is required or not. The PTArray technique has a
good performance, especially for sparse and huge datasets.
PTArray structure reduces the time to scan items. Moreover,
the Patricia trees of next levels can be initialized directly,
using this structure. When the dataset is dense, there is no
need to construct PTArrays, since the generated tree is
compressed and its traverse can be accomplished quickly.

Note that datasets or conditional patterns are modified
during the sequential calls of the recursive function. In order
to estimate that a dataset is sparse or dense, the nodes in each
level of the tree are enumerated, during the construction of
each Patricia tree. If the first quarter part of the tree contains
less than 15% of all nodes, then the dataset is known to be
dense, otherwise, it will be identified as sparse [23]. If the
dataset is dense, we do not construct the PTArray for the
next level of the Patricia tree, else it will be constructed for
each Patricia tree of the next iteration. After the algorithm
execution is completed, C0 includes all of the CFIs, mined
from the main dataset.

IV. EXPERIMENTAL RESULTS

In order to evaluate the proposed algorithm and compare it
with other existing methods, we performed an experiment
over some real-life and synthetic datasets [24]. Chess and
Kosarak are two real datasets while T40.I10.D100.N1k.L2k
is synthetic. Chess is a dense dataset and the other two have a
sparse nature. The general statistics of the datasets are
presented in Table II. In this experiment our proposed
algorithm, PTclose, is compared with FPclose and Closet+,
as two efficient algorithms in this field. The algorithms were
implemented in C++ and executed in windows XP (Service
Pack 2) over a system with a 2.66GHz CPU, 256MB of
RAM and having 512KB cache memory.

Table II. General statistics of datasets used in

experiments
Dataset Transactions AvgTS

Chess 3,196 35.53
T40.I10.D100k.N1k.L2k 100,000 39.54
Kosarak 229,148 8.07

A. Execution time
As the first evaluation factor, we compared the execution

times of the algorithms for mining all closed frequent
itemsets over the three mentioned datasets. The experiments
were performed iteratively, for different values of the
minimum support threshold. The results of this comparison
are shown in Fig.4. It can be observed in this figure that the
proposed algorithm has a much better performance than the
others for sparse datasets. However the results show that it
performs similar to FPclose and Closet+, when the dataset is
dense.

B. Memory consumption
The other factor considered for evaluation of the

algorithms, was their requirements for main memory. Fig.5
indicates the amount of memory consumption of each
algorithm for different values of minimum support threshold
(over each dataset). This figure implies that PTclose is
proper for sparse datasets (with respect to its less memory
consumption) rather than other algorithms.

V. CONCLUSION
In this paper we proposed a new algorithm called PTclose

for mining of closed frequent itemsets with relatively low
response time and memory consumption. This algorithm
uses the Patricia tree structure and thus requires a shorter
time to scan the items, compared to other existing
algorithms. In this algorithm a new technique, called

0

20

40

60

80

40 50 60 70 80

support (%)

ex
ec

ut
io

n
tim

e(
s)

PTclose
FPclose
Closet+

0

20

40

60

80

0 0.25 0.5 0.75 1

support (%)

ex
ec

ut
io

n
tim

e(
s)

PTclose
FPclose
Closet+

0

50

100

150

0 1 2 3 4 5

support (%)

ex
ec

ut
io

n
tim

e
(s

) PTclose
FPclose
Closet+

0

50

100

150

0 10 20
support (%)

m
em

or
y(

M
B)

PTclose
FPclose
Closet+

0

25

50

75

100

0 0.25 0.5 0.75 1
support (%)

m
em

or
y(

M
B)

PTclose
FPclose
Closet+

0

10

20

30

40

50

60

40 50 60 70
support (%)

m
em

or
y(

M
B)

PTclose
FPclose
Closet+

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

PTArray is used. This technique reduces the scan time of the
Patricia tree significantly. We use local CFI-trees in order to
verify whether the generated closed frequent itemsets, are
closed or not. This reduces the total time of generating
closed frequent itemsets, effectively. The experimental
results show that PTclose is a suitable algorithm for both
dense and sparse datasets with respect to speed and memory
consumption. It is more efficient for sparse datasets and has
an equal performance for dense datasets.

REFERENCES
[1] R. Agrawal, T. Imielinski, and A. Swami, “Mining Association Rules

between Sets of Items in Large Databases,” Proc. ACMSIGMOD Int’l
Conf. Management of Data, pp. 207-216, May 1993.

[2] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association
Rules,” Proc. Int’l Conf. Very Large Data Bases, pp. 487-499, Sept.
1994.

[3] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Proc. Int’l
Conf. Data Eng., pp. 3-14, Mar. 1995.

[4] C. Borgelt, “Efficient Implementations of Apriori and Eclat,” Proc.
IEEE ICDM Workshop Frequent Itemset Mining Implementations,
CEUR Workshop Proc., vol. 80, Nov. 2003.

[5] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang. Hmine:
Hyper-structure mining of frequent patterns in large databases. In
Proc. of IEEE Intl. Conference on Data Mining, pages 441–448, 2001.

[6] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns without
Candidate Generation,” Proc. ACM-SIGMOD Int’l Conf.
Management of Data, pp. 1-12, May 2000.

[7] M. Kamber, J. Han, and J. Chiang, “Metarule-Guided Mining of
Multi-Dimensional Association Rules Using Data Cubes,” Proc. ACM
SIGKDD Int’l Conf. Knowledge Discovery and Data Mining, pp.
207-210, Aug. 1997.

[8] J. Liu, Y. Pan, K. Wang, and J. Han. Mining frequent item sets by
opportunistic projection. In Proc. of the 8th ACM SIGKDD Intl.
Conference on Knowledge Discovery and Data Mining, pages
229–238, July 2002.

[9] H. Mannila, H. Toivonen, and I. Verkamo, “Efficient Algorithms for
Discovering Association Rules,” Proc. ACM SIGKDD Int’l Conf.
Knowledge Discovery and Data Mining, pp. 181-192, July 1994.

[10] H. Mannila, H. Toivonen, and I. Verkamo, “Discovery of Frequent
Episodes in Event Sequences,” Data Mining and Knowledge
Discovery, vol. 1, no. 3, pp. 259-289, 1997.

[11] S. Orlando, C. Lucchese, P. Palmerini, R. Perego, and F. Silvestri,
“kDCI: A Multi-Strategy Algorithm for Mining Frequent Sets,” Proc.
IEEE ICDM Workshop Frequent Itemset Mining Implementations,
CEUR Workshop Proc., vol. 80, Nov. 2003.

[12] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Discovering
Frequent Closed Itemsets for Association Rules,” Proc. Int’l Conf.
Database Theory, pp. 398-416, Jan. 1999.

[13] J. Pei, J. Han, and R. Mao, “CLOSET: An Efficient Algorithm for
Mining Frequent Closed Itemsets,” Proc. ACM SIGMOD Workshop
Research Issues in Data Mining and Knowledge Discovery, pp. 21-30,
May 2000.

[14] A. Pietracaprina and D. Zandolin, “Mining Frequent Itemsets Using
Patricia Tries,” Proc. IEEE ICDM Workshop Frequent Itemset Mining
Implementations, CEUR Workshop Proc., vol. 80, Nov. 2003.

[15] A. Savasere, E. Omiecinski, and S. Navathe, “An Efficient Algorithm
for Mining Association Rules in Large Databases,” Proc. Int’l Conf.
Very Large Data Bases, pp. 432-443, Sept. 1995.

[16] H. Toivonen, “Sampling Large Databases for Association Rules,”
Proc. Int’l Conf. Very Large Data Bases, pp. 134-145, Sept. 1996.

[17] Wang, J. Han, and J. Pei, “CLOSET+: Searching for the Best
Strategies for Mining Frequent Closed Itemsets,” Proc. Int’l Conf.
Knowledge Discovery and Data Mining, pp. 236-245, Aug. 2003.

[18] Proc. IEEE ICDM Workshop Frequent Itemset Mining
Implementations, B. Goethals and M.J. Zaki, eds., CEUR Workshop
Proc., vol. 80, Nov. 2003, Available:
 http://CEUR-WS.org/Vol-90

[19] M.J. Zaki, “Scalable Algorithms for Association Mining,” IEEE
Trans. Knowledge and Data Mining, vol. 12, no. 3, pp. 372-390, 2000.

[20] M.J. Zaki and C. Hsiao, “CHARM: An Efficient Algorithm for Closed
Itemset Mining,” Proc. SIAM Int’l Conf. Data Mining, pp. 457-473,
Apr. 2002.

[21] M.J. Zaki and K. Gouda, “Fast Vertical Mining Using Diffsets,” Proc.
ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining,
pp. 326-335, Aug. 2003.

[22] Q. Zou, W.W. Chu, and B. Lu, “SmartMiner: A Depth First Algorithm
Guided by Tail Information for Mining Maximal Frequent Itemsets,”
Proc. IEEE Int’l Conf. Data Mining, Dec. 2002.

[23] Gosta Grahne and Jianfei Zhu. Efficiently using prefixtrees in mining
frequent itemsets. In Proceedings of the IEEE ICDM Workshop on
Frequent Itemset Mining Implementations, November 2003.

[24] http://fimi.cs.helsinki.fi, 2003.

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

