
 
 

 

  
Abstract—Networks of coupled dynamical systems exhibit 

many interesting behaviours such as spatio-temporal chaos, 
pattern formation and synchronization. Such networks can be 
used to model a large variety of biological and physical systems. 
This contribution will focus on the 2-dimensional nonlinear map 
that describes the behaviour of individual neurons. The aim is to 
understand the coupling behaviour of this particular map and the 
dynamics of such coupled neuron systems. Various coupling 
schemes such as nearest neighbor coupling, random couplings and 
small-world networkings are numerically investigated. In 
particular, the paper will examine the transition of 
asynchronously firing neurons to a synchronous state.  This is 
important in that it has similarities to the perceived behaviour of 
neurons in individuals during epileptic seizures. 
 
Index Terms— neuron networks, coupled map, small-world 
network, spatio-temporal synchronization. 
 

I. INTRODUCTION 
     Coupled dynamical systems [1] exhibit many interesting 
features such as spatio-temporal chaos, pattern formation and 
synchronization. As such, these systems are suitable for 
modeling a large variety of biological systems such as the 
nervous system, cardiac cells and several chemical reactions 
[2-3]. While the dynamical properties of many of these systems 
have been explored and studied to a great extent, the dynamics 
of coupled neuron networks has not received as much focus[4].  
Because of the large numbers of neurons in the brain, often the 
available computational infrastructure puts constraints on the 
investigative tasks that may be performed.  In this contribution, 
the 2-dimensional neuron map in Chialvo and Apkarian [6] and 
as given in eqn. 1, is employed to study the collective dynamics 
of some “neuron networks”. 
 
      The principal aim is to study the transition of the dynamical 
state of the lattice when the network properties are changed. In 
particular, we wish to determine what kind of network 
properties give rise to synchronized firing and how changes in 
such properties affect the occurrence of synchronisation.  Such 
an occurrence is believed to be involved when an individual has 
an epileptic seizure, - i.e.  
 
the seizure is due to the transition of the neurons from a state  
of chaotic firing to a state of synchronized firing [7].  Normal 
brain activity is deemed to be a chaotic system with neurons 
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firing without any synchronization.  In this work, it will be seen 
that a varying of the coupling arrangements of the network can 
affect the transition from an asynchronous state to a 
synchronous state in a neuron network although the parameters 
in each neuron model remain constant. 

II.  NEURON DYNAMICS 
       The neuron is an excitable system [5].  In general, the 
dynamics of an excitable system can be described by two state 
variables termed the “potential” and the “recovery” variables.  
In eqn. 1, x and y are the state variables related to neuron 
membrane potential and recovery current. The subscripts refer 
to the iteration step. The model has four parameters: a 
determines the time constant of reactivation, b determines the 
rate of inactivation and c determines the maximum amplitude 
of the recovery current.  The parameter k may be a constant bias 
or a time-dependent external stimulation. 
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The dynamical behaviour of the system defined in eqn. 1 is 
shown in Figs. 1 and 2 which shows plots of x and y.  The 
parameters in eqn. 1 are chosen so as to make the dynamics 
completely chaotic as evident from Figs. 1 and 2 (a = 0.89, b = 
0.18, c = 0.28, k = 0.03).  The bifurcation diagram of the x 
variable is shown in Fig. 3 in which k is varied from 0.02 to 
0.08.  Below k~0.02, the system is stable.  The region near k = 
0.048 is of interest.  In this region which is shown enlarged in 
Fig. 4, the system behaviour changes from chaotic behaviour to 
quasi-periodic behaviour.   Thus, the effects of parameter 
values on the neuron behaviour is evident. 

 
Fig. 1.  The evolution of the x variable for a random initial 
condition  
 

Dynamic Behaviour and Significance of Neuron Networks with 
Varying Degrees of Random Coupling 

Bijilash Babu and Marissa Condon IAENG 

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007



 
 

 

 
Fig. 2  The evolution of  the y variable for an initial condition 
of zero.  

 
Fig. 3 The bifurcation diagram of the x variable with k varying 
from 0.0 to 0.08. 
 

 
Fig. 4.  The bifurcation diagram enlarged between k = 0.045 
and 0.051.   

III. COUPLED NEURON NETWORKS 
     However, our main focus in this contribution is on coupled 
neuron networks.  To study the collective dynamics of neuron 

connections, the Chialvo map in eqn. 1 is coupled to form a 
Coupled Map Lattice (CML) [9] as given in eqn. 2.  Several 
different coupling schemes will be considered and for each, the 
lattice is a ring of size N – (i.e. N neurons are considered).  ε is 
the coupling strength. 
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In particular, the focus will be on coupling schemes that 

closely resemble or match the actual neuronal connections in 
the brain.  These particular systems exhibit spatio-temporal 
behavior when the parameters in eqn. 1 are varied [5].  
However, in this contribution, the parameters in eqn.  1 are kept 
constant.  What is varied is the coupling strength, ε, and the 
type of connections.  It is the spatio-temporal pattern arising 
from the various coupling schemes that is our interest. 
 
     The first coupling scheme that we consider is the nearest 
neighbor coupling scheme [9].  In this coupling scheme, the ith 
cell is coupled with its immediate neighbours as in eqn. 2.  The 
value of the coupling strength ε is varied and the critical 
bifurcation points are observed.   The bifurcation diagram is 
shown in Fig. 5.  The general form of this diagram is not very 
different in nature from the bifurcation diagram of a single 
map – Fig. 3.  Thus for strict neighbour coupling, the dynamics 
are very similar to those of the uncoupled lattice. 

 
Fig. 5 Bifurcation diagram of a lattice of size N with only 
nearest neighbor coupling 
 
     The second coupling scheme considered is where every cell 
is coupled to its nearest neighbors as before but in addition, it is 
also coupled to one random cell which can be anywhere in the 
lattice. 
 

{ }    randomxixixix fx nnnnn )()1()1(3))((1 +−+++=+ ε (3) 
 
The bifurcation diagram for the system defined by eqn. 3 is 
shown in Fig. 6.   It clearly shows a spatio- temporal pattern 
resulting from the random coupling.  These spatio-temporal 
patterns indicate that there is a variation in the dynamics of the 
lattice when there is coupling to a random cell and a variation in 
the coupling strength.   
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Fig. 6 Bifurcation diagram of a lattice of size N with nearest 
neighbor coupling and one random coupling. 
 
The scheme defined by eqn. 3 can be extended to include 
coupling from a few more neighbours with the inclusion of one 
random connection. 
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     The scheme in eqn. 4 has n cells coupled on both sides plus 
one random coupling.  Fig. 7 shows the bifurcation diagrams 
for n varying from 1 to 4 where the black colour shows  n= 1 
and the blue colour shows n = 4.  It is evident that adding more 
couplings of neighbours has no effect on the bifurcation point 
of the lattice.  Thus, the number of neighbour couplings does 
not have a major impact on the dynamics of a neuron system. 

 
Fig. 7   Bifurcation diagram of a lattice with n couplings on 
both sides of the cell and one random coupling. Black color 
shows n= 1 and blue shows n = 4. 
 
 This leads onto the most important coupling scheme - the 
small-world coupling scheme[4].  In this scheme as in the 
previous scheme, each cell is coupled with n cells on both sides.  
However, in addition, a few of these connections may be 

rewired to random cells.  This rewiring probability is denoted 
as p.  This form of coupling is termed ‘small-world’ when p is 
small ~0.01. Fig. 8 shows a typical small-world network.   

 
Fig. 8 Small-world network, Picture Courtesy: Nature 410, 
268-276 (8 March 2001) 
Small-world networking is seen in many biological networks 
and also in the neural network of the nematode worm 
Caenorhabditis elegens (C-elegens)[4].  However, as in [9], we 
shall consider the complete range of p from 0 to 1 and not just 
p~0.01.  (W e shall use the term ‘small-world’ to describe the 
network arrangement whereby a connection is rewired with a 
probability of p regardless of the actual value of p.)   
 

Eqn. 5 represents such a small-world network with n nearby 
couplings and where one of these connections may be rewired 
to a random cell with a probability p.   
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         As an example, n is set equal to 5.  The lattice is tested for 
p values varying from 0.0 to 1.   For this system, k = 0.03.   εcr is 
the critical bifurcation point where the transition from the 
asynchronous to the synchronous state happens.  In Fig. 9 the 
logarithm of the εcr is plotted against p.  The plot shows that 
there is a linear relationship between the logarithm of the 
critical bifurcation point and p, where p is the probability that 
one of the nearby couplings will be rewired to a random cell.  
Thus as p increases, then the higher the value of εcr that the 
transition from asynchronous behaviour to synchronous 
behaviour occurs.       Similar results were achieved with 
different lattice sizes (different values of N). 
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Fig. 9 A plot of the transition point from asynchronous 
behavior to synchronous behaviour in the coupled network 
with p ranging from 0-1. 
 

IV. CONCLUSIONS AND COMMENTS 
The brain is a very complex structure and mathematical 

modelling of it is in its infancy.  A preliminary study has been 
carried out in this contribution to model the collective dynamics 
of neurons.  Results show that straight-forward coupling of 
neighbouring neurons has little effect on the bifurcation 
diagram of the ‘potential’ variable x and from this we infer that 
straightforward coupling has little effect on the dynamics of the 
individual neurons.  However, in contrast, with the random 
rewiring of neighbour couplings in the network, there is a 
pronounced linear relationship between the point at which the 
transition from asynchronous to synchronous behaviour occurs 
and the probability of a random rewiring of a connection.  
When a healthy brain moves to epileptic stage, it is thought that 
there is a change in the neuronal connections and that this gives 
rise to the transition from asynchronous firing to synchronous 
firing.   The model described in this work describes this 
phenomenon. Further work is required to confirm the 
connections between the mathematical model results and 
biological results. 
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