
 
 

 

A New Method for Structure Detection of 
Nonlinear ARX model:  

ANOVA_BSD  
E. Radmaneshfar, M. Karrari 

�
Abstract— Identification of nonlinear dynamic black box models 
involves structure detection of nonlinear system (i.e. selecting the 
regressors that have the most contribution to the output and the 
regressor function) and finally estimation of model parameters. 
As the NARX representation can describe many nonlinear 
dynamic models, it will be used here as the desired structure. It 
should be noted that when the order of the system increases, even 
for moderately complex systems the number of candidate terms 
becomes very large. So, structure detection is necessary in order 
to have an efficient description of the dynamic systems. In this 
paper, a new method for selecting regressors with the most 
contribution to the output and finding an efficient representation 
of nonlinear dynamic systems is presented. The purposed method, 
named ANOVA_BSD, is based on the combination of analysis of 
variance and suboptimal bootstrap algorithm. The anticipated 
structure takes the advantage of nonlinear ARX polynomial to 
model different nonlinearities of the system, such as sine and 
cosine functions. The proposed method is tested on two different 
systems and simulation results show that ANOVA_BSD 
effectively reduces model complexity without any noticeable loss 
in the accuracy. 
 

Index Terms— Analysis of variance, Bootstrap, Nonlinear 
ARX, Regressor, Structure detection.  
 

I. INTRODUCTION 
System identification is the problem of building 

mathematical models of dynamic systems, that is, systems 
whose outputs depend not only on the current input, but also on 
the past input and past output values  [6]. Assume that the 
relationship between the output and input is described by 
NARX model that is initially introduced in  [5]. Identifying a 
NARX model requires structure detection and parameter 
estimation; structure detection can be divided into two tasks: 
model order decision and regressors selection (selection of 
regressors to be included in the model). NARX representation 
of many nonlinear systems requires only a few terms (i.e. from 
past values). However, as the order of the system increases, the 
number of candidate terms becomes very large  [1]. 
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There are different kinds of method for selecting the best 
subset of regressors that have the most contribution to the 
output of nonlinear system, i.e. structure detection of nonlinear 
systems; such as ANOVA  [1], stepwise regression  [3], LASSO 
 [3], Bootstrap  [4] and so on. Each of these methods has their 
own limitation and may fail when the nonlinearity of the system 
is complex or when the number of regressors is too large. 

In this paper, the analysis of variance (ANOVA)  [3] and 
suboptimal bootstrap structure detection algorithm (BSD)  [4], 
are combined for selecting the significant terms of NARX 
model for somehow complex nonlinear system. Also recursive 
least squares (RLS) is used for parameter estimation of 
remaining regressors. The input/output data used for 
identification, selection of the significant regressors and also 
model validation is obtained from the simulated model.  

The main idea of ANOVA is comparing the variances of 
different combinations of candidate regressors and conclude 
about which ones actually contributes to the output [1]. 

Suboptimal Bootstrap algorithm is based on resampling 
technique for obtaining a new data set instead of repeating the 
experiments  [7]. With bootstrap technique, observations are 
randomly reassigned, and then estimates are recomputed. These 
assignments and recomputations are done a large number of 
times and treated as repeated experiments. In the context of 
structure detection, bootstrap method is used in this paper to 
detect spurious parameters of the over-parameterized model; 
i.e. those parameters whose estimated values cannot be 
distinguished from zero.  

The NARX representation can be found in section II. 
Structure detection technique, ANOVA is described in section 
III. Suboptimal bootstrap structure detection algorithm is 
discussed in section IV and the proposed method 
(ANOVA_BSD algorithm) is presented in section V. Computer 
simulation results of applying the ANOVA_BSD on a 
simulated nonlinear model are presented in section VI and 
finally conclusions are drawn in section VII. 

II. THE NARX MODEL 
The NARX model was initially proposed in  [5], takes the 

form of the following nonlinear differential equation: 
))(),...,1(),(),...,1(()( uy ntutuntytyfty �����  (1) 

Where f is an unknown nonlinear mapping, u (t) and y (t) are 
the sampled input and output sequence, and n u and n y are the 
maximum input and output lags, respectively. 
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One of the popular representations for the NARX model in 
eq. (1) is the polynomial representation, which takes the 
function f (.) as a polynomial of degree l and gives the form as: 
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miii ...21

� are parameters, n= n u + n y and  
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(3) 

Degree of the multivariable polynomial is defined as the 
highest order among all terms.  

Since NARX representation is linear in its parameters, linear 
regression can be used for parameter estimation in structure 
detection. 

Identifying a NARX model requires two steps: 
1. Parameter estimation 
2. Structure detection that can be divided into:  

a. Model order selection 
b. Selecting which parameters to be included in 

the model 
Model order selection is considered as a part of structure 

detection. Determination of the model order restricts the choice 
of terms to be considered. 

For NARX models, the system order may be defined as  
�lnnO yu[�  (4) 

The maximum number of terms in a NARX model with n u 
and n y dynamic terms and l the order nonlinearity is  [4]: 
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As a result, the number of candidate terms becomes very 
large for even moderately complex models, making structure 
detection difficult. Defining the maximum number of terms, p, 
as the number of candidate terms to be initially considered for 
identification, parameter estimation involves determining 
values of these parameters. 

NARX representation of many nonlinear systems requires 
only a few terms. However, as the order of the system 
increases, the number of candidate terms becomes very large 
(5). To put it in a nutshell, the structure detection task is to find 
a subset of candidate terms that describes the system output 
best. Analysis of variance  

A. A simple idea 
Suppose u is periodic and y depends only on u(t-T). Then 

every time that u(t-T) has the same value as one period before,

y(t) should also have the same value as one period before, apart 
from the noise term e(t). In other words, the variance of y(t)
calculated for these values of t (call it V1) should be the 
variance of e(t). The variance of e(t)is typically unknown. 
However, if we check the times t  when the pair 
� �)2()( TtuTtu �� has the same value, the variance of y(t)
for these t should also be around V1, If y(t) does not depend on 
u(t-2T). By comparing the variances for different combinations 
of candidate regressors we could thus draw conclusions about 
which ones y(t) actually depends on  [1]

B. ANOVA 
The statistical analysis method ANOVA  [3] is a widely 

spread tool for finding out which factors contribute to given 
measurements. The method is based on the hypothesis tests 
with F-distributed test variables computed from the residual 
quadratic sum. Here the fixed effects model with two factors 
will be described: 

ijkijjiijky ������ ����� )(  (6) 
Assume that the collected measurement data can be 

described by a linear statistical model where the �ijk’s are 
independent Gaussian distributed random variables with zero 
mean and constant variance �2. The parameter � is the overall 
mean. For each (quantized) level i=1,2,…,a of the first 
regressor �1(t), there is a corresponding effect �i and for each 
level j=1,2,…,b of the second regressor �2(t)the corresponding 
effect is �j. The interaction between the regressors is described 
by the parameters (��)ij.

Since the regressors are quantized, it is a very simple 
procedure to estimate the model parameters by computing 
means: 
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(7) 

Which are the overall mean, the means over the regressor levels 
and the cell means. For example, the constant � would 
correspond to y…, while the effects from the first regressor are 
computed as �i = yi..-y…. ANOVA is used for testing which one 
of the parameters significantly differs from zero and for 
estimating the values of the parameters with standard errors, 
which one makes it a tool for exploratory data analysis. The 
residual quadratic sum, SST, is used to design test variables for 
the different batches (e.g., the �i’s) of parameters. Under the 
assumptions on �ijk stated above and in the case when all 
regressor level combinations are sampled equally, the residual 
quadratic sum can be divided into four independent parts; 
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Each part is related to one batch of parameters. If all the 
parameters in the batch are zero, the corresponding quadratic 
sum is �2-distributed if divided by the true variance �2. Since the 

true variance is not available, the estimate 
)1(

2

�
�

nab
SSE� is 

used to form F -distributed test variables, e.g., for �i; 
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If all the i� ’s are zero, 	A belongs to an F -distribution with 
a-1 and ab(n-1) degrees of freedom. If any �i is nonzero, it will 
give a large value of A� , compared to an F -table. This is of 
course, a test of the null hypothesis that all the �i’s are zero, 
which corresponds to the case where the regressor �1 does not 
have any main effect on the measurements . y

III. BOOTSTRAP STRUCTURE DETECTION ALGORITHM 

A. Bootstrap 
Bootstrap techniques have received considerable attention 

due to the availability of affordable and powerful computers 
[4]. The bootstrap is a numerical procedure for estimating 
parameter statistics that requires few assumptions. The 
conditions needed to apply bootstrap to system identification 
are quite mild; namely, that the errors be independent 
identically distributed and have zero-mean. Consequently, we 
hypothesize that bootstrap might be a useful tool for structure 
detection of non-linear models. 

In system identification it is necessary to form an estimate of 
unknown parameters of a random process, using a set of sample 
values. These can be computed using the recursive least square 
(RLS) estimator. Parameter statistics are also needed to make a 
probability statement with respect to unknown true parameter 
values. One probability statement is, to assign two limits to a 
parameter, and assert that, with some specified probability, the 
true value of the parameter will be situated between these 
limits, which constitute the confidence interval. 

With bootstrap technique, observations are randomly 
reassigned, and estimates recomputed. These assignments and 
recomputations are done a large number of times and treated as 
repeated experiments. In the context of structure detection, 
bootstrap method is used in this paper to detect spurious 
parameters of the over-parameterized model; those parameters 
whose estimated values cannot be distinguished from zero. 

Application of bootstrap to structure detection involves two 
steps:  

First step: computing a series of parameter replications, in 
which bootstrap data is generated to compute new bootstrap 
parameter estimates; 

Second step: forming percentile intervals for hypothesis 
testing, where the significance of the parameters is determined. 
Bootstrap data is formed by first estimating the residuals of the 
identified model; these residuals are then resampled with 
replacement, centered and then added to the predicted output to 
generate bootstrap replications of the output  [2]. B bootstrap 
data sets are generated to estimate B bootstrap parameter 
replications. 

Significance of the parameters is determined by forming 
percentile intervals. The estimates from B parameter 
replications are ranked in increasing order and the B� th and 
B(1-�) th values in the ordered list of the B replications are used 
as an upper and lower bound for the parameter deviation with 
an � th and (1-�) th level of significance, respectively  [4]. The 
significance of each parameter is determined by checking if 0 
lies in its interval: if so, the parameter is rejected. This leads to 
the following algorithm for structure detection of 
linear-in-the-parameter models. 

An important drawback in the context of bootstrap though, is 
that the maximum model order is considered known, that is, the 
maximum number of lagged inputs, the maximum number of 
lagged outputs and the maximum order on the polynomial 
expansion are considered as known. 

B. Suboptimal Bootstrap structure detection algorithm 
Based on what stated in the previous part, BSD algorithm is as 
follows: 

1. Compute an initial estimate of the unknown parameter 
vector using RLS as:  ZT

zuzu
T

zu ���� �1)(�̂

2. Estimate the residuals as:  ZZ ˆˆ ���
3. Generate B bootstrap data sets as  �� ���� �� ˆˆẐ
4. Compute B bootstrap parameter replications as: 

 ������ ���� Z
TT 1)(�̂

5. Form percentile intervals for each parameter by ranking 
estimates from the B parameter replications in 
increasing order. 

6. Estimate the upper and lower bounds of each parameters 
confidence interval for a desired level of significance. 

7. Determine if zero lies in the interval of each parameter in 
the vector. 

8. If zero lies in the interval for any parameter remove it 
from the regression. 

9. Compute a new estimate of the parameter vector and 
residuals as in 1& 2. 

10. Go to 3 until convergence. 

IV. ANOVA_BSD 

A. The problem with BSD algorithm 
One of the main problems of BSD algorithm is that, it 

estimates the parameters for full system description and then 
removes the insignificant regressors. As the order of the system 
increases, the number of candidate terms rapidly, thus the 
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structure detection using BSD becomes a time consuming 
process and needs a lot of computation. For example, if we 
want to determine the significant regressors for the second 
order system that it is supposed to have 3 lagged inputs and 3 
lagged outputs, from (5) initially we must estimate the 
parameters of the system with 35 candidate regressors, which is 
too much for even moderately nonlinear systems.  

Another problem with BSD algorithm is that it fails to find 
NARX representation for the structure of complex nonlinear 
functions such as sine, cosine or when in the real structure of 
system multiplication happens. 

B. The problem with ANOVA 
ANOVA just finds the regressors that have contribution on 

the output without computing the parameters of remaining 
regressors. In other words, it does not say anything about the 

)( f (1) , thus with applying ANOVA on the data just the 
contribution of different regressors on the output can be 
decided, and nothing can be found about the system function 
and also the value of parameters for remaining regressors. Also, 
ANOVA does not perform well when real structure of the 
system has additive function. 

C. ANOVA_BSD 
From what stated in the previous sections, it seems that 

combination of ANOVA and BSD will perform better than 
both of them alone for structure detection of nonlinear systems 
with complex nonlinear functions such as sine, cosine and so on 
in their natural structure or have a lot of candidate regressors 
initially. 

When the number of candidate regressors is initially too 
large, it is reasonable to reduce the number of them before 
applying the BSD. ANOVA is a good tool for this purpose, but 
take into consideration that with ANOVA we can just find the 
contributed regressors on the output, and the structure of the 
understudied system ( ) f (1) is still unknown. After applying 
the ANOVA and finding the most contributed regressors we 
can assume that the understudied system has NARX 
representation and try to build this representation with the 
remaining regressors, i.e. finding the related regressors using 
BSD algorithm with RLS as an identification technique. 

D. ANOVA_BSD Algorithm 
Based on what stated in the previous part, ANOVA_BSD 
algorithm is as follows: 

1) Determine the order of the NARX system (4) from 
experiment or physical insight to the system. 

2) Apply the ANOVA to basic set of candidate 
regressors, these regressors consist of input, delayed 
input and also delayed output and their combination to 
assumed order. 

3) With remaining regressors construct the NARX 
representation.  

4) Apply the BSD algorithm to the remained NARX 
representation of the systems and remove the 
insignificant regressors of NARX representation and 
compute the related parameters.  

V. SIMULATION 

A. First example 
Consider the system  

)())(cos(*))(sin()( tetututy ��  (10) 
Where input signal u(t) is as an independent, identically 

distributed random signal from the uniform distribution, 
between [-pi/4   pi/4] and it is quantized into four equal 
intervals for applying ANOVA. The noise e(t) is Gaussian 
noise with zero mean and constant variance (in this example it 
is equal to one). The reasonable sampling time is equal to 
50 ms. 

By applying ANOVA to the assumed model with 2 lagged 
inputs, and also 2 lagged outputs it was concluded that from 28 
candidate regressors only u(t) , u(t-2) and  y(t-2) have 
contribution to the output. The result of applying ANOVA to 
the assumed system is shown in Fig. 1. 

Now, by assuming the order 3 for NARX representation the 
BSD algorithm is started. By (5) the assumed NARX 
representation must have 34 candidate regressors, but by 
applying ANOVA this number is reduced to 9. By applying 
BSD it is concluded that with 95% confidence the understudied 
system can be estimated by y(t)=0.9863u(t)-0.5756u3(t).By 
knowledge from Taylor series, it is expected to obtain such 
results. It should be noted that, for model validation 200 data 
points have been used that have not been used in the training 
phase. Validation results for the first example are depicted in 
Fig. 1 and Fig. 2. In the figure the simulated output, true output, 
and the error (difference between true output and the simulated 
output) are plotted. 

 
Fig. 1: The result of ANOVA for the first example, it can be seen that the 
regressors 1,3 and 5 have the most contribution to the output. 

 
Fig. 2: Model validation with 200 data points, the error is the difference 
between the true output and simulated output.

B. Second example 
Consider the system  

)())2(exp(*))1(cos(*))(sin()( tetutututy �����  (11) 
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Where input signal is as an independent, identically 
distributed random signal from the uniform distribution, 
between [-pi/2   pi/2] and it is quantized into four equal 
intervals for applying ANOVA. The noise e(t) is Gaussian with 
zero mean and constant variance (in this example it is equal to 
one). The reasonable sampling time is equal to 50 ms; the other 
configurations are as before. 

)(tu

By applying ANOVA to the assumed model with 2 lagged 
inputs, and also 2 lagged outputs it is concluded that from 28 
interacted regressors only u(t),u(t)*u(t-1),u(t)*u(t-2),u(t)*y(t-2) 
and u(t-1)*y(t-2) have contribution to the output. The ANOVA 
results are shown in Fig. 3. 

Now, by assuming the order 3 for NARX representation we 
the BSD algorithm is started. By (5) the assumed NARX 
representation must have 34 candidate regressors, but by 
applying ANOVA this number is reduced to 15. By applying 
BSD it is concluded that with 95% confidence the understudied 
system can be estimated by: 

)2()1(0250.0)2()(0273.0

)2()(3169.0)2()(6518.0)1()(4797.0

)1()(0463.0)(1079.0)(0203.1)(

2

22

23

�����

������

����

tytutytu

tutututututu

tututututy

Fig. 4 shows the validation results for the second example. 

 
Fig. 3: The result of ANOVA for the second example, it is seen that the 
regressor 1,6,7,9 and 12 have contribution on the output

 
Fig. 4: Model validation with 200 data points, the error is the difference 
between the true output and simulated output.

VI. CONCLUSION 
In this paper a new method for structure detection of NARX 

models was proposed. It is concluded from the computer 
simulation results that the NOVA_BSD method is a good 
alternative to BSD for detecting a parsimonious structure, when 
the understudied model has complex structure. The number of 
regressor and therefore the complexity of the system are 
reduced by applying the ANOVA to the nonlinear understudied 
model. Also, it should be noted that with ANOVA, just the 

contributed regressors are found and the system function is still 
unknown, so by applying BSD to the reduced system and 
assuming NARX representation the system parsimonious 
structure can be found.  
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