

Abstract- This paper deals with the identification of best and
optimized test cases in program components and software
artifacts. Our purpose is to simulate the model on a sample
software program component and evaluate the efficacy and
correctness of the code through set of test cases.

Index Terms— Software Testing, Test case, Hybrid
Intelligence, Model Simulation.

I. INTRODUCTION

Many accomplished researchers have claimed,
“Programmers love writing tests” [9], they explore their
confidence level in their written code when it passes
through their tests. Undoubtedly, software testing remains
the primary technique used to gain users confidence and
trust in the software product. It has also been observed
that on software testing usually accounts for about 50%
costs [6] of software development. The application of
artificial intelligence technique in software engineering
and testing is an emerging area of research that brings
about the cross fertilization of ideas across two domains.
A number of published works, for example [12] have
begun to search the effective use of AI for SE relate
activities, which are inherently knowledge intensive, and
human centered. Similarly, the prominent uses of AI in
software testing have also been reported in some
significant works through genetic algorithm, AI planner
simulated annealing and even by ACO[1][10][18].
Generating a set of basic test cases might be easier to
implement, improving the test quality and efficacy require
substantial effort and investment. The test cases that
software tester generally provide easily cover 50-70% of
introduced faults. But improving the score up to 90-100%
is complex, time consuming and hence proved to be an

1 Professor ,Computer Science at the Middle East University for
Graduate Studies, Amman ,Jordan(email:fayoumi99@yahoo.com)

2 Professor, Computer Science, University of New Brunswick, Canada,
(email:pmahanti@unbsj.ca.), Corresponding author.

 3 Assistant Professor, Birla Institute of Technology, Mesra, India.

expansive method. Therefore the optimization of test
cases is required and practically important. This process
could be automated and less time consuming with
perfection through hybrid intelligent technique.
Improving the quality of generated test cases (especially
in case of unit testing) automatically is a non-linear
optimization problem. In order to tackle this problem, we
have developed an algorithm called as OptiTest based on
hybrid intelligence. The genesis of the algorithm is the
implementation of ant colony and its internal pheromone
distribution across the generated test graph. On the other
hand the algorithm also incorporates another popular
intelligent tool commonly known as Rough Set. From the
perspective of search-based software engineering, the
rough set based rule would like to denote the completion
of search for optimized test case. This novel hybrid
metaphor has been generated test graph. On the other
hand the algorithm also incorporates another popular
intelligent tool commonly known as Rough Set. From the
perspective of search-based software engineering, the
rough set based rule would like to denote the completion
of search for optimized test cases.
This novel hybrid metaphor has been applied on a test
source code of C # in .Net framework. The rest of the
paper is organized as follows: Section II explores a brief
outline of evolutionary test and search-based software
testing scenario. The background of AI based techniques
used in software testing and related works have been
detailed in section III and its subsection. Section IV
describes the proposed model followed by section V of C
code under test. Section VI provides different similar
works followed by conclusions in section VII wherein we
have presented the extension and future scope of this
model.

II. EVOLUTIONARY TESTING OF CLASSES AND
SEARCH BASED TESTING PARADIGM

 Automated test case generation for object-oriented
program has always become challenging part of software
testing. The test case for procedure consists of a sequence
of input values, to be passed to the procedure upon
execution. Therefore, test cases for class method must
also account for the state of object on which the method
execution is issued. Thus practically a test case for a class
method includes the criteria of an object, optionally the
change of its internal state and finally invocation of the

1 Mohammed Al-Fayoumi, 2P .Mahanti and 3Soumya Banerjee

OptiTest: Optimizing Test Case Using Hybrid Intelligence

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

method with proper input value. In this context unit
testing (the fault is injected into single class) of such a
class should work upon all associated parameters. The
steps of unit testing are as follows [21]:
• An object of the Class under Test (CUT) is created

using one of the available constructors.
• A sequence of zero or more methods is invoked on

such an object to bring it to a proper state.
• The method currently under test is invoked.
• The final state reached by the object being tested is
 examined to assess the result of the test case.
In a nut shell, unit testing of a class consists of a sequence
of object creations, method invocations and then final
method invocation under test.
For example, if we are testing method m of class A, a test
case may be:
A a = new A ();
B b = new B ();
b.f(2);
a.m(5, b);

Here, the second object creation is necessary, because the
second parameter of m is an object of class B. Invocation
of f on b aims at changing the state of b before passing it
to m. In this context of this proposal we would also like to
brief about the search based test data generation technique,
which also largely influence this implementation. The
search based test data generation requires some basic
concepts as prerequisites, which starts from control flow
graph [18]. A control flow graph (CFG) of a program is a
directed graph G = (N, E, s, e) where N is a set of nodes,
E is a set of edges, and s and e are unique entry and exit
nodes to the graph. Each node n ∈ N corresponds to a
statement in the program, with each edge e = (ni, nj) ∈E
representing a transfer of control from node ni to nj.
Nodes corresponding to decision statements (for example
an if or while statement) are referred to as branching node.
In the Figure 1 nodes 1, 2, and 3 are all branching nodes.
Outgoing edges from these nodes are referred to as
branches. The branch executed when the condition at the
branching node is true is referred to as the true branch.
Conversely, the branch executed when the condition is
false is referred to as the false branch. The predicate
determining whether a branch is taken is referred to as a
branch predicate. The branch predicate of the true branch
from branching Node 1 in the program of Figure 1 is ‘a
>= b’.

CFG Node
 (s) void example (int a, int b, int c, int d)
 {
 (1) if (a >= b)
 {
 (2) if (b <= c)

 {

 (3) if (c == d)
 {
 // T.....

Fig 1: Code Segment for CFG

The comprehensive suit of unit testing is well supported
successfully by Evolutionary algorithms for procedural
software ([19, 7], referred to as conventional evolutionary
testing). Even the application of metaheuristic search
techniques to test data generation is a possibility, which
offers much promise for these different types of software
testing problems. Metaheuristic search techniques are
high-level frameworks, which utilize heuristics in order to
find solutions to combinatorial problems at a reasonable
computational cost. Such a problem may have been
classified as NP-complete or NP-hard, or be a problem
for which a polynomial time algorithm is known to exist.

III SOFTWARE TESTING AND AI

The application of artificial intelligence methodologies in
software testing have been reported in several
accomplished works. The varieties of AI based tools are
applied for test data generation, search, optimization and
coverage analysis and test management .Most commonly
applied tool is genetic programming [20].
Very recently couples of noted works of Baudry et al.
exhibit a new dimension of testing through their simulated
bacteriological adoption algorithm [3] [4] [5].
which significantly contributed to formulate certain basic
framework for this type of testing paradigm by proposing
different object specific mutation operators dedicated to
Java language [21] [8]. The concept of interface testing
and validation has already been used to test EJB
components [2]. All these works actually map the
problem for test data generation to the problem of
minimization and study Genetic Algorithm to tackle this
minimization problem.
They also tested their schemes to .Net components [4]. In
practical testing scenario, it’s difficult to generate test
data manually, as it makes the code more and more error
prone. Therefore automated test data generation [16] has
become authentic approach for software testing. The
various forms of this technique have been found in the
local search [19] [20] (for searching structural test data
generation) with simulated annealing [15] [21] and other
evolutionary algorithms. The major difference between all
these work and the proposal presented in this paper is that
they are concerned in generating the scalar data, whereas
method calling and argument passing in the intermediate
control flow dependency graph is the basis of this paper.
The other specialty of the proposal is to create a novel
hybrid framework inspired by natural agent ant, which
lives in a colony and on the other hand rough set theory,
which work under uncertainty and in imprecise conditions.
The distributed coordination mechanism of ant agents

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

through a chemical marker called as pheromone also able
to notify and mark best or good path of choice. This path
is shortest by default. Rough Set Theory offers the
heuristic function to measure the quality of a single subset
of test case. Rough set is also used to stop the searching
process of test cases if best or optimized test case is found.
The next subsection will present some basics on these two
methodologies to understand the proposed algorithm
OptiTest.

A. Background of Ant colony and Rough Set Theory

Ant Colony Optimization (ACO) [13] [14] is a recently
proposed meta-heuristic approach for solving hard
combinatorial optimization problems. The inspiring
source of ACO is the pheromone trail laying and
following behavior of real ants, which use pheromones as
a communication medium. In analogy to the biological
example, ACO is based on the indirect communication of
a colony of simple agents, called (artificial) ants,
mediated by (artificial) pheromone trails. The pheromone
trails in ACO serve as distributed, numerical information,
which the ants use to probabilistically construct solutions
to the problem being solved, and which the ants adapt
during the algorithm’s execution to reflect their search
experience. Rough set theory [23] is an extension of
conventional set theory that supports approximations in
decision-making. The rough set itself is the approximation
of a vague concept (set) by a pair of precise concepts.
Here the quality of test case is measured and the process
for searching “best” quality test case is stopped by rough
set constructs.

IV. PROPOSED MODEL –OPTITEST

 The proposed algorithm envisages the modeling of the
unit test mentioned in the previous section (refer section
II) for object oriented source code. The algorithm takes as
input initial set of test cases and it outputs a “good” or
“optimized” set of test cases. The process goes on
incrementally as test pheromone corresponds to a test case.
We consider a C# parser, the input data here is a source
file that is parsed to build a syntactic tree. Subsequently,
the source code is interpreted in term of CFG, which is a
directed graph. There are several issues need to be
addressed prior to deploy ACO:

• Interpretation of testing problem with
decomposable graph.
• A heuristic measure for measuring the “goodness”
of path through the graph.
• A rough set based rule for stopping the search.
• A transition rule for determining the probability of
an ant traversing from one node in the graph to the next.
• Update matrix for pheromone deposition by ant
colony on a particular edge of test graph.

High-level description of proposed algorithm ---

OptiTest

Begin Algorithm GenerateTestCases (Class Under Test -
CUT: Class)
 /* Generate Test Case*/
 Input: CUT
 Output: Deterministic Best Test Case

/*Initialize Parameters for Ant Colony and Rough set
Paradigm*/
Set t: = 0 /* t is the time counter */
Set NC: = 0 /* NC is the cycle counter*/
for every edge (i, j) set an initial value τ ij = C for trail
intensity and Δ τ ij = 0
Bool TestPheromoneValue= FALSE;
Tabu = Empty;
Place the m ants on the n nodes

 P, Q equivalent Relations over Test case U
/ * Stopping Criteria of search defined by Rough set */
 Testgoals:= the set of coverage goals
Failures: = empty set
 Identify test cluster for CUT
/*Initialize Parameters for generating Test case*/
 Device Source code for Test Cluster
/*Example Test: for C# Code to be parsed to .Net
platform*/
 Accumulate test Goals for CUT
Generate function set for Test Cluster
for each test goal tg in TG
 /* Loop for generating normal test goals*/
 modify function test for TG
 end for
Create initial di- graph based test cases
 for cycle =1 to ncycles do
 for ant =1 to n ants do
 Select the vertex with the lowest
 pheromone level from the
 current vertex
If vertices vi and vj shares the same lowest pheromone
level but if TG (Vi) = =0 and TG (Vj) =1
 Select vi
 else
 Select randomly any vertex
 end if
 ant clears its recentlyvisited tabu list
/* no test Goal in Tabu*/
 UpdatePheromone (τ, ρ)
/*Pheromone Update Rule*/
 update pheromone trails by applying the rule
τ ij (t) → (1- ρ). τ ij (t) + ∆ τ ij (t) where

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

∆ τ ij (t) =
1/ ()
0

c π +⎧ ⎫
⎨ ⎬
⎩ ⎭

 otherwise

end for
 Set TestPheromoneValue = TRUE;

(,) * (,)

(,) * (,)

r u r u
p

r u r uk

α β
τ η

α β
τ η

=
∑

According to ant movement rule:
/* (,)r uτ is the intensity of pheromone on the edge

between the node position r and u, α and β represents
a weight for the pheromone and weight for the heuristic of

(,)r uτ */
while Testgoals is nonempty do
 Select and remove goal from goals
 Call PheromoneUpdate() to choose Best new test
case path to discharge goal.
if successful then
 Select and remove from goals any that are
 discharged by the test case
remaining := empty set
 while goals is nonempty do
 Remove goal from goals
 Call PheromoneUpdate()to extend
 test case to discharge goal
if successful then
 remove from goals failures, and
 remaining any
goals discharged by extended test case
 else add goal to remaining
endif
 endwhile
 goals := remaining
Set P and Q in test case digraph such that P Q⇒ /*
when to terminate Search for best test case*/
 And the dependency degree k by
P, Q is related is 0 1k≤ ≤ denoted P kQ⇒
 if
 ()() Positivep Qk p Qγ= =

U
 /* Rough Test

Rule*/
 else
 k =1
 Q totally depends on P
 else
 Q doesn’t depend on P
 Output test case
 else add goal to failures
 endif

 endwhile

// Source Code in C#

public static void BubbleSort(String
arr)
{
 int i,temp, j, arr1;
 int [] array = new int[5];
 arr1 = interface.parse (arr) ;
for (i=0;i<5; i++)
 arr[i] =
 interface.parse(system.console.R
 eadLine ());
System.Console.WriteLine("Sorted is::
")
for(i=0;i<4;i++)
 {
 for(j=0;j<4-i;j++)
 {
 if(array[j]>array[j+1])
 {
 temp=array[j];
 array[j]=array[j+1];
 array[j+1]=temp;
 }
 }
 }
System.Console.WriteLine(“the value
passed to funtion is “+ arr1);
for(i=0;i<5;i++)
 System.Console.WriteLine(array[i]);
 System.Console.WriteLine(“value
returned to bubblesort is”);
}

Static void Main(string[] args)
{
String hj =”hello”;
for(int i=0;i<2;i++)
BubbleSort(args [i]);
temp1(“hi”);
System.Console.WriteLine(“Bublesort
begins again”);
BubbleSort(System.Console.ReadLine());
temp1(hj); temp1(123);
System.Console.WriteLine(“exit from
main”);

System.Console.Read();
}
}

V. TEST CODE ANALYSIS AND PERFORMANCE OF

THE MODEL

 The Following code segment and the conceptual
dependency graph for C# have been presented. The code
describes common bubble sort mechanism and parameter
passing.

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

The sample erroneous C# code has been prepared for the
testing the proposed model OptiTest. The algorithm is
incremental in nature. The code provides its dependency
graph describing the relation between the caller and callee
method in he code. The certain set of test cases have been
prepared for the source code (refer the entire test case in
table 1, given below). The ant agent traverse those set of
test cases employed on dotted erroneous path. We denote
the input domain as TG or Test Goal. Each iteration of
input process involves some basic functions. The ant
agent has the sense of Test Pheromone value. The
distribution function of pheromone matrix can be given as:

best Test Goal Path: 2 TG →
+

N , where N is a real
number, comprises a positive pheromone value that is
capable of identifying the quality of a set of test case as
per its Boolean objective i.e. TRUE or FALSE (the other

parameters of pheromone update is set accordingly). The
relational of two test cases denoted by P and Q (their
dependency k has been defined) accepts the test case as an
input and determine its appropriateness in the context of
error trace and test the threshold value with their
dependency value k. If it exceeds k then the algorithm
outputs that set of test case(s) as the “best “or “good” test
case achieved so far(marked as green label in Table 1).

Variable Value Return Remark
about Test
Case

Bubblesort→BubbleSort(args[i])

args[i]
args[i]
args[i]

123
args[i]
+1.AB3

123
error
error

Best test
case

System.Console.ReadLine ()

buffer
buffer
buffer

12568
@AB#
+/-23

12568
error
error

No suitable
test case

temp1()

name 123 error

Best test
case

int. parse()

buffer
buffer
buffer

14
+2.AB
+*AB45

14
error
error

No suitable
test case

Table 1: Error Identification and Test Case

 Note: The work considers 4 basic methods written in #C code(the code demonstrates popular Buuble Sort technique, and
intentionally the code is kept erroneous for testing), where each have been tested by passing some assumed test value and
observed against the return value and path of the given test value. This method of passing and checking the return value of
the method could identify the best test value and thus best test case (marked as bold). The 3rd case in the table 1 describes
the single variable, hence evaluates most simple and non complex return value as error (thus it’s also the best test case
applied on a single variable marked as bold italics). According to the proposed algorithm OptiTest, the distribution and
search of best test case value has been done through Ant colony pheromone matrix and once the search of best test value is
achieved, the search terminates through Rough set.

The dependency relation of P and Q is defined as rough
set value for OptiTest basically set for feature selection of
best test case set identified after certain iteration. Hence,
rough set is here used for forming stopping criteria rule in
the proposed model. The return value of rough set is

definitely the best test goal path or TG, which is
+

� or a
Boolean value of pheromone distribution. The model
embeds a test case grammar, syntax tree manager on
which the model is applied. We have initialized several

parameters in OptiTest to use the hybrid metaphor, he
most relevant is the setting of threshold and the other is
the size of test case (assuming the grammar of test case
and syntax tree is available). Apparently it may appear
that the rule of generating test case is applied, but in
reality we assume that all complexity of the test case of
our code fixed.

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

VI. SIMILAR WORKS

 The need for testing-for-diagnosis strategies has been
identified for a long time, but there is always a dilemma
between a reduced testing effort (with as few test cases as
possible) and the diagnosis accuracy (that needs as much
test cases as possible to get more information). There are
reported recent published works which filter the different
test cases and finally is able to select the optimized one
[22]. Certain interesting observations have been inferred
from research where the optimization is done through use
cases driven test cases for embedded object oriented
software [17]. Even optimization approach of test cases
have become so popular that different works adopt
practical applications of the optimization model for
system test planning [11].

VII. CONCLUSION AND FURTHER SCOPE

 The present work evaluated the source code (in C#) with
the help of insect ant and precision is handled by rough
set. It has been observed that certain test path on
dependency graph has been passed thorough and some are
failed and even certain paths are more trusted depending
on the goal set by each test case. The labeling of the path
is done by Test Pheromone of ant agent and trust or belief
of any test path depends not only on statistical value but
also to pinpoint faulty statements in a program. The
promising scope of the present work may be in the form
of different ant colony based approach and the setting of
the parameters of this algorithm. Initial test pheromone
value and feature for particular test case can also be an
interesting proposition on the performance issue of
similar algorithm.

REFERENCES

[1]. A.E. Howe, A.V.Mayrhauser Mraz, R.T., “Test case generation
as an AI planning problem”, Automated Software Engineering
vol. 4, pp 77-106, 1997.

[2]. Benoit Baudry, Franck Fleurey, Jean-Marc J´ez´equel and Yves
Le Traon ,” From genetic to bacteriological algorithms for
mutation-based testing Software Testing Verification And
Reliability” Softw. Test. Verif. Reliab. 2005; 15: pp.73–96
published online 4th January 2005 available http://
www.interscience.wiley.com.

[3]. B. Baudry, F. Fleurey, Y. Le Traon, and J.-M. Jézéquel. "An
Original Approach for Automatic Test Cases Optimization: a
Bacteriologic Algorithm". IEEE Software 22(2): pp. 76-82,
March 2005.

[4]. B Baudry, F. Fleurey, Y. Le Traon, and J.-M. Jézéquel, "Genes
and Bacteria for Automatic Test Cases Optimization in
the .NET Environment". In proceedings of ISSRE'02 (Int.
Symposium on Software Reliability Engineering), Annapolis,
MD, USA, pp. 195-206, November 2002.

[5]. B Baudry, F. Fleurey, Y. Le Traon,” Improving Test Suites for
Efficient Fault Localization” In Proc. ICSE'06, May 20–28,
2006, Shanghai, China. Copyright 2006 ACM 1-59593-085-
/06/0005, pp 82-91.

[6]. G.J. Myers, The art of software testing, Wiley, 1979.
[7]. H. Sthamer, J. Wegener, and A. Baresel.“ Using evolutionary

testing to improve efficiency and quality in software testing.” In

Proceedings of the 2nd Asia-Pacific Conference on Software
Testing Analysis and Review (AsiaSTAR). 22-24th July, 2002.

[8]. H Yoon ,B Choi ,” Effective test case selection for component
customization and its application to Enterprise JavaBeans”
Software Testing, Verification and Reliability 2004;
14(1):pp.227–247.

[9]. K. Beck, E. Gamma. “Test-infected: Programmers love writing
tests.” 3(7), pp. 37–50, Java Report 1998.

[10]. K. Doerner, W.J. Gutjahr, “Extracting test sequences from a
Markov software usage model by ACO”, LNCS, vol. 2724, pp-
2465-2476, Springer Verlag, 2003.

[11]. K. Chari, A Hevner, ”System Test planning of Software: An
Optimization Approach” in IEEE Transactions on Software
Engineering, vol. 32, no. 7, July 2006, pp. 503-509.

[12]. L.C. Briland.,“On the many ways Software Engineering can
benefit from knowledge engineering”, Proc. 14th SEKE, Italy,
pp3-6, 2002.

[13]. M. Dorigo and G. Di Caro” The Ant Colony Optimization
meta-heuristic” In D. Corne, M. Dorigo, and F. Glover, editors,
New Ideas in Optimization, pp. 11–32. McGraw Hill, London,
UK, 1999.

[14]. M. Dorigo, G. Di Caro, and L. M. Gambardella. “Ant
algorithms for discrete optimization.” Artificial Life,
5(2):pp.137–172, 1999.

[15]. N. Tracey, J Clark, and K. Mander.,”The way forward for
unifying dynamic test-case generation: The optimization-
based approach” In Proc. International Workshop on
Dependable Computing and Its Applications, pp. 169–180.
Computer Science Dept., University of Witwatersrand, South
Africa, 1998.

[16]. N. Tracey, J. Clark, K. Mander, and J. McDermid,” An
automated framework for structural test-data generation” In
Proc. International Conference on Automated Software
Engineering, pp. 285– 288, Hawaii, USA, IEEE Computer
Society Press, 1998.

[17]. Nebut Cle´mentine, F. Fleurey, Y. Le Traon “Automatic Test
Generation: A Use Case Driven Approach” in IEEE
Transactions on Software Engineering, vol. 32 no.3, pp.140-
154, March 2006.

[18]. P. McMinn, Mark Harman, David Binkeley and Paolo Tonella,
“The Species per Path Approach to Search Based Test Data
Generation”, Proc. ISSTA July 17-20, 2006, ACM 2006.

[19]. P. McMinn, M. Holcombe, “The State Problem for
Evolutionary Testing”, Proc. GECCO 2003, LNCS Vol. 2724.
pp. 2488-3500, Springer Verlag, 2003.

[20]. P. McMinn, “Search-based test data generation: A survey”,
Journal on Software Testing, Verification and Reliability,
14(2):105–156, June 2004.

[21]. Paolo Tonella, “Evolutionary Testing of Classes”, Proc. ISSTA
July 11-14, 2004, ACM 2004.

[22]. P. Chevalley, “Applying mutation analysis for object-oriented
programs using a reflective approach”, Proceedings of the 8th
Asia-Pacific Software Engineering Conference, Macao, China,
IEEE Computer Society Press: Los Alamitos, CA, 2001;
pp.267–270, December 2001.

[23]. Z. Pawlak,”Rough Sets: Theoretical Aspects of Reasoning
About Data” Kluwer Academic Publishing, Dordrecht, 1991.

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

