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Abstract 
Improving testability during the early stages of High-level 

synthesis has several advantages including reduced test 
hardware overhead and design iterations. Recently, BIST 
techniques have changed their way from traditional DFT to 
modern SFT approach. In this paper, we present a novel 
flexible register allocation method for digital circuits, which is 
based on considering testability parameters as weights of 
register compatibility graph and weighted graph maximum 
clique algorithm in which during the synthesis, testability 
considerations impact on register allocation. 
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1. INTRODUCTION 
With the increases in complexity and numbering of 

Transistors fabricated on a single chip, the need for new 
methods of testing is inevitable. One of the design 
challenges in nanometer VLSI era is the guarantees for 
reliability [1]. 
 

A good percent of IC fabrication cost is the cost of 
testing [2].Exploiting BIST1 techniques which allows a 
circuit to test itself without needing external tester, has 
obviously decreased the cost of testing in IC2 fabrication. 
 Traditionally, testable circuit design is first synthesized 
for increase speed and decrease area and power 
consumption, and then modified to include test structure 
[6]. This is so called traditional DFT3, which decreases the 
quality of final circuit and increases test overhead and may 
be the design cycle iteration, thus increases time to market.  
 Recent trend in DFT is to incorporate the testable 
properties directly into the circuit itself during the 
synthesis process. This is known as the high-level SFT4

technique. Several SFT techniques using different 
heuristics have been reported with promising results [3]. 
In this paper we present a novel register allocation method 
which is based on considering testability metrics as 
weights of register compatibility graph and weighted graph 
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maximum clique algorithm, in which during the synthesis, 
testability parameters impact on register allocation process. 

2. BIST scheme 
 The basic components of BIST scheme are shown in 
fig.1. In a typical BIST environment, a TPG5 injects a 
number of test patterns into the scan chains which apply 
the pattern to CUT6 and the circuit response is captured 
back into the scan chains and compacted then compared to 
fault free signature in TRC7.
Usually LFSR8s are used as TPG or TRC, but some other 
kinds of TPGs are CA9 and circular self test path. In [4] 
TPG schemes have been divided into two categories: 
1- Pseudo random testing and weighted random testing, in 
which, the test pattern can be generated using LFSR, CA, 
or circular self test path. 
2- Pseudo deterministic testing, in which, a LFSR or CA is 
synthesized such that a set of some pre computed tests are 
embedded into pseudo random test sequences of the LFSR 
or CA. 

Fig. 1. A scan based BIST environment 
 

In [5] some optimized LFSRs are introduced which does 
not have overhead. 
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3. High level testable synthesis 
 In high level synthesis of a circuit, behavioral 
description of system with a set of constraints such as time 
and area are given to synthesis tool as input to convert the 
behavior of a circuit to a set of operation elements, 
memory elements and interconnection elements. The task 
of the synthesis tool is to do resource allocation and 
scheduling on data path graph. 
Exploiting self testability methods in a circuit has two 
major overheads: area and test time. Area minimization 
approaches usually maximize the sharing of test registers 
resulting in a fewer number of registers being modified for 
BIST without sacrificing test time (as our approach does) 
and time minimization approaches usually maximize the 
sharing of test registers resulting in fewer test sessions with 
maximum test concurrency, and may have drawback of 
large area overhead. 

 
3.1. Scheduling 

 In this stage of synthesis, beginning cycle of each 
operation is determined and each operation is assigned to 
one or more cycles. Thus, after scheduling has done, the 
beginning time of execution of each vertex in data path 
graph is determined. Scheduling operations to occur in the 
same clock cycle requires more logic units, but spreading 
out the work over more clock cycles takes more time. 
Some times the an operation such as I is not tightly forced 
to begin execution in a particular cycle and so I.earliest 
denotes the earliest  cycle time and I.latest denotes the 
latest cycle time in which, the operation I, can start its 
execution. 
There exist many scheduling algorithms. Two of theme is 
ALAP10 and ASAP11 which schedule an operation to 
O.latest and O.earliest correspondingly.  
In a SDFG12 the first cycle time in which, a variable 
defined is called the birth time and the last cycle time in 
which, the value of a variable used is called death time of 
that variable. The time interval [birth, death] of a variable 
is called life time of it. Two variables are compatible, if 
their life times do not overlap. It means that they can share 
a register together. 
 

3.2. Resource allocation 
 In this stage of synthesis, modules are assigned to 
perform operations, registers to store variables and 
interconnections (mostly MUXs) to interconnect the 
components to each other. The scheduling step assigns a 
particular clock cycle (relative to the start of the 
computation) to each operation that needs to be performed. 
Module assignment assigns functional units (such as 
adders) to particular steps in the schedule. We would like 
to schedule the operations so that the computation finishes 
in as few cycles as possible. Scheduling and resource 
allocation can be performed in any order, but in this paper 
we assumed that, scheduling has performed before 
resource allocation. We would also like to use as few 
functional units as possible. There are many algorithms to 

 
10 As late as possible 
11 As soon as possible 
12 Scheduled data flow graph 

perform resource allocation but most of them use one of 
compatibility or conflict graph. In both compatibility and 
conflict graphs, each vertex corresponds to a variable. If 
two variables are compatible, then the corresponding 
vertices in compatibility graph would be adjacent 
otherwise the corresponding vertices in conflict graph 
would be adjacent. Clearly these two types of register 
allocation graphs are complement of each other. Register 
allocation problem using compatibility graph can be solved 
by clique partitioning algorithm and register allocation 
problem using conflict graph can be solved by graph 
coloring algorithm. 
For example assuming scheduled SDFG shown in fig.2, 
corresponding compatibility and conflict graphs are shown 
in fig.3. 

1*

2*

2+

1+

LEA algorithm originally proposed for channel routing 
algorithm [7] is classified as a greedy algorithm and can be 
used to find the minimum number of registers needed for 
register allocation of a scheduled DFG. Given a SDFG to 
this algorithm, it makes a table of variables sorted by their 
life times then considering the life time of the variables, it 
greedily maps them to the registers which their mapped 
variables have not life time overlap with new one. For 
example assuming DFG shown in fig.2, Minimum 3 
registers are needed. 
 
3.3. Testability goals 
 
3.3.1. Controllability and Observability Improvement 
 Input registers are directly controllable and output 
registers are directly observable. Therefor for improvement 
of controllability (and observability) of internal variables, 
one can share a register between an internal variable and 
an input (output) variable. 
If a register does not assign directly to an input or output, it 
may be controllable and observable through other registers. 
 
3.3.2. Avoiding deep sequential depth and loops  
 After scheduling and resource allocation are done, 
DPCG13 can be derived from the architecture in which 
each node represents a register and each edge represents  
 

13 Data path circuit graph 
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Fig.4. Two resource allocations for example SDFG .

 
the largest combinatorial unit between two endpoint 
registers. The shortest path between two registers is called 
sequential depth between them.  Sequential depth linearly 
affects the test cost [9]. 
When the source and destination of a sequential path is the 
same and its length is more than one and none of the 
registers in the path is I/O register, the path is called 
sequential loop and affects on test cost exponentially [10].   
 
3.3.3 Self loop Avoidance 
When the source and destination of a sequential path is the 
same and its length is exactly one, the register is called self 
adjacent and it means that register drives one of the inputs 
of combinatorial element of the path and receives its 
output. 
During the synthesis process, creation of self adjacent 
registers must be avoided because in BIST methodology, 
normally a non-self adjacent register must be converted to 
BILBO14 which can support several modes of operations 

 
14 Built in logic block observer 

such as TPG, MISR15 as TRC, serial scan I/O and Normal 
but it can not operate as TPG and TRC in the same time. 
A self adjacent register in BIST methodology must act as 
TPG and TRC in the same time [11]. BILBO can not 
operate as TPG and TRC simultaneously. So probably it 
would be converted to CBILBO16 which has more area and 
time overhead than BILBO. The term “probably” is 
claimed because if there exist a distinct register for the 
output of a module and separate from its inputs, which can 
receive the output of that module, self adjacency of its 
input registers does not necessarily lead to use of CBILBO.  
Fig.4 illustrates two resource allocations for the DFG 
introduced in fig.2. 
 Fig.4.b has been synthesized for Area without self 
testability parameters consideration. Therefore, R1 and R3 
registers should be modified as CBILBO and R2 to TPG 
for self testability. But in fig.4.a in which testability 
parameters were considered during the synthesis process, 

 
15 Multiple input signature register 
16 Concurrent built in logic block observer 
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R3 can receive the output of both modules, thus R1 and R2 
can act as TPG and R3 as TRC with no need to CBILBO 
register. But number of MUXs in fig4.a is more than 
fig4.b. 
So in module assignment, if having distinct output register 
for a module, separate of its inputs is considered, CBILBO 
overhead in the BIST scheme will be reduced when there 
is no way from self adjacency.   
The minimum interconnects needed to model a circuit is 
achieved with Double clique algorithm [12]. 
 
3.3.4. Tradeoff  

We try to improve all testability metrics with minimum 
overhead and penalty but some of   these metrics are 
opposite to each other and a tradeoff must be established 
on achieving them. For example although sharing a register 
between an internal variable near output stages of DFG and 
an input register improves controllability of that internal 
variable but it may cause sequential loops in data path(s). 

4. Proposed algorithm 
For register allocation problem, a new flexible methods 
based on extended compatibility graph is presented. Our 
proposed method is about to satisfy testability parameters 
without violating structural constraints. Testability 
constraints are not as rigid as structural constraints, but 
violating those causes a circuit with low testability 
features. The Extended compatibility graph is a weighted 
compatibility graph in which, all edges are weighted. 
Weight of each edge in our extended compatibility graph is 
calculated by (1). 

 (1) 

desire
cycleL

conobselfthresholdIJe WDepthWWWWW +−−++−= 2

In (1) thresholdW is a constant which the value of it should 

select such that if 0=desireW then 0>
IJeW . Simply 

thresholdW should be selected such that in every situation, 
the weights of all the edges would be positive. 

selfW : If sharing a register between two variables, leads to 
a self adjacent register, then the connecting edge of those 
variables would have a positive value of selfW , otherwise 
zero. 

obW : If sharing a register between two variables, causes 
improvement in observability of each of them, then the 
connecting edge of those variables would have a positive 
value of obW , otherwise zero. 
Since all output variables all directly observable, all edges 
between those variables and their compatible internal 
variables have weight of 0>obW .

conW : If sharing a register between two variables, causes 
improvement in observability of each of them, then the 
connecting edge of those variables would have a positive 
value of conW , otherwise zero. 

Since all output variables all directly observable, all edges 
between those variables and their compatible internal 
variables have weight of 0>conW .

cycleL : If sharing a register between two variables, causes 

a sequential loop with maximum length of  cycleL in
DPCG, then the connecting edge of those variables would 
have a positive value of cycleL , otherwise zero. 
Depth: If sharing a register between two variables, causes 
increasing in sequential depth 

0>−= newold DepthDepthDepth  then the value of 
Depth in connecting edge of those variables would be a 
positive value, otherwise zero. 

desireW : May be there are some other parameters which the 
designer considers to his/her own design that we did not 
considered   to, such as power consumption or other 
metrics. He/she can affect register allocation by his/her 
parameters with desireW . But an important notice is He/she 

should take care to select desireW such that the weight of 
the edges remain positive in every case. 
In selecting the weight of edges, related ratio of parameters 
is more important than the scalar value of them. For 
example if all testability metrics have the same importance 
for a designer, if one assigns the value of 1 to all 

selfW , obW , conW , cycleL , Depth , desireW parameters, the 

affect of  cycleL would be two times of the ethers, because 
it exponentially contributes in our equation as the real 
effect of cycleL . So for this case with this rage of value 
assignment, one can assign all other parameters the value 
of 2 and 1 to the cycleL . Obviously this kind of parameter 

assignment makes the exponential contribution of cycleL
ineffective.  
Our proposed algorithm is shown in fig.5. We used 
MWC17 algorithm to find maximum weighted clique [13, 
14 and 15].  
MWC is an algorithm to extract one maximum weighted 
clique from a given non-directed graph, by extracting all 
maximum cliques of it and comparing their total weights. 
Our insistence on remaining the weights of the edges 
positive is due to this fact that a MWC algorithm which 
can perform correctly with negative weights, has a very 
great time complexity, so its synthesis time overhead is 
considerable. 
 
5. Experimental results 
We assumed selfW has the value of 5 and all other 
parameters had the value of zero. It means that just self 

testability is considered and selfW and cycleL2 have non-

zero value which cycleL is less effective in our register 
allocation contribution to minimize BIST area overhead. 

 
17 Maximum weighted clique 
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We have generated minimal area BIST solution for several 
high-level synthesis benchmarks. Here, we presented the 
results on the data path BIST synthesis. We choose 4 well-
known academic high-level synthesis benchmarks: the 2nd 
order differential equation DiffEq [16], the auto regression 
filter element AR_Filter [17], the 5th order elliptic wave 
filter EW_filter [18] and the 8-point FIR filter FIR_filter 
[19]. 
In Table 1, we report the results obtained for data path 
BIST synthesis. For each synthesized benchmark data path, 
we report the number of registers, including the number of 
CBILBOs, BILBOs, TPGs, TRCs, and the number of 
multiplexers, and the extra area overhead due to the 
configuration for the BIST scheme. The BIST area 
overhead is expressed as a percentage increase in the gate 
count as a result of the modification for embedded BIST 
scheme. For the purpose of comparison, Table 2 shows 
traditional high-level synthesis results on the same 

benchmarks without any BIST consideration achieved by 
LEA algorithm. It shows that considering requirements of 
the BIST scheme during behavioral synthesis, results in 
better BIST solution (less area overhead) can be obtained 
when compared to only structural DFT at low level. 
6. Conclusions 
In this paper, we exploited data path testability 
enhancement in high-level synthesis, and presented a 
technique to exploit test resource sharing to minimize the 
area overhead due to modification in behavioral synthesis 
domain. Study shows that not all of self-adjacent registers 
need to be modified to be CBILBOs. A sufficient condition 
was given. Testability constraints have been adopted to 
guide high-level synthesis process that has resulted in a 
minimal area test solution. 
Experimental results on some academic benchmarks 
demonstrate the effectiveness of the proposed approach to 
generate self-testable data path with low area overhead. 

 

Fig.5. Proposed algorithm for testable register allocation 
 

The most important advantage of our proposed technique 
is desireW , which allows the designer to apply the 
parameters which we did not consider, to the synthesis of 
the circuit. Fortunately for future advances in VLSI and 
VLSI testing, which may represent some new testing 

parameters, our technique is flexible enough to adapt with 
these new advances too. 
Although we used this technique for register allocation, its 
application does not limit to this, for example our 
technique can be used for module allocation too. 
 

Table 1- our experimental results 
Multiplexers Registers Modules BIST 

overhead 6:1 5:1 4:1 3:1 2:1 TRC TPG BILBO CBILBO *-+
circuits 

18.67% 000392310411DiffEq 
7.11% 0335142530804AR_filter 
6.95% 117653501305EW_filter 

27.38% 020271421404FIR_filter 

Register_allocation (scheduled DFG) 
{

Min_reg_number = LEA (scheduled DFG); 
 Construct (register_compatibility_graph); 
 Specify the appropriate value of ( thresholdW ); 

 For (each edge such as ije )
{

Specify the appropriate value of  
 ( desirecycleconobself WDepthLWWW ,, ); 

 desire
cycle

conobselfthreshold
ij

WDepth
L

WWWW
e

W +−−++−= 2 ;

}
While (scheduled DFG is not empty) 

 { 
 Maximum_weighted_clique (scheduled DFG); 
 Eliminate vertices selected by Maximum weighted clique algorithm from scheduled DFG; 
 }
}
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Table 2- Expermental results of traditional method (LEA) 
Multiplexers Registers Modules BIST 

overhead 6:1 5:1 4:1 3:1 2:1 TRC TPG BILBO CBILBO *-+
circuits 

29.25% 000461211411DiffEq 
17.66% 3022111870804AR_filter 
16.28% 122382502305EW_filter 
46.06% 010160142404FIR_filter 
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