
A Graph-based Framework for High-level Test Synthesis*

Ali Pourghaffari bashari Saadat Pourmozafari

 pourghaffari@cic.aut.ac.ir saadat@ce.aut.ac.ir

Abstract
Improving testability during the early stages of High-level

synthesis has several advantages including reduced test
hardware overhead and design iterations. Recently, BIST
techniques have changed their way from traditional DFT to
modern SFT approach. In this paper, we present a novel
flexible register allocation method for digital circuits, which is
based on considering testability parameters as weights of
register compatibility graph and weighted graph maximum
clique algorithm in which during the synthesis, testability
considerations impact on register allocation.

Keywords

BIST, Synthesis, Testability, Register allocation, (C)BILBO.

1. INTRODUCTION
With the increases in complexity and numbering of

Transistors fabricated on a single chip, the need for new
methods of testing is inevitable. One of the design
challenges in nanometer VLSI era is the guarantees for
reliability [1].

A good percent of IC fabrication cost is the cost of
testing [2].Exploiting BIST1 techniques which allows a
circuit to test itself without needing external tester, has
obviously decreased the cost of testing in IC2 fabrication.
 Traditionally, testable circuit design is first synthesized
for increase speed and decrease area and power
consumption, and then modified to include test structure
[6]. This is so called traditional DFT3, which decreases the
quality of final circuit and increases test overhead and may
be the design cycle iteration, thus increases time to market.
 Recent trend in DFT is to incorporate the testable
properties directly into the circuit itself during the
synthesis process. This is known as the high-level SFT4

technique. Several SFT techniques using different
heuristics have been reported with promising results [3].
In this paper we present a novel register allocation method
which is based on considering testability metrics as
weights of register compatibility graph and weighted graph

* This paper is partially supported by Iran telecom research center.
Both A.Pourghaffari and S.Pourmozafari are with Computer and IT
Department, Amirkabir University of Technology, Hafez Ave. Tehran,
IRAN
1 Built in self test
2 Integrated circuit
3 Design for testability
4 Synthesis for testability

maximum clique algorithm, in which during the synthesis,
testability parameters impact on register allocation process.

2. BIST scheme
 The basic components of BIST scheme are shown in
fig.1. In a typical BIST environment, a TPG5 injects a
number of test patterns into the scan chains which apply
the pattern to CUT6 and the circuit response is captured
back into the scan chains and compacted then compared to
fault free signature in TRC7.
Usually LFSR8s are used as TPG or TRC, but some other
kinds of TPGs are CA9 and circular self test path. In [4]
TPG schemes have been divided into two categories:
1- Pseudo random testing and weighted random testing, in
which, the test pattern can be generated using LFSR, CA,
or circular self test path.
2- Pseudo deterministic testing, in which, a LFSR or CA is
synthesized such that a set of some pre computed tests are
embedded into pseudo random test sequences of the LFSR
or CA.

Fig. 1. A scan based BIST environment

In [5] some optimized LFSRs are introduced which does
not have overhead.

5 Test pattern generator
6 Circuit under test
7 Test response comparator
8 Linear fid back shift register
9 Cellular automata

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

mailto:saadat@ce.aut.ac.ir
mailto:pourghaffari@cic.aut.ac.ir

3. High level testable synthesis
 In high level synthesis of a circuit, behavioral
description of system with a set of constraints such as time
and area are given to synthesis tool as input to convert the
behavior of a circuit to a set of operation elements,
memory elements and interconnection elements. The task
of the synthesis tool is to do resource allocation and
scheduling on data path graph.
Exploiting self testability methods in a circuit has two
major overheads: area and test time. Area minimization
approaches usually maximize the sharing of test registers
resulting in a fewer number of registers being modified for
BIST without sacrificing test time (as our approach does)
and time minimization approaches usually maximize the
sharing of test registers resulting in fewer test sessions with
maximum test concurrency, and may have drawback of
large area overhead.

3.1. Scheduling

 In this stage of synthesis, beginning cycle of each
operation is determined and each operation is assigned to
one or more cycles. Thus, after scheduling has done, the
beginning time of execution of each vertex in data path
graph is determined. Scheduling operations to occur in the
same clock cycle requires more logic units, but spreading
out the work over more clock cycles takes more time.
Some times the an operation such as I is not tightly forced
to begin execution in a particular cycle and so I.earliest
denotes the earliest cycle time and I.latest denotes the
latest cycle time in which, the operation I, can start its
execution.
There exist many scheduling algorithms. Two of theme is
ALAP10 and ASAP11 which schedule an operation to
O.latest and O.earliest correspondingly.
In a SDFG12 the first cycle time in which, a variable
defined is called the birth time and the last cycle time in
which, the value of a variable used is called death time of
that variable. The time interval [birth, death] of a variable
is called life time of it. Two variables are compatible, if
their life times do not overlap. It means that they can share
a register together.

3.2. Resource allocation
 In this stage of synthesis, modules are assigned to
perform operations, registers to store variables and
interconnections (mostly MUXs) to interconnect the
components to each other. The scheduling step assigns a
particular clock cycle (relative to the start of the
computation) to each operation that needs to be performed.
Module assignment assigns functional units (such as
adders) to particular steps in the schedule. We would like
to schedule the operations so that the computation finishes
in as few cycles as possible. Scheduling and resource
allocation can be performed in any order, but in this paper
we assumed that, scheduling has performed before
resource allocation. We would also like to use as few
functional units as possible. There are many algorithms to

10 As late as possible
11 As soon as possible
12 Scheduled data flow graph

perform resource allocation but most of them use one of
compatibility or conflict graph. In both compatibility and
conflict graphs, each vertex corresponds to a variable. If
two variables are compatible, then the corresponding
vertices in compatibility graph would be adjacent
otherwise the corresponding vertices in conflict graph
would be adjacent. Clearly these two types of register
allocation graphs are complement of each other. Register
allocation problem using compatibility graph can be solved
by clique partitioning algorithm and register allocation
problem using conflict graph can be solved by graph
coloring algorithm.
For example assuming scheduled SDFG shown in fig.2,
corresponding compatibility and conflict graphs are shown
in fig.3.

1*

2*

2+

1+

LEA algorithm originally proposed for channel routing
algorithm [7] is classified as a greedy algorithm and can be
used to find the minimum number of registers needed for
register allocation of a scheduled DFG. Given a SDFG to
this algorithm, it makes a table of variables sorted by their
life times then considering the life time of the variables, it
greedily maps them to the registers which their mapped
variables have not life time overlap with new one. For
example assuming DFG shown in fig.2, Minimum 3
registers are needed.

3.3. Testability goals

3.3.1. Controllability and Observability Improvement
 Input registers are directly controllable and output
registers are directly observable. Therefor for improvement
of controllability (and observability) of internal variables,
one can share a register between an internal variable and
an input (output) variable.
If a register does not assign directly to an input or output, it
may be controllable and observable through other registers.

3.3.2. Avoiding deep sequential depth and loops
 After scheduling and resource allocation are done,
DPCG13 can be derived from the architecture in which
each node represents a register and each edge represents

13 Data path circuit graph

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

R2

R3

R1

M1 M2

0 1 0 1

0 1

0 10 1

R1 R2 R3

M1 M2

0 10 1 0 1

4.b. Resource allocation without testability
consideration

4.a. Resource allocation with testability
consideration

Fig.4. Two resource allocations for example SDFG .

the largest combinatorial unit between two endpoint
registers. The shortest path between two registers is called
sequential depth between them. Sequential depth linearly
affects the test cost [9].
When the source and destination of a sequential path is the
same and its length is more than one and none of the
registers in the path is I/O register, the path is called
sequential loop and affects on test cost exponentially [10].

3.3.3 Self loop Avoidance
When the source and destination of a sequential path is the
same and its length is exactly one, the register is called self
adjacent and it means that register drives one of the inputs
of combinatorial element of the path and receives its
output.
During the synthesis process, creation of self adjacent
registers must be avoided because in BIST methodology,
normally a non-self adjacent register must be converted to
BILBO14 which can support several modes of operations

14 Built in logic block observer

such as TPG, MISR15 as TRC, serial scan I/O and Normal
but it can not operate as TPG and TRC in the same time.
A self adjacent register in BIST methodology must act as
TPG and TRC in the same time [11]. BILBO can not
operate as TPG and TRC simultaneously. So probably it
would be converted to CBILBO16 which has more area and
time overhead than BILBO. The term “probably” is
claimed because if there exist a distinct register for the
output of a module and separate from its inputs, which can
receive the output of that module, self adjacency of its
input registers does not necessarily lead to use of CBILBO.
Fig.4 illustrates two resource allocations for the DFG
introduced in fig.2.
 Fig.4.b has been synthesized for Area without self
testability parameters consideration. Therefore, R1 and R3
registers should be modified as CBILBO and R2 to TPG
for self testability. But in fig.4.a in which testability
parameters were considered during the synthesis process,

15 Multiple input signature register
16 Concurrent built in logic block observer

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

R3 can receive the output of both modules, thus R1 and R2
can act as TPG and R3 as TRC with no need to CBILBO
register. But number of MUXs in fig4.a is more than
fig4.b.
So in module assignment, if having distinct output register
for a module, separate of its inputs is considered, CBILBO
overhead in the BIST scheme will be reduced when there
is no way from self adjacency.
The minimum interconnects needed to model a circuit is
achieved with Double clique algorithm [12].

3.3.4. Tradeoff

We try to improve all testability metrics with minimum
overhead and penalty but some of these metrics are
opposite to each other and a tradeoff must be established
on achieving them. For example although sharing a register
between an internal variable near output stages of DFG and
an input register improves controllability of that internal
variable but it may cause sequential loops in data path(s).

4. Proposed algorithm
For register allocation problem, a new flexible methods
based on extended compatibility graph is presented. Our
proposed method is about to satisfy testability parameters
without violating structural constraints. Testability
constraints are not as rigid as structural constraints, but
violating those causes a circuit with low testability
features. The Extended compatibility graph is a weighted
compatibility graph in which, all edges are weighted.
Weight of each edge in our extended compatibility graph is
calculated by (1).

 (1)

desire
cycleL

conobselfthresholdIJe WDepthWWWWW +−−++−= 2

In (1) thresholdW is a constant which the value of it should

select such that if 0=desireW then 0>
IJeW . Simply

thresholdW should be selected such that in every situation,
the weights of all the edges would be positive.

selfW : If sharing a register between two variables, leads to
a self adjacent register, then the connecting edge of those
variables would have a positive value of selfW , otherwise
zero.

obW : If sharing a register between two variables, causes
improvement in observability of each of them, then the
connecting edge of those variables would have a positive
value of obW , otherwise zero.
Since all output variables all directly observable, all edges
between those variables and their compatible internal
variables have weight of 0>obW .

conW : If sharing a register between two variables, causes
improvement in observability of each of them, then the
connecting edge of those variables would have a positive
value of conW , otherwise zero.

Since all output variables all directly observable, all edges
between those variables and their compatible internal
variables have weight of 0>conW .

cycleL : If sharing a register between two variables, causes

a sequential loop with maximum length of cycleL in
DPCG, then the connecting edge of those variables would
have a positive value of cycleL , otherwise zero.
Depth: If sharing a register between two variables, causes
increasing in sequential depth

0>−= newold DepthDepthDepth then the value of
Depth in connecting edge of those variables would be a
positive value, otherwise zero.

desireW : May be there are some other parameters which the
designer considers to his/her own design that we did not
considered to, such as power consumption or other
metrics. He/she can affect register allocation by his/her
parameters with desireW . But an important notice is He/she

should take care to select desireW such that the weight of
the edges remain positive in every case.
In selecting the weight of edges, related ratio of parameters
is more important than the scalar value of them. For
example if all testability metrics have the same importance
for a designer, if one assigns the value of 1 to all

selfW , obW , conW , cycleL , Depth , desireW parameters, the

affect of cycleL would be two times of the ethers, because
it exponentially contributes in our equation as the real
effect of cycleL . So for this case with this rage of value
assignment, one can assign all other parameters the value
of 2 and 1 to the cycleL . Obviously this kind of parameter

assignment makes the exponential contribution of cycleL
ineffective.
Our proposed algorithm is shown in fig.5. We used
MWC17 algorithm to find maximum weighted clique [13,
14 and 15].
MWC is an algorithm to extract one maximum weighted
clique from a given non-directed graph, by extracting all
maximum cliques of it and comparing their total weights.
Our insistence on remaining the weights of the edges
positive is due to this fact that a MWC algorithm which
can perform correctly with negative weights, has a very
great time complexity, so its synthesis time overhead is
considerable.

5. Experimental results
We assumed selfW has the value of 5 and all other
parameters had the value of zero. It means that just self

testability is considered and selfW and cycleL2 have non-

zero value which cycleL is less effective in our register
allocation contribution to minimize BIST area overhead.

17 Maximum weighted clique

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

We have generated minimal area BIST solution for several
high-level synthesis benchmarks. Here, we presented the
results on the data path BIST synthesis. We choose 4 well-
known academic high-level synthesis benchmarks: the 2nd
order differential equation DiffEq [16], the auto regression
filter element AR_Filter [17], the 5th order elliptic wave
filter EW_filter [18] and the 8-point FIR filter FIR_filter
[19].
In Table 1, we report the results obtained for data path
BIST synthesis. For each synthesized benchmark data path,
we report the number of registers, including the number of
CBILBOs, BILBOs, TPGs, TRCs, and the number of
multiplexers, and the extra area overhead due to the
configuration for the BIST scheme. The BIST area
overhead is expressed as a percentage increase in the gate
count as a result of the modification for embedded BIST
scheme. For the purpose of comparison, Table 2 shows
traditional high-level synthesis results on the same

benchmarks without any BIST consideration achieved by
LEA algorithm. It shows that considering requirements of
the BIST scheme during behavioral synthesis, results in
better BIST solution (less area overhead) can be obtained
when compared to only structural DFT at low level.
6. Conclusions
In this paper, we exploited data path testability
enhancement in high-level synthesis, and presented a
technique to exploit test resource sharing to minimize the
area overhead due to modification in behavioral synthesis
domain. Study shows that not all of self-adjacent registers
need to be modified to be CBILBOs. A sufficient condition
was given. Testability constraints have been adopted to
guide high-level synthesis process that has resulted in a
minimal area test solution.
Experimental results on some academic benchmarks
demonstrate the effectiveness of the proposed approach to
generate self-testable data path with low area overhead.

Fig.5. Proposed algorithm for testable register allocation

The most important advantage of our proposed technique
is desireW , which allows the designer to apply the
parameters which we did not consider, to the synthesis of
the circuit. Fortunately for future advances in VLSI and
VLSI testing, which may represent some new testing

parameters, our technique is flexible enough to adapt with
these new advances too.
Although we used this technique for register allocation, its
application does not limit to this, for example our
technique can be used for module allocation too.

Table 1- our experimental results
Multiplexers Registers Modules BIST

overhead 6:1 5:1 4:1 3:1 2:1 TRC TPG BILBO CBILBO *-+
circuits

18.67% 000392310411DiffEq
7.11% 0335142530804AR_filter
6.95% 117653501305EW_filter

27.38% 020271421404FIR_filter

Register_allocation (scheduled DFG)
{

Min_reg_number = LEA (scheduled DFG);
 Construct (register_compatibility_graph);
 Specify the appropriate value of (thresholdW);

 For (each edge such as ije)
{

Specify the appropriate value of
 (desirecycleconobself WDepthLWWW ,,);

 desire
cycle

conobselfthreshold
ij

WDepth
L

WWWW
e

W +−−++−= 2 ;

}
While (scheduled DFG is not empty)

 {
 Maximum_weighted_clique (scheduled DFG);
 Eliminate vertices selected by Maximum weighted clique algorithm from scheduled DFG;
 }
}

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

Table 2- Expermental results of traditional method (LEA)
Multiplexers Registers Modules BIST

overhead 6:1 5:1 4:1 3:1 2:1 TRC TPG BILBO CBILBO *-+
circuits

29.25% 000461211411DiffEq
17.66% 3022111870804AR_filter
16.28% 122382502305EW_filter
46.06% 010160142404FIR_filter

References
[1] S. Tosun, O. Ozturk, N. Mansouri, E. Arvas, M. Kandemir,

Y. Xie, W.-L. Hung, "An ILP formulation for reliability
oriented high-level synthesis", Proceedings of the Sixth
International Symposium on Quality Electronic Design
(ISQED), March 2005, pp. 364-369.

[2] N. H. E. Weste, D. Harris ,CMOS VLSI Design A circuits
and systems perspective, Addison Wesley, 2005

[3] K. Wagner and S.Dey, “High-Level Synthesis for Testability:
A Survey and Perspective”, Proc. of ACM 1996 Design
Auto. Conf. (DAC’96), p.131-136

[4] V. N. Yarmolik and I.V.Kachan, Self-Testing VLSI Design,
Elsevier, ©1993

[5] D. k. Pradhan, C. Liu, K. chkraborty, "EBIST: A novel Test
Generator with Built-In fault Detection capability", IEEE
Tranc. On cad, volume 24(8), August 2005.

[6] L.B. Michael, D.A. Vishwani, Essentials of Electronic
Testing for Digital, Memory and Mixed-Signal VLSI
Circuits, Kluwer Academic Publishers, Dordrecht, 2000.

[7] A. Hashimoto, J. Stevens, Wire routing by channel
assignment within large apertures, in: Proceedings of the
Design Automation Workshop, 1971, pp. 155-169.

[8] F.J. Kurdahi, A.C. Parker, REAL: a program for register
allocation, in: Proceedings of the Design Automation
Conference, June 1987, pp. 210-215.

[9] M.L. Flottes, R. Pires, B. Rouzeyre, L. Volpe, Scanning data
paths: a fast and effective partial scan technique, in:
Proceedings of the DATE, Paris, February 1998, pp. 158-165.

[10] M. Tien, C. Lee, High Level Test Synthesis of Digital VLSI
Circuits, Artech House Press, 1997.

[11] A. Steininger, Testing and built-in self-test--a survey, J. Syst.
Archit. 46 (2000) 721-747.

[12] B.M.Pangrle, “On the Complexity of Connectivity Binding”,
IEEE Trans. on CAD, Vol.10, pp.1460-1465, 1991.

[13] D. Bahadur K. C, E. Tomita, J. Suzuki and T. Akutsu:
"Protein side-chain packing problem: A maximum edge-
weight clique algorithmic approach," Journal of
Bioinformatics and Computational Biology, Vol.3, pp. 103-
126, 2005.

[14] J.B. Brown, D. Bahadur K. C, E. Tomita, and T. Akutsu:
"Multiple metods for protein side chain packing using
maximum weight cliques," Genome Informatics, Vol.17,
pp.3-12, 2006.

[15] Suzuki, J., Tomita, E. and Seki: "An algorithm for finding a
maximum Clique with maximum edge-weight and
computational experiments", The Information Processing
Society of Japan, 2004.

[16] P.Paulin and J.Knight, “Force-Directed Scheduling for the
Behavioral Synthesis of ASICs”, IEEE Trans. on CAD.
Vol.8, No.6, 1989, pp.661-679

[17] S.Y.Kung, H.J.Whitehouse and T. Kailath, VLSI and Modern
Signal Processing, Prentice-Hall, 1985

[18] N.Park and A.C.Parker, “SEHWA: A program for Synthesis
of Pipelines”, Proc. of ACM/IEEE Design Auto. Conf. 1986,
pp.454-460

[19] R. Jain, A.C. Parker and N.Park, “Predicting System-Level
Area and Delay for Pipelined and Non-pipelined Designs”,
IEEE Trans. on CAD, Vol.11, No.8, 1992, pp.955-965.

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

	1. INTRODUCTION
	2. BIST scheme
	3. High level testable synthesis
	We try to improve all testability metrics with minimum overhead and penalty but some of these metrics are opposite to each other and a tradeoff must be established on achieving them. For example although sharing a register between an internal variable near output stages of DFG and an input register improves controllability of that internal variable but it may cause sequential loops in data path(s).
	4. Proposed algorithm

