

Utilising Refactoring

To Restructure Use-Case Models
Ayman A. Issa

Abstract—Use case refactoring is one of the recent software

engineering techniques that aimed at synthesising and refining
use case models. Two new types of use case refactoring are
proposed in this paper. First, behavioural refactorings aimed
at synthesising the presentation and understanding of the
described services. Second, structural refactorings aimed at
refining and simplifying the different relationships between the
following pairs: (1) concrete and abstract use cases, and (2) use
cases and actors. The application of the proposed refactorings
on a real use case model showed that the advantages of use case
refactorings are not limited to the target use case models only,
but on their relationsips with other software engineering
artefacts. These include the facilitation of the extraction and
utilisation of (1) use case patterns, (2) software metrics, and (3)
software cost estimates from use case models. Further work is
being carried out to automate the process of use case
refactoring and integrate it with the underlying software
development process.

Index Terms—Use Case Model, Refactoring, Software
Patterns, Software Metrics.

I. INTRODUCTION
Use case modelling is an approach invented to capture

requirements from the perspective of how the user will
actually use the system instead of the perspective of the
technical features that the system is required to incorporate
[1]. This simple concept means that the requirements
documentation can also be used as the basis for subsequent
software development activities. Theoretically, this has been
adopted by the unified software development process [2]
which stated the use case model as a core model that drives
the derivation of all subsequent software development
models: design, process, implementation, and deployment
models. Among other things, use cases construct the basis
for [3]: defining functional requirements and objects,
allocating functionalities to objects, defining object
interaction and object interfaces, the user interface, test
cases, determining development increments, and composing
user documentation and manuals. Practically, this was
hindered by a number of use case modelling problems [4].
Namely, use case granularity, inconsistency, and ambiguity
[5]. Unfortunately, the current use case modelling methods
give no guide to use case specifiers about how detailed and
concrete the specifications of use cases needs to be, and how
specific the scope of each use case should be.1

Refactoring, which is a behaviour-preserving
transformation [6], was originally introduced to structure
and modularise source code. Subsequently, several authors
have articulated and presented refactoring techniques in
several fields in the software industry [6,7]. The most

1 Ayman A. Issa, Software Engineering Department, Faculty of Information
Technology, Philadelphia University, P.O. Box 1, Amman. 19392, Jordan,
aissa@philadelphia.edu.jo

popular software refactoring fields include, but are not
limited to, architecture and use case model refactoring.

The use case modelling literature considers two main use
case model refactoring perspectives. First, Rui and Butler [6]
addressed the modelling perspective of use case refactoring,
whereas Metz et al. [7] discussed the relational perspective
of it. Both use case refactoring paradigms resulted in an
enhanced maintainable and understandable use case models.
This raised a number of research questions to which this
paper aimed to answer: (1) can use case refactoring
participate in reducing the main use case modelling
problems (e.g. granularity and consistency)?, (2) what
aspects of software engineering can be supported by use
case refactoring?, and (3) to what extent can these supported
software engineering aspects facilitate the practical
application of use case model based software development?

In section 2, the related use case refactoring literature is
investigated. Section 3 presents the newly proposed
behavioural use case refactorings. The relationship between
use case refactoring and other software engineering
paradigms is explained in section 4. In section 5, the
proposed use case refactorings are demonstrated by example.
Finally, the conclusion and future work are discussed in
section 6.

II. USE CASE REFACTORING TECHNIQUES

A. Use Case Modelling Refactoring
Due to the diverse use case modelling semantics between

practitioners, Rui and Butler [6] proposed a generalised use
case metamodel based on following main use case
dependency relationships: subset/combines, uses/includes,
precedes/follows, requires, extends, is-specialization-of,
resembles, and equate. Consequently, they utilised their
proposed metamodel to adapt source code refactoring in use
case modelling. The result was a set of use case refactorings
that are classified into five main categories: creating a use
case entity, deleting a use case entity, changing a use case

Table 1: Use case refactoring examples [6].
Refactoring Category Example Refactoring

Creating a use case entity create_empty_usecase
create_empty_actor

Deleting a use case entity delete_unreferenced_usecase
delete_unreferenced_actor

Changing a use case entity change_usecase_name
change_actor_name

Moving an element of use case move_actor_to_parent_usecase
move_actor_to_child_usecase

Distributing behaviour decompose_usecase
decompose_goal

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

entity, moving an element of a use case, and distributing
behaviour. Table 1 presents sample refactorings of each
category.

B. Relational Use Case Refactoring
Metz et al. [7] discovered a gap between the definition of

use case relationships in UML and the way practitioners
refactor textual and graphical use case models using include
and extend relationships. Examples of these differences
include the usage of extend relationship to express both
partial and fully parallel interaction courses and exceptional
alternative use case behaviours. Therefore, Metz. et al. [7]
proposed a detailed UML refactorings to fully support these
practical needs. Their proposal was introduced as a set of
changes to the UML: (1) abstract syntax behavioural
package, (2) metamodel element use case, (3) metamodel
element include, and (4) metamodel element extend.
Examples of the alternative courses that are supported in
Metz et al proposed refactorings are presented in figure 1.

Figure 1: Metz et al. supported alternative courses [7].

This shows that Metz et al. relational refactoring is

intended to extend UML capabilities. On the other hand, Rui
and Butler use case refactorings are mainly intended to
improve the presentation and readability of software systems
use case models so as to facilitate further use case based
software development. However, the analysis of use case
modelling state of the art [5,8] suggests the need for other
behavioural and structural use case refactorings so as to
promote an integrated use case based software engineering.
This includes both software development and management.
Hence, this paper proposes a number of behavioural and
structural use case refactorings that motivate better
utilisation of use case models as detailed in the following
sections.

III. THE PROPOSED BEHAVIOURAL AND
STRUCTURAL REFACTORINGS

In building use case models, it is possible to apply two
principally different approaches [9]: (1) top-down and (2)
bottom-up. A top-down approach starts with identifying a
number of use cases that are further refined with respect to
their structural properties. A bottom-up approach starts with
concrete examples of usage scenarios that are further
generalized and synthesised into use cases that encompass
these scenarios and more. Regardless how the use case was
identified and modelled, the functionality of any single use
case must be a complete course in itself. Similar use cases
can begin in a similar way; it is not always possible to
decide what use case has been instantiated until it is
completed. Hence, similar starts can be factored out in a

general reused use case with the differences in extending use
cases.

Also, any use case scenario can be classified as [1,7]:
1) main scenario that describes the usual way in

which the task is successfully performed,
2) variant scenario that describes another way of using

the system where it is assumed that all steps
execute successfully,

3) exceptional scenario that describes a scenario
where exceptional or error conditions may arise,

4) recovery scenario that describes a scenario to
recover from the exceptions and therefore
successfully complete the task, or

5) failure scenario that describes a scenario where it
may not be possible to recover from an exception.

Some use case specifiers prefer to separate exceptional,
recovery, and failure scenarios in independent extending use
case. Also, McCabe number, as cited in [8], can be
calculated for each use case to indicate its complexity.
Exceeding a specific threshold, 3 flows per use case as
calculated by Issa et al. [10], representing the average
number of paths (scenarios) per use case raises the flag for
the possible need of some refactoring to simplify the use
case.

In a proposed unified generic use case model, Issa et al.
[11] showed that each use case scenario should be
accompanied with a priority to facilitate using use cases in
determining the contents of each development increment.
Similarly, this priority property can be utilised as a
refactoring indicator to separate highly important scenarios
in related use cases when possible.

The existence of different use case specifiers in the
development of one use case model have led to a different
use case level of details as well as the use of different
representation styles [5]. However, there should be a
published style guide for in-house use cases. Letting every
software engineer "do his/her own thing" increases the
number of errors, makes testing much more difficult, limits
the possibility of use case reuse, and decreases the overall
efficiency of the project. Hence, the very last step of
developing use case models should be devoted to the
restructuring and unifying of the use case specifications to
comply with the published in-house style guide.

Table 2: The newly identified use case behavioural and structural

refactorings.
Refactoring

Category
Refactoring Activity

Behavioural

reordering interaction steps
reverse condition
substitute Algorithm
change unidirectional communication
to bidirectional communication
consolidate duplicate conditional
fragment

Structural

merge (inline) two UCs
change include relation to extend
relation
change extend relation to include
relation
extract general behaviour (include,
extend, super, or sub UCs)
collapse use case hierarchy
collapse actor hierarchy
expand actor hierarchy
replace condition with extend
relationship
reformat to the in-house style guide

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

The congregation of all these traditional use case
modelling activities guided the author to identify a number
of implicit behavioural and structural refactorings as
summarised in table 2. Compared to Rui and Butler
presentational use case refactorings, the newly proposed use
case refactorings should participate in creating a better
structured and presented use case model. In addition, the
application of the newly proposed use case refactorings may
lead to uncover missed/lost details and other hidden use
cases.

Although use case refactoring may lead to a better
structured use case model, too many refactorings are
difficult to control and actually diminish their specific
effectiveness. Hence, refactoring misuse and overuse should
be avoided to avoid their direct use cases inconsistency and
explosion problems, respectively.

IV. IMPLICATIONS OF USE CASE REFACTORING IN
SOFTWARE ENGINEERING

As use cases represent the main source of functionality in
use case based software development, project managers
believe that the use case model gives some indication of the
final system size and the amount of effort involved in
developing the corresponding operational software system.
Therefore, a number of simple early applicable use case
based software cost estimation models [11,12] have been
developed with competitive accuracy results when
compared to the more complex traditional software cost
estimation models such as COCOMO II [12,13]. However,
the accuracy of the results obtained from these simple
models is highly affected by the diverse use case modelling
misconceptions and problems discussed in previous section.
For example, the number of actors (use cases) affects the
estimates by combining actors (use cases) with similar
descriptions into one actor (use case), the super actor (super
use case). This increases the precision of the estimate and
hence counting the actors (use cases) only once. Another
factor that affects estimation is the level of detail that is
involved in the use case specifications. The number of
interactions within that use case measures the size of each
use case, which consequently has a direct impact on the
estimate obtained by the use case based estimation models.
The suggested use case refactorings in the previous section
are believed to participate in solving most of these use case
modelling problems to result in a highly well-structured use
case model. This will facilitate the extraction of a more
accurate use case based metrics; and consequently, more
accurate corresponding software cost estimation.

A use case pattern [10] is the design of a generic abstract
use case representing a common solution to a common
problem in a given context. A use case pattern for a specific
class of applications consists of a general model and a
collection of general steps such that for a given step the
general model suggests one or more steps that can follow it
[10]. Therefore, the skill most necessary for identifying
reusable use case patterns is the ability to abstract. The
proposed set of structural use case refactorings in the
previous section (e.g. extract general behaviour, and replace
condition with extend relationship) can be considered as a
main source for identifying candidate generic use case
patterns in their different three categories as classified by
Issa et al. [10]: (1) project dependent, (2) application domain
dependent, and (3) application domain independent. The

identification of use case patterns in the early stages of
software systems development showed many signs of
success including: (1) the acceleration of the development
process as it promotes a broad range of subsequent reuse for
analysis and design patterns, (2) improved software
engineers productivity, and, most importantly, (3) improved
software quality. Further, Issa et al. [10] reported that use
case patterns can be utilised in estimating software projects
using their bottom-up use case patterns based estimation
approach.

Finally, this shows the importance of use case refactoring
as a pre-request to utilise the developed use case models in
subsequent development phases including software
measurement, software cost estimation, and building use
case patterns catalogues.

V. USE CASE REFACTORING BY EXAMPLE
“Web Registration” project [14] has been utilised to

explain the proposed use case based refactorings. The aim of
this project is to develop an online student registration
system. The initial use case model of the project consists of
11 use cases that detail the different features of the system.
The “Submit On-line Registration Form” use case has been
selected to demonstrate the newly proposed use case
refactorings. Figure 2 presents the detailed specification of
the selected use case.

The analysis of the “Web Registration” system use case
model, in general, and the “Submit On-line Registration
Form” use case, in particular, showed the necessity of a
number of use case refactorings to synthesise and refine the
overall structural and behavioural aspects of the use case
model. Examples of the required refactorings include: (1)
reordering interaction steps, (2) extract general behaviour, (3)
replace condition with extend relationship, and (4) reformat
to the in-house style guide.

Use cases represent the anticipated automated version of
the underlying business processes. Some interactions
ordering mismatches were found in the developed use cases.
Hence, this necessitates the usage of the proposed
“reordering interaction steps” refactoring to match the
interactions order in both business and system processes.
Also, the use case model development team consists of 4 use
case specifiers which required the application of the
“reformat to the in-house style guide” refactoring to
eliminate styles and level of details differences. Figure 2
presents the re-ordered and re-formatted version of the on-
line registration use case.

Use case precondition(s) describe(s) the system context in
order to be able to start the use case. Hence, they may be
represented as a general use case that aims to evaluate the
system status before starting the current use case. This can
be achieved using “extract general behaviour” structural
refactoring. In the “Submit On-line Registration Form” use
case, the checking of its five preconditions can be factored
out in an independent use case that’s included in the parent
use case.
Similarly, alternative exceptional flows that are dedicated to
check and validate user input are common in different use
cases. Hence, they can be separated in an independent use
case using the “replace condition with extend relationship”
structural refactoring. Figure 3 presents the structurally
refactored On-line registration use case.

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

Figure 2: On-line registration use case specification.

Finally, the extracted common general behaviours
represent the main source for the identification of the
different types of use case patterns. For example,
precondition evaluation use case is a general idea that can be
forecasted to all use case models as a domain independent
use case pattern. However, the low level conditions and
evaluations of each use case are dependent on the specific
calling use case. Hence, a project dependent use case pattern
of the evaluation use case can be created to represent the
specific conditions. The same concept of the application
domain independent and project dependent use case patterns

Figure 3: Refactored on-line registration use case.

can be applied to the alternative exceptional flows general
use case.

VI. CONCLUSIONS AND FUTURE WORK
A new set of behavioural and structural use case

refactorings was introduced. The application of the proposed
set of refactorings to use case models participated in
synthesising and refining their structural and presentational
aspects. Also, it has been shown that the application of the
proposed use case refactorings paves the way to achieve the
theoretical objectives of the unified software development
process. This includes the utilisation of the use case model
as a core model to drive subsequent phases of software
development.

Furthermore, refactored use case models have shown the
ability to support other software engineering activities such
as software measurement, software cost estimation, and the
identification of use case patterns. These findings
participated in addressing the main research questions that
was additionally supported by the application of the
proposed refactoring approach on the selected case study:
the “Web Registration” project.

Further work is being carried out to identify more use case
refactorings that facilitates the development of highly
structured use case models. A multi-steps identification
approach is adopted to survey the use case modelling
literature so as to identify any implicit refactoring activity.
Also, source code development approaches [8] are being
analogised to the use case modelling approaches to identify
any similarity that may lead to adapt some source code
refactorings to the use case modelling industry. This will be

• Name: Submit On-line Registration Form.
• Goal In Context: Teacher fills out the on-line registration form for

students by entering each student’s information. Information
includes name, e-mail address, phone number and choosing classes
of his/her interest from pull-down menus. The form is then
submitted.

• Primary Actors: Teacher.
• Priority: High.
• Preconditions:: execute “evaluate system status” use case.
• Main Flow:

Step Actor Action Description
1. System Program displays the on-line registration

page.
2. Teacher User adds, edits, or deletes students’

information.
3. System Program checks for errors.
4. System Program displays updated student information

on the bottom of the page with a small check
box in front of it.

5. Teacher User repeats step 2-3 to add, edit, or delete
other student’s information.

6. Teacher User clicks on the submit button.
7. System Program displays a message saying that the

information has been successfully received.
8. Teacher User clicks on the return button to go back to

the on-line registration page or clicks on log
off button to log off.

• Alternative Flows:
Action Description

2, 6: Execute validate user input use case.
• Postconditions:

a. Student information is sent.
b. Each student’s information is displayed in the bottom of the on-

line registration screen with a small check box to the left of it.
c. Students’ data are stored into the database.

• Name: Submit On-line Registration Form.
• Goal In Context: Teacher fills out the on-line registration form

for students by entering each student’s information. Information
includes name, e-mail address, phone number and choosing
classes of his/her interest from pull-down menus. The form is
then submitted.

• Primary Actors: Teacher.
• Priority: High.
• Preconditions:

a. User has collected classes of interest for world language day
event from students.

b. User has student information such as name, e-mail address, and
phone number.

c. User submits on-line registration form only during the
registration period.

d. School has paid registration fee for students.
e. User logs on to the on-line registration page.

• Main Flow:
Step Actor Action Description

1. System Program displays the on-line registration
page.

2. Teacher User adds, edits, or deletes students’
information.

3. System Program checks for errors.
4. System Program displays updated student

information on the bottom of the page
with a small check box in front of it.

5. Teacher User repeats step 2-3 to add, edit, or delete
other student’s information.

6. Teacher User clicks on the submit button.
7. System Program displays a message saying that

the information has been successfully
received.

8. Teacher User clicks on the return button to go back
to the on-line registration page or clicks
on log off button to log off.

• Alternative Flows:
Action Description

2a. User enters invalid student information and clicks on the add or
edit button.

2b. User does not enter some of the required student information fields
and clicks on the add or edit button.

2c. User does not enter any student information and clicks on the add
or edit button.

2d. User does not choose a class of interest for a student, from some or
any of the pull-down menus, and clicks on the add button.

2e. User does not check any check boxes to edit student information
and clicks on the edit button.

2f. User does not check any check boxes to delete student information
and clicks on the delete button.

6a. User does not add any student information and clicks on the
submit button.

• Postconditions:
a. Student information is sent.
b. Each student’s information is displayed in the bottom of the

on-line registration screen with a small check box to the left of
it.

c. Students’ data are stored into the database.

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

followed by a detailed validation phase for the identified
refactorings using a number of real use case models. Further
dependency relationships are expected to emerge between
other software engineering aspects and use case models.

Finally, a prototype tool is planned to be developed to
facilitate the application of current and prospective use case
refactorings. This should also accelerate the development of
use case models and integrate them with the other software
engineering artefacts of the underlying software
development process.

REFERENCES

[1] Rumbaugh, J. , Jacobson, I. and Booch, G., The Unified Modeling

Language Reference Manual. Reading, Mass.; Harlow: Addison-
Wesley, 1999.

 [2] Jacobson, I., Booch, G. and Rumbaugh, J., The Unified Software
Development Process. Reading, Mass; Harlow, England: Addison
Wesley Longman, 1999.

 [3] Kirner, D., Porter, R., Punniamoorthy, P., Schuh, M., Shoup, D.,
Tindall, S. and Umphress, D., Extending Use Cases Throughout
the Software Lifecycle Software Engineering Notes, 24 (3), 1999.,
pp.66-68.

 [4] Lilly, S., Use Case Pitfalls: Top 10 Problems From Real Projects
Using Use Cases in Proceedings of Technology of Object-
Oriented Languages and Systems - TOOLS 30, 1-5 Aug. 1999
Santa Barbara, CA, USA IEEE Comput. Soc,, 1999, p.174.

 [5] Firesmith, D., Use Case Modeling Guidelines in Proceedings of
Technology of Object-Oriented Languages and Systems - TOOLS
30, 1-5 Aug. 1999 Santa Barbara, CA, USA IEEE Comput. Soc, ,
1999, pp.184-193.

 [6] Rui, K. and Butler, G., Refactoring Use Case Models: The
Metamodel in Proceedings of the twenty-sixth Australasian
computer science conference on research and practice in
information technology Darlinghurst, Australia, Australia
Australian Computer Society, Inc., 2003, pp.301-308.

 [7] Metz, P., O´Brien, J., and Weber, W., Use Case Model Refactoring:
Changes to UML's Use Case Relationship [online]. Darmstadt
University of Applied Sciences: Dept. of Computer Science.
Available from:
http://www.fbi.fhdarmstadt.de/frames/organisation/personen/w.we
ber/public_html/Publ/use_case_model_refacturing-
internal_report.pdf [Accessed 11/11/2003].

 [8] Sommerville, I., Software Engineering. 6th ed. Harlow, England ;
New York : Addison-Wesley, 2001.

 [9] Molina, J., Ortin, M., Moros, B., Nicolas, J., and Toval, A.,
Towards Use Case and Conceptual Models Through Business
Modeling in Proceedings of International Conference on
Conceptual Modeling / the Entity Relationship Approach, 2000,
pp.281-294.

 [10] Issa, A., Odeh, M., and Coward, D., Using Use Case Patterns To
Estimate Reusability in Software Systems Information and
Software Technology, 48 (9), 2006b, pp. 836-845.

 [11] Issa, A., Odeh, M., and Coward, D., Software Cost Estimation
Using Use-Case Models: A Critical Evaluation in Proceedings of
the 2nd IEEE International Conference on Information and
Communication Technology: From Theory To Applications
Damascus, 2006a, Syria pp.1-6.

 [12] Jones, C., Software Cost Estimation in 2002 The Journal of
Defence Software Engineering, 2002, pp. 4-8.

 [13] Royce, W., Software Project Management: a Unified Framework.
Reading, Mass.; Harlow: Addison-Wesley, 1998.

 [14] Weeks, M., Jimenez, J., Mahe, S., and Watenabe, M., Online
Student Registration Project Use Case Model [online]. USA.:
Central Washington University. Available from:
http://www.cwu.edu/~weeksm/UseCaseModels.doc [Accessed
10/1/2005], 2004.

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

