
Discrete Wavelet Transform for Image Compression 

and A Model of Parallel Image Compression Scheme 

for Formal Verification 
 

Kamrul Hasan Talukder and Koichi Harada 
 

     Abstract— The use of discrete wavelet for image compression 

and a model of the scheme of verification of parallelizing the 

compression have been presented in this paper. It is well known 

that wavelet transform is especially useful to transform image. 

Here we apply it twice: first on rows, second on columns. Upon 

this, the image matrix is deinterleaved and recursively 

transformed each subband individually further for the 

compression. A model for parallelizing the compression 

technique has also been proposed here. 

     Index Terms—Wavelet Transform, Image Compression, 

Verification, Subband coding etc.  

I. INTRODUCTION 
 

The need for efficient ways of storing large amount of data is 

increasing day by day as we are increasingly using and 

becoming dependent on the computers. For instance, if we 

want to have a web page or online catalog having hundreds of 

images, we essentially look for some kind of image 

compression to have those images stored. Not only is that for 

storage, there is another need for the effective use of the send-

receive actions over the internet. Compressing an image is 

significantly different from compressing raw binary data. Of 

course, general purpose compression programs can be used to 

compress images, but the result is less than optimal. This is 

because images have certain statistical properties which can be 

exploited by encoders specifically designed for them. Also, 

some of the finer details in the image can be sacrificed for the 

sake of saving a little more bandwidth or storage space. This 

also means that lossy compression techniques can be used in 

this area. Lossless compression involves with compressing 

data which, when decompressed, will be an exact replica of 

the original data. This is the case when binary data such as 

executable documents etc. are compressed. They need to be 

exactly reproduced when decompressed. On the other hand, 

images need not be reproduced 'exactly'. An approximation of 

the original image is enough for most purposes, as long as the 

error between the original and the compressed image is 

tolerable [1].  
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     The neighboring pixels of most of the images are highly 

correlated and therefore hold redundant information from 

certain perspective of view [2]. The foremost task then is to 

find out less correlated representation of the image. Image 

compression is actually the reduction of the amount of this 

redundant data (bits) without degrading the quality of the 

image to an unacceptable level [3] [4] [5]. There are mainly 

two basic components of image compression - redundancy 

reduction and irrelevancy reduction. The redundancy 

reduction aims at removing duplication from the signal source 

image while the irrelevancy reduction omits parts of the signal 

that is not noticed by the signal receiver i.e., the Human 

Visual System (HVS) [6] which presents some tolerance to 

distortion, depending on the image content and viewing 

conditions. Consequently, pixels must not always be 

regenerated exactly as originated and the HVS will not detect 

the difference between original and reproduced images.  

     The current standards for compression of still image (e.g., 

JPEG) use Discrete Cosine Transform (DCT), which 

represents an image as a superposition of cosine functions 

with different discrete frequencies [7]. The DCT can be 

regarded as a discrete time version of the Fourier Cosine series. 

It is a close relative of Discrete Fourier Transform (DFT), a 

technique for converting a signal into elementary frequency 

components. Thus, DCT can be computed with a Fast Fourier 

Transform (FFT) like algorithm of complexity O(nlog2 n).  

     More recently, the wavelet transform has emerged as a 

cutting edge technology, within the field of image analysis. 

The wavelet transformations have a wide variety of different 

applications in computer graphics including radiosity [8], 

multiresolution painting [9], curve design [10], mesh 

optimization [11], volume visualization [12], image searching 

[13] and one of the first applications in computer graphics, 

image compression. The Discrete Wavelet Transformation 

(DWT) provides adaptive spatial frequency resolution (better 

spatial resolution at high frequencies and better frequency 

resolution at low frequencies) that is well matched to the 

properties of an HVS. 

     This paper presents some mathematical background of 

compression technique mainly based on the wavelet as well as 

the compression method. Also, a model for parallelizing the 

method has been proposed. 

 
II. DISCRETE WAVELET TRANSFORM FOR IMAGE 

COMPRESSION 

 

Wavelet transform exploits both the spatial and frequency 

correlation of data by dilations (or contractions) and 
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translations of mother wavelet on the input data. It supports 

the multiresolution analysis of data i.e. it can be applied to 

different scales according to the details required, which allows 

progressive transmission and zooming of the image without 

the need of extra storage. Another encouraging feature of 

wavelet transform is its symmetric nature that is both the 

forward and the inverse transform has the same complexity, 

building fast compression and decompression routines. Its 

characteristics well suited for image compression include the 

ability to take into account of Human Visual System’s (HVS) 

characteristics, very good energy compaction capabilities, 

robustness under transmission, high compression ratio etc.  

     The implementation of wavelet compression scheme is 

very similar to that of subband coding scheme: the signal is 

decomposed using filter banks. The output of the filter banks 

is down-sampled, quantized, and encoded. The decoder 

decodes the coded representation, up-samples and recomposes 

the signal.  

     Wavelet transform divides the information of an image into 

approximation and detail subsignals. The approximation 

subsignal shows the general trend of pixel values and other 

three detail subsignals show the vertical, horizontal and 

diagonal details or changes in the images. If these details are 

very small (threshold) then they can be set to zero without 

significantly changing the image. The greater the number of 

zeros the greater the compression ratio. If the energy retained 

(amount of information retained by an image after 

compression and decompression) is 100% then the 

compression is lossless as the image can be reconstructed 

exactly. This occurs when the threshold value is set to zero, 

meaning that the details have not been changed. If any value is 

changed then energy will be lost and thus lossy compression 

occurs. As more zeros are obtained, more energy is lost. 

Therefore, a balance between the two needs to be found out 

[14]. 

     The primary aim of any compression method is generally 

to express an initial set of data using some smaller set of data 

either with or without loss of information. As for an example, 

let we have a function )(xf  expressed as a weighted sum of 

basis function )(,),........(1 xuxu m as given below- 

                                      ∑
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where mcc ......,,.........1 are some coefficients. We here will try 

to find a function that will approximate )(xf with smaller 

coefficients, perhaps using different basis. That means we are 

looking for- 
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with a user-defined error tolerance ε  ( ε = 0 for lossless 

compression) such that mm ˆ> and ε≤− )(ˆ)( xfxf . In 

general, one could attempt to construct a set of basis functions 

muu ˆ1
ˆ....,,.........ˆ  that would provide a good approximation in a 

fixed basis.  

     One form of the compression problem is to order the 

coefficients mcc ,........,1  so that for mm ˆ> , the first 

m̂ elements of the sequence give the best approximation 

)(ˆ xf to )(xf as measured in the 2
L  form.  

     Let )(iπ be a permutation of m,.......,1 and )(ˆ xf be a 

function that uses the coefficients corresponding to the first m̂  

numbers of the permutation :)(iπ    
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The square of the 2
L  error in this approximation is given by- 
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Wavelet image compression using the 2
L  norm can be 

summarized in the following ways: 

i) Compute coefficients mcc ,......,1   representing an 

image in a normalized two-dimensional Haar basis. 

ii) Sort the coefficients in order of decreasing 

magnitude to produce the sequence )()1( .,,......... mcc ππ . 

iii) Given an allowable error ε and starting from 

mm =ˆ , find the smallest m̂  for which 
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     The first step is accomplished by applying either of the 2D 

Haar wavelet transforms being sure to use normalized basis 

functions. Any standard sorting method will work for the 

second step and any standard search technique can be used for 

third step. However, for large images sorting becomes 

exceedingly slow. The procedure below outlines a more 

efficient method of accomplishing steps 2 and 3, which uses a 

binary search strategy to find a threshold τ below which 

coefficients can be truncated.  

     The procedure takes as input a 1D array of coefficients c 

(with each coefficient corresponding to a 2D basis function) 

and an error tolerance ε. For each guess at a threshold τ the 

algorithm computes the square of the 2
L  error that would 

result from discarding coefficients smaller in magnitude than 

τ . This squared error s is compared to 2ε  at each loop to 

decide if the search would continue in the upper or lower half 

of the current interval. The algorithm halts when the current 

interval is so narrow that the number of coefficients to be 

discarded no longer changes [15]. 

 

procedure Compress (C : array [1. .m] of reals; ε : real) 

   τmin←min{|c[i]|} 

   τmax←max{|c[i]|} 

   do 
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       τ ←(τmin + τmax)/2 

       s ← 0 

       for i ← 1 to m do 

              if |C [i]| < τ then s ← s + |C [i]|
2
 

       end for 

       if s < ε
2
 then τmin← τ else τmax← τ  

   until τmin≈ τmax 

   for i ← 1 to m do 

         if |C [i]| < τ then C [i] ← 0 

    end for 

end procedure 

 

The below pseudocode fragment for a greedy L
1
 compression 

scheme, which works by accumulating in a 2D array ∆ [x,y] 

the error introduced by discarding a coefficient and checking 

if this error has exceeded a user-defined threshold. 

  

for each pixel (x,y) do 

     ∆ [x,y] ← 0 

end for 

for i← 1 to m do 

     
'∆  ← ∆ + error from discarding c[i] 

      if ∑ <∆

yx

yx

,

'
],[ ε then 

             c[i] ← 0 

            ∆ ← ∆ ’ 

      end if 

end for 

  

    For 2D image, we apply 1D wavelet transform  to each row 

of pixel values. This operation provides us an average value 

along with detail coefficients for each row. Next, these 

transformed rows are treated as if they were themselves 

images and apply 1D transform to each column. The algorithm 

is as follows: 

 

     procedure Decom(C: array [1..2
j
, 1..2

k
] of reals) 

          for row ←1 to 2
j 
do  

                   Decomposition(C[row, 1 ..2
k
]) 

          end for 

          for col ← 1 to 2
k 
do 

                  Decomposition(C[1..2
j
, col]) 

          end for 

     end procedure 

 

     Thus, the DWT for an image as a 2D signal will be 

obtained from 1D DWT. We get the scaling function (φ) and 

wavelet function (Ψ) for 2D by multiplying two 1D functions. 

The scaling function is obtained by multiplying two 1D 

scaling functions: φ(x,y)=φ(x)φ(y). The wavelet functions are 

obtained by multiplying two wavelet functions or wavelet and 

scaling function for 1D. For the 2D case, there exist three 

wavelet functions that scan details in horizontal Ψ(1)
(x,y)= 

φ(x)Ψ(y), vertical Ψ(2)
(x,y)= Ψ(x)φ(y) and diagonal directions: 

Ψ(3)
(x,y)= Ψ(x) Ψ(y). This may be represented as a four 

channel perfect reconstruction filter bank. Now, each filter is 

2D with the subscript indicating the type of filter (HPF or LPF) 

for separable horizontal and vertical components. By using 

these filters in one stage, an image is decomposed into four 

bands. There exist three types of detail images for each 

resolution: horizontal (HL), vertical (LH), and diagonal (HH). 

The operations can be repeated on the low low (LL) band 

using the second stage of identical filter bank. 

 

III. PROPOSAL OF A MODEL OF PARALLELIZING 

THE COMPRESSION 

 

Wavelet transformation entails transformation of image data 

horizontally first and then vertically. Here the image plane is 

divided into n horizontal sections which are horizontally 

transformed concurrently. After then the image is divided into 

n vertical sections which are then vertically transformed 

concurrently. It is not a must that the number of horizontal 

sections is equal to the number of vertical sections. Figure 1 

below illustrates the method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This lets the possibility for vertical transformation to begin on 

some vertical sections before horizontal transformation in all 

sections is completed. Vertical sections that are already 

horizontally transformed can be vertically transformed as 

illustrated in Figure 2. That allows the possibility for threads 

that completed horizontal transformation to go on to vertical 

transformation without having to wait on other threads to 

complete horizontal transformation. The red color indicates 

sections of image data that are horizontally transformed. The 

white color indicates sections of image data that are not yet 

horizontally transformed [16]. The red vertical section with 

line stripes can be assigned to a thread for vertical 

transformation. Before a vertical section is available for 

transformation, one condition that must be met is that all 

horizontal sections transform n size data horizontally such that 

an n wide vertical section is available with all data points 

already horizontally transformed. 
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Figure 1: Image Division 

Figure 2: Ordering the Transformation 
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Now let us discuss about the transition system of the model 

for parallelizing the system. Before that, let us have a brief 

look at transition system and Kripke Structure that are needed 

to understand the term “model”. A transition system is a 

structure TS = (S, S0, R) where, S is a finite set of states; S0  

⊆  S is the set of initial states and R  ⊆  S × S is a transition 

relation which must be total i.e. for every s in S there exists s’ 

in S such that (s, s’) is in R (∀ s ∈ S ∃ s’ ∈ S . (s, s’) ∈ R). On 

the other hand, M = (S, S0, R, AP, L) is a Kripke Structure; 

where (S, S0, R) is a transition system. AP is a finite set of 

atomic propositions (each proposition corresponds to a 

variable in the model) and L is a labeling function. It labels 

each state with a set of atomic propositions that are true in that 

state. The atomic propositions and L together convert a 

transitions system into a model.  The foremost step to verify a 

system is to specify the properties that the system should have. 

For example, we may want to show that some concurrent 

program never deadlocks. These properties are represented by 

temporal logic. Computational Tree Logic (CTL) is one of the 

versions of temporal logic. It is currently one of the popular 

frameworks used in verifying properties of concurrent system. 

Once we know which properties are important, the second step 

is to construct a formal model for that system. The model 

should capture those properties that must be considered for the 

establishment of correctness. Model checking includes the 

traversing the state transition graph (Kripke Structure) and of 

verifying that if it satisfies the formula representing the 

property or not, more concisely, the system is a model of the 

property or not. Each CTL formula is either true or false in a 

given state of the Kripke Structure. Its truth is evaluated from 

the truth of its sub-formulae in a recursive fashion, until one 

reaches atomic propositions that are either true or false in a 

given state. A formula is satisfied by a system if it is true for 

all the initial states of the system. Mathematically, say, a 

Kripke Structure K = (S, S0, R, AP, L) (system model) and a 

CTL formula Ψ (specification of the property) are given. We 

have to determine if K |= Ψ  holds (K is a model of Ψ) or not. 

K |= Ψ holds iff  K, s0 |= Ψ for every s0 ∈ S0. If the property 

does not hold, the model checker produces a counter example 

that is an execution path that can not satisfy that formula [17].  

     Figure 4 shows the state diagram of the parallel model for 

verification. It illustrates the tasks of a single thread 

performing horizontal transformation on a horizontal section 

and vertical transformation on zero or more vertical sections. 

 

 

 

 

 

 

 

 

 

 

 
   

 

 The assertion for the verification is that at any time, the 

vertical transformation does not start on a vertical section that 

is not horizontally transformed. In Figure 3, the vertical 

transformation can start in vertical sections V0 and V1 but not 

in V2 through V7. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

IV. CONCLUSION 

 

Though the DCT-based image compression method performs 

well at moderate bit rates, the image quality degrades rapidly 

at higher compression ratios. This is due to the artifacts 

resulting from the block-based DCT scheme. On the contrary, 

wavelet-based compression technique provides substantial 

enhancement in picture quality at low bit rates due to 

overlapping basis functions and better energy compaction 

property of wavelet transforms. This paper presents some 

mathematical background of compression technique mainly 

based on the wavelet as well as the compression method. Also, 

a model for parallelizing the method has been proposed. As 

for the future work, the parallel model may be enhanced and  

modelled in some formal verification techniques such as SPIN, 

SMV etc to find out the possible bug in the parallel design. 
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