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Abstract- Massively parallel distributed-memory 
architectures are receiving increasing attention to meet the 
increasing demand on processing power. Many topologies 
have been proposed for interconnecting the processors of 
distributed computing systems. The hypercube topology has 
drawn considerable attention due to many of its attractive 
properties. The appealing properties of the hypercube 
topology such as vertex and edge symmetry, recursive 
structure, logarithmic diameter, maximally fault-tolerance, 
simple routing and broadcasting, and the ability to simulate 
other interconnection networks with minimum overhead 
have made it an excellent candidate for many parallel 
processing applications. Many variations of the hypercube 
topology have been reported in the literature, mainly to add 
to the computational power of the hypercube.  One of the 
attractive versions of the hypercube that was introduced to 
enhance the performance is the twisted hypercube. A 
twisted hypercube has the same structural complexities of 
the hypercube. It preserves the attractive properties of the 
hypercube and improves on the communication time by 
reducing the diameter by a factor of two. This paper 
presents the basic communication and some of the basic 
operations usually needed in parallel computing on the 
twisted hypercube interconnection network. 
 
Index Terms- hypercube, interconnection network, parallel 
prefix, routing, twisted hypercubes. 
 

I. INTRODUCTION 
     Recent advances of VLSI and computer networking 
technologies have made it attractive to build massive 
parallel machines. In the last decade, we have witnessed 
a tremendous surge in the availability of very fast and 
inexpensive hardware. These have been possible by 
using novel interconnections between processors and 
memories such as the hypercube topology. Parallel 
architectures based on the hypercube topology have 
gained widespread acceptance in parallel computing due 
to many of its attractive features. The hypercube offers a 
rich interconnection topology with high communication 
bandwidth, low diameter, maximum fault-tolerance, and 
a recursive structure that is suited naturally to divide and 
conquer applications. 
     The hypercube has been the topic of many recent 
researches [1]-[8]. Various researchers have done 
extensive work in showing the parallel computational 
power of the hypercube structure in many directions. In 
one direction, many researchers have shown the 
capability of the hypercube to simulate other networks 
such as rings, trees, grids and other interconnection 
networks with minimum overhead. In another direction, 
researchers have shown the power of the hypercube in 

solving many computational problems in parallel such as 
sorting, merging, parallel prefix, and other problems. In a 
third direction, researchers have shown the robustness 
and fault-tolerance of the hypercube, focusing on the 
hypercube's ability to simulate, compute, and reconfigure 
itself in the presence of faults. 
     Many researchers have proposed modifications on the 
hypercube structure to improve its computational power. 
Bhuyan and Agrawal [9] proposed a generalized 
hypercube structure that is suited to many applications. 
Preparata and Vuillemin [10] introduced the cube-
connected cycles in which the degree of the diameter was 
reduced to a fixed constant. El-Amaway and Latifi [11] 
proposed the folded hypercube to reduce the diameter 
and the traffic congestion with little hardware overhead. 
Youssef and Narahari [12] proposed the banyan-
hypercube network to reduce the communication 
overhead. Zheng at el. [13] proposed the star-hypercube 
hybrid interconnection network to combine the 
advantageous features and properties of both stars and 
hypercubes. Twisted hypercubes proved to contain the 
attractive properties of the hypercube and better 
communication capabilities. In parallel architectures, the 
communication cost dominates the computation cost. The 
over all performance of the parallel machine depends 
heavily on the underlying interconnection network. In a 
twisted hypercube, the diameter of the network is 
reduced by a factor of two over that of the hypercube. 
Many of the hypercube attractive features such as 
partitioning, routing, fault-tolerance, and embedding are 
incorporated into the twisted hypercube and new gains 
are achieved in diameter, average distance, and 
embedding efficiency [14]-[20]. 
     The remainder of this paper is organized as follows.  
In section 2, we establish few preliminary definitions.  In 
section 3, we present the data communication on the 
twisted hypercube. Section 4 presents some basic parallel 
computation operations. Finally, section 5 concludes the 
paper and discusses some future possible work. 

II. PRELIMINARIES AND NOTATION 
     In this paper, we use undirected graphs to model 
interconnection networks. Let G = (V, E) be a finite 
undirected graph, where V and E are the vertex and edge 
sets of G, respectively. Each vertex represents a 
processor and each edge a communication link between 
processors. A hypercube of dimension n, denoted Qn, is 
an undirected graph consisting of 2n vertices. Each vertex 
corresponds to an n-bit binary string, labeled from 0 to 
2n-1, and such that there is an edge between any two 
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vertices if and only if the binary representation of their 
labels differ by exactly one bit position. Each vertex is 
incident to n other vertices, one for each bit position. The 
edges of the hypercube can be naturally partitioned 
according to the dimensions that they traverse. An edge 
is called a dimension i edge if it connects two vertices 
that differ in the ith bit position. 
     Let G be any undirected labeled graph, then Gb is 
obtained from G by prefixing every vertex label with b.  
Two binary strings x = x1x0 and y = y1y0, each of length 
two, are pair-related if and only if (x, y) ∈ {(00, 00), 
(10, 10), (01, 11), (11, 01)}.  Now, we define a twisted 
hypercube of dimension n, denoted TQn, as an undirected 
graph consisting of 2n vertices labeled from 0 to 2n-1 and 
defined recursively as following: 
a. TQ1 is the complete graph on two vertices with labels 
0 and 1. 
b. For n > 1, TQn consists of two copies of TQn-1 one 

prefixed by 0, TQ0n-1, and the other by 1, TQ1n-1.  Two 

vertices u = 0un-2...u0 ∈ TQ0n-1 and v = 1vn-2...v0 ∈ 
TQ1n-1 are adjacent if and only if 
 1.   un-2 = vn-2, if n is even, and 
 2.   For 0 ≤ i ≤ ⎣(n-1)/2⎦, u2i+1 u2i and v2i+1 v2i are 
pair-related. 
Figure 1 shows a twisted hypercube for dimension 3. The 
most important topological properties of the twisted 
hypercube including the following: 
1. Size: A twisted hypercube of dimension n, TQn, 
consists of 2n nodes. 
2. Degree: A twisted hypercube of dimension n, TQn, has 
a degree n. 
3. Diameter: A twisted hypercube of dimension n, TQn, 

has a diameter ┌(n+1)/2┐. 
4. Connectivity: Let n be the dimension of the twisted 

hypercube, then the bisection width of the twisted 
hypercube is 2n-1. 

5. Number of node-disjoint paths: Let u and v be two 
nodes in TQn, then the number of node-disjoint paths 
is n. 

III. DATA COMMUNICATION 
     One of the most important components of an 
interconnection network is its communication 
mechanism. In a parallel machine, communications 
become a bottleneck due to a great amount of time that is 
spent in interchanging information between different 
processors.  It is very important to get the right data to 
the right place within a reasonable time. In parallel 
architectures, the communication cost dominates the 
computation cost. The over all performance of the 
parallel machine depends heavily on the underlying 
interconnection network. Data communication is 
considered the most essential attractive property for a 
parallel machine and usually one of the main topics 
addressed by researchers when proposing new topologies 
[5], [11], [12], [21]-[23],  
 

 

 

 

 

 

Figure 1. A twisted hypercube of dimension 3. 
 

A. Data Routing 
     It is essential for a parallel architecture to support a 
mechanism which allows any two processors to exchange 
data. This may be achieved by finding the shortest path 
from the source processor to the destination processor. In 
this section, we introduce a shortest path algorithm that 
takes an advantage of the hierarchical nature of the 
twisted hypercube. 
     In order to find a route between two vertices of a 
twisted hypercube, we make extensive use of TQ3. 
Suppose u = u2u1u0 and v = v2v1v0 are nonadjacent 
vertices of TQ3 with u2 ≠ v2. Since the diameter of TQ3 is 
two, there is a vertex w which is a common neighbor of u 
and v. For example, node 010 and node 101 are 
connected through node 011. Therefore, node 011 is 
considered as a common neighbor of node 010 and node 
101. Note that you might have two common neighbors in 
some cases. The following algorithm finds the shortest 
route between two nodes. 
 
ROUTE (u, v) 
Where u is the source and v is the destination. 
STEP 1: Locate the leftmost differing bit between u and 

v, say bit uk. 
STEP 2: Group the bits to the right of the differing bit, bit 

k, into pairs, starting from the right. 
STEP 3: Start at the leftmost differing bit position, bit k, 

and scan u and v from left to right, comparing 
pairs of bits from u with the corresponding bits 
of v, stopping at the first pair which is not 
pair-related, say the pair uj+1uj. 

STEP 4: Locate the common neighbor between ukuj+1uj 
and the corresponding three bits in v using 
TQ3, say xyz. 

STEP 5: Construct the intermediate vertex wi between u 
and v from u as follows: 
a. Replace the three bits uk, uj+1, and uj by x, y, 
and z, respectively. 
b. Use the pair-related relation to replace all 
the pairs to the right of the jth bit. 

STEP 6: Repeat the previous steps, such that the source 
node is wi until you reach node v. 

 
     For example, suppose the shortest route from u = 
101001000110 to v = 101111101101 is desired. After 
step one of the routing algorithm, the result is 
101001000110. The differing bit is the 8th bit. After step 

000 010
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100110

101111011
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two, the result is 1010 01 00 01 10. After step three, the 
result is 1010 01 00 01 10. The first pair in u that is not  
pair-related with the corresponding pair in v is uj+1uj = 00. 
After step four, xyz = 010, which is the common 
neighbor between 000 and 110 in TQ3. After step five, w1 
= 101001101110. After repeating the same process, we 
get w2 = 101001100110 and w3 = 101001100111. Hence, 
the shortest route from u to v is through the nodes 
101001101110, 101001100110, and 101001100111. 
     The routing algorithm can be easily proved by 
induction on the length of the path between the source 
node, node u, and the destination node, node v. It is 
important to note that each step of the routing algorithm 
will reduce the difference between the source and the 
destination by at least two bits, and hence the length of 
the path is at most half of the dimension. 
 
B. Broadcasting 
     Broadcasting is the most essential communication 
operation in an interconnection network. In this 
operation, data that is initially in a single processor 
(source) is to be transmitted to all other processors in the 
network.   The height of the broadcast tree of a network 
is at most its diameter.  Since the twisted hypercube 
reduces the diameter by a factor of two, the height of its 
broadcast tree is also reduced by a factor of two.  The 
broadcast tree of any network can be easily found by 
running a breadth-first algorithm. A Bridth-first spanning 
tree T of TQ is a spanning tree for which every path from 
a node to the root of T is a shortest path in TQ. A 
breadth-first spanning tree can be constructed easily by 
computing all shortest paths from node 0 to all other 
nodes in TQ using our Route Algorithm. The breadth first 
spanning tree constructed by the Route Algorithm 
represents the broadcast tree of the network [23]. Figure 
2 shows the breadth-first spanning tree which is 
equivalent to the broadcast tree of a twisted hypercube 
for n=3, while Figure 3 shows the actual broadcasting on 
TQ4.  
 

IV. BASIC COMPUTING OPERATIONS    
 This section demonstrates the ability of the twisted 
hypercube to perform many of the basic operations that 
are needed in designing parallel algorithms.  These 
operations usually appear as sub problems in solving 
other major problems [6], [14], [17], [24]. 
 
 
A. Associative Computations 
     Associative operations are used frequently and appear 
as sub problems in solving other problems. They include 
addition, multiplication, finding the smallest, finding the 
largest, and others.  Let + be the addition operation on 
some domain X.  For a given tuple {x0, x1, ..., xk-1} ∈ X, 
the addition operation is to compute the summation y0 = 
x0 + x1 + ... + xk-1. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Breadth-first spanning tree for TQ4. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 3.  Broadcasting in TQ4. 
 
     We assume that each processor Pi, 0 ≤ i ≤ 2n-1, 
contains the value xi.  The computation is considered to 
be complete when the final summation y0 is at processor 
0.  The symbol ⇐j denotes a data transfer from a 
processor to an adjacent processor by a link through 
dimension j.  The function BIT(j) returns the jth bit of the 
node's label.  The following algorithm performs the 
addition operation. 
ADDITION (X) 
begin 

for all Pi,  0 ≤ i ≤ 2n-1, do 
yi ← xi 

for j ← n to 1 do 
for all Pi,  0 ≤ i  ≤ 2j-1,  do 

if  BIT (j) = 1  
then tempk ⇐j yi, where Pk is a neighbor 
through dimension j. 
if BIT (j) = 0 
then yi ← yi + tempi 

end for 
end for 

end ADDITION 
 

000 001 011 010 110 111 101 100

000 001 011 010 110 111 101 100

000

1000 0100 0010 0001

01011001 0110 0101 0011 1011 01111100

1100 1110 1111
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     Algorithm ADDITION takes n communication steps 
which is the same time that takes to run the same 
procedure in a hypercube machine. 
 
B. Parallel Prefix 

The parallel prefix operation is a very important 
operation that appears frequently in designing parallel 
algorithms.  It was first introduced by Ladner and Fischer 
[24] to solve the carry look-ahead problem for binary 
addition.  The prefix operation was used by many 
researchers to solve a variety of problems in the field of 
computer science.  In [5], the prefix operation was used 
to solve recurrence equations, to find convex hulls of 
images, to route packets in interconnection networks, and 
to solve the problem of computing carries. 
     Let ⊕ be a binary associative operation on some 
domain X.  For a given tuple {x0, x1, ..., xk-1}∈X, the 
prefix problem is to compute each of the partial sums, 
assuming ⊕ is addition, yi = x0 ⊕ x1 ⊕ ... ⊕ xi, 0 ≤ i ≤ k-
1.  We assume that each processor Pi, 0 ≤ i ≤ 2n-1, 
contains the value xi.  The computation is considered to 
be complete when the partial sum yi = x0 ⊕ x1 ⊕ ... ⊕ xi 
has been completed at processor i, 0 ≤ i ≤ 2n-1.  The local 
variables yi and ti accumulate the partial and total sums, 
respectively.  The symbol ⇐j denotes a data transfer 
from a processor to an adjacent processor by a link 
through dimension j.  The function BIT (j) returns the jth 
bit of the node's label. 
 
PREFIX (X) 
begin 

for all Pi,  0 ≤ i ≤ 2n-1, do 
yi ← xi 
ti ← xi 

end for 
for j ← n to 1 do 

for all Pi, 0 ≤ i  ≤ 2n-1,  do 
tempk ⇐j ti, where Pk is a neighbor through 

dimension j. 
ti ← ti ⊕ tempi 
if  BIT (j) = 1 
then yi ← yi ⊕ tempi 

end for 
end for 

end PREFIX 
 
     It is obvious that the algorithm runs in n time steps, 
where n is the dimension of the twisted hypercube. 
During the jth step, each node sends its current total sum 
to its adjacent node through dimension j.  The partial and 
total sums of each node are updated based on the value of 
the jth bit of its label.  Figure 4 shows the prefix 
computation on a twisted hypercube of dimension 3.  The 
initial value xi, the current partial sum yi, and the current 
total sum ti of each node are given for each phase. 
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 

(a) Initial values. 
 
 
 
 
 
 

 
 
 
 
 

(b) After step 1. 
 
 
 
 
 

 
 
 
 
 
 
 

(c) After step 2. 
 
 
 
 

 
 
 
 
 
 
 
 

(d) After step 3. 
 

Figure 4.  The prefix operation on a twisted hypercube of 
dimension 3. 

 
V. CONCLUSIONS AND FUTURE WORK 

     This paper has presented some of the basic operations 
that are needed in designing parallel algorithms on a 
twisted hypercube. These operations usually appear as 
sub problems in solving other major problems in parallel 
computing. The preliminary investigations show that the 
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twisted hypercube has attractive features; it preserves the 
good features of the hypercube and reduces the diameter 
by a factor of two. In this paper, we presented optimal 
routing and broadcasting algorithms. Also, we developed 
efficient algorithms for some of the basic parallel 
operations such as associative and prefix operations that 
appear usually as sup problems in other major problems. 
A good problem will be to uncover more of the appealing 
properties of the twisted hypercube. Another interesting 
problem is to show the ability of this structure to 
compute, simulate other interconnection networks, and 
reconfigure itself in the presence of faults. 
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