

Sparse Matrix Multiplication Using UPC

Hoda El-Sayed and Eric Wright
Department of Computer Science

Bowie State University

Abstract—Partitioned global address space (PGAS) languages,

such as Unified Parallel C (UPC) have the promise of being
productive. Due to the shared address space view that they
provide, they make distributing data and operating on ghost
zones relatively easy. Meanwhile, they provide thread-data
affinity that can enable locality exploitation. In this paper, we
are considering sparse matrix multiplication which is an
important operation for many scientific and engineering
applications. Recently, several different high-performance
algorithms and libraries have been developed for that operation.
However, in this work, we were able to take advantage of one of
the advanced features provided by UPC, which is the fact that it
is a globally addressable memory model. Due to that feature,
using UPC in this operation would enable threads to read or
write data from any other thread’s memory directly without any
inter-process communication as the case with MPI. Our goal is
to evaluate the performance of both parallel programming
models based on experimental evaluation of sparse matrix
multiplication. The comparative analysis will consider conceptual
complexity and execution time. It will be shown that UPC which
supports distributed shared memory model has a great
productivity advantage over message passing when sparse matrix
multiplication problems are considered.

Index Terms—PGAS, UPC, MPI, and Sparse matrix

I. INTRODUCTION

The capability of supercomputers/high performance computers
has grown significantly over the past decade. During this
period, the development of complex parallel programming
paradigms required for evolving parallel computing
architectures has made it increasingly difficult to develop high
performance computing applications. Most high performance
computing systems today are distributed memory systems,
where each CPU has its own local memory. It takes much
longer for a CPU to get data from another CPU’s than from its
own. One of the major challenges of efficient parallel
programming is dealing with the relatively slow transfer of
data from other CPU’s memory. The performance of parallel
programs is limited by the speed of the communication
between the CPUs[4]. The two most popular parallel
programming paradigms available are message-passing and
shared memory. Both models usually require domain
patitioning and load. Message passing requires distributing
data structures across the processes and explicitly handling
interprocess communications. While in shared memory,
manipulating the data may require synchronization in addition
to the lack of of data locality exploitation. Performance

decreases due to the communication overhead which could be
substantially large especially in small messages [8] and
effects of synchronization. An emerging programming model
is the global address space. UPC is a new parallel
programming language that considers a partitioned global
address space (PGAS) and provides ease of programming
shared memory paradigms and also enables the exploitation of
data locality. Due to the shared address space view that they
provide, they make distributing data and operating on ghost
zones relatively easy. Meanwhile, they provide thread-data
affinity that can enable locality exploitation. The success of
any programming language depends on many factors. Some
of the important factors are the ease of use, efficient execution,
and foundation on a good programming model.

In our work, we are considering sparse matrix multiplication
which is an important operation for many scientific and
engineering applications. Recently, several different high-
performance algorithms and libraries have been developed for
that operation. However, we were able to take advantage of
one of the advanced features provided by UPC, which is the
fact that it is a globally addressable memory model. Due to
that feature, using UPC in this operation would enable threads
to read or write data from any other thread’s memory directly
without any inter-process communication as the case with
MPI.

Our goal is to evaluate the performance of both parallel
programming models based on experimental evaluation of
sparse matrix multiplication. The comparative analysis will
consider conceptual complexity and execution time. It will be
shown that UPC which supports distributed shared memory
model has a great productivity advantage over message
passing when sparse matrix multiplication problems are
considered.

This paper is organized as follows: Section 2 presents an
overview of UPC and the sparse matrix multiplication
implementation using UPC, while section 3 shows the sparse
matrix multiplication implementation using MPI. Section 4
presents the experimental performance and analysis
measurements, followed by the conclusions in section 5.

 II. UNIFIED PARALLEL C (UPC)

Unified Parallel C (UPC) is a new parallel programming

language that extends ISO C with support for parallel
processing. UPC is based on partitioned global address space
(PGAS) and provides ease of programming shared memory
paradigms and also enables the exploitation of data locality.

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

Due to the shared address space view that they provide, they
make distributing data and operating on ghost zones relatively
easy. Meanwhile, they provide thread-data affinity that can
enable locality exploitation. In other words, it enables
processors to read or write data from any other processor’s
memory.

UPC keeps the powerful concepts and features of C and
adds parallelism; global memory access with an understanding
of what is remote and what is local; and the ability to read and
write remote memory with simple statements. The simplicity,
usability and performance of UPC have attracted interest from
high performance computing users and vendors. This interest
resulted in vendors developing and commercializing UPC
compilers [7]. Many parallel applications could scale more
efficiently through the use of the high performance
communication enabled by UPC. Moreover, the development
cycle for many parallel applications could be dramatically
reduced as a result of the clear, simple syntax that is inherent
to UPC.

A. UPC Programming Model

UPC is a distributed shared memory programming model.
The memory under UPC is logically divided into a shared
memory space and a private memory space. Each thread has a
private memory space that can be accessed only by that thread.
The shared memory space is logically partitioned into portions
each of which has a logical association, or affinity to a
given thread. The entire shared memory space, regardless of
affinity, can be accessed by all threads [7]. Figure 1 shows the
memory layout for UPC. The number of threads is given by
the special constant THREADS[5], and each thread
is identified by the special constant
MYTHREAD [2].

 Thread 0 Thread 1 Thread
 THREADS-1

 Figure1.
 Distributed Shared Memory

A UPC shared pointer can reference all locations in the

shared space; while a private pointer may reference only
addresses in its private space or in its local portion of the
shared space. Data in the local portion may only be accessed
by the thread to which they have affinity, while data in the

shared portion are accessible by all threads. Threads access
shared memory addresses concurrently through standard read
and write instructions, rather than through explicit message
passing [10].

B . UPC Implementation

In this application, two sparse matrices A and B are to be

multiplied together and the result is stored in matrix C. Matrix
A is distributed by rows among the threads, while matrix B is
distributed by columns among the threads. Since the UPC
memory model provides a distributed shared view to the
programmer, any element in any of the matrices could be
accessed by any thread. The matrices could be distributed in
such a way such that the first row in matrix A would be local
to thread 0, and the second column in matrix B would be local
to thread 1. To obtain a column in matrix C, we would
multiply the row elements which are local to thread 0 by the
column elements that are local to thread 1. However, when
doing so using UPC, we would first read the row elements in
matrix A. If any were zero, then the multiplication would be
skipped. In other words, multiplication would take place only
for nonnegative zero elements. In that sense, thread 0 would
access the column elements local to thread 1 so easily as they
are as well global to all other threads. That could only take
place when we are using UPC since it is global addressable
memory model. Therefore, by using UPC in this operation,
threads would be able to read or write data from any other
thread’s memory directly without any inter-process
communication as the case with MPI. As a result, a great deal
of computations could be saved since we are using sparse
matrices where most of the elements in the matrices are zeros.

In MPI, P1 would have to send the entire 2nd column to P0
for the multiplication to take place. That would still have to
happen even if the elements of the 1st row in array A were
zeros, (still P1 would send the column)

In UPC, only the nonzero elements in the rows of array A
are the ones to be multiplied by the columns in array B. As
the elements in array B are seen by all the threads because
they are stored in shared memory.

C. Message Passing Interface (MPI)

The MPI is a library that considers message-passing the

parallel programming paradigm. Calls to invoke the library
routines are bulky and non-intuituve. Every process has its
own address space, so processes exchange data between each
other through explicit message passing. Each thread basically
executes on its own CPU. The threads are assigned a unique
number called rank, ranging from 0 to P-1, where P is the
number of threads running. During communication between
the threads, the threads specify the rank in their sending and
receiving messages. Processes communicate and synchronize
with each other using point-point or collective communication.
The point-to-point operations allow two processes to exchange

 Shared

Private0 Private 1 . . . Private
 Threads-1

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

data. The core functions are MPI_Send() and MPI_Receive().
These functions require a pointer to a buffer that will be used
for sending or receiving data. MPI_Send() requires an
explicit source or MPI_ANY_SOURCE(). MPI allows
blocking and nonblocking communication. In collective
communication, all processes or a subset of processes are
involved in a particular operation. For example,
MPI_Barrier() is used to synchronize all processes at a
particular point in the code. The MPI_Bcast() function allows
one process to broadcast data to all other participating
processes[1]. The two-sided communication between
processes results in substantial overhead in interprocessor
communications, especially in the case of small messages. The
complexity of communication involved on distributed memory
computer systems would require more complex code to
achieve satisfactory performance [5].

III. MPI IMPLEMENTATION

MPI is based on a master-slave process communication.

The master process will distribute matrix A and matrix B
among the different processes which act as the slaves. Every
process will have its own chunk of rows from matrix A and
columns from matrix B that are only accessible by the process.
Matrix C will be computed from the multiplication of rows in
matrix A by the columns in matrix B. So if for example we
multiply the row elements of process 0 by the column
elements of process 1, process 1 would have to send the entire
row elements to process 0, and this has to happen even if most
of the row elements in process 0 were zeros. However, in
UPC, multiplication would be skipped if the row elements
were zeros. In MPI inter-process communication would have
to occur and that results in a large number of computations
even if most of the elements were zeros. On the other hand,
those computations were skipped when the row elements were
zeros when UPC was used. That certainly affects the
performance and causes extreme communication delay.

IV. PERFORMANCE EVALUATION

In this paper, we are considering sparse matrix

multiplication which is an important operation for many
scientific and engineering applications. Recently, several
different high-performance algorithms and libraries have been
developed for that operation. However, in this work, we were
able to take advantage of one of the advanced features
provided by UPC, which is the fact that it is a globally
addressable memory model. Due to that feature, using UPC in
this operation would enable threads to read or write data from
any other thread’s memory directly without any inter-process
communication as the case with MPI. Our goal is to evaluate
the performance of both parallel programming models based
on experimental evaluation of sparse matrix multiplication.
Performance is assessed based on wall clock time
measurements on an SGI Origin distributed shared memory
system. The comparative analysis will consider conceptual
complexity and execution time. The execution time was used
to evaluate the speedup using UPC and MPI programming
models. Different matrices sizes were used on different
number of processes. From the execution times, we were able
to observe that UPC took much less execution time than MPI,
and that is due to the fact that in UPC we were able to skip the
computations with zero elements. However, when MPI was
used, communication was involved even with the zero
elements, still the entire column had to be sent to the other
processor to perform the multiplication.

Figure 4 shows the speedup using MPI, while figure 5
shows the speedup using UPC programming model. The
figures show that both models scale. MPI seems to scale
better than UPC based on the figure, however, examining the
execution time in figures 1 and 2, it shows that the UPC
execution time was significantly smaller than the MPI. MPI
was able to hide more interprocess communication overhead
and artificially appear as if it were performing better.
However, UPC was able to minimize data transfer which has
resulted in its faster execution time. From the results, we were
able to conclude that UPC which supports distributed shared
memory model has better performance over message passing
when sparse matrix multiplication problems are considered.

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

Figure 2: Execution Time Using MPI

0

0.05

0.1

0.15

0.2

0.25

2 4 8 16 32
No. of Processes

Ti
m

e MPI Time :
128x128

256x256

512x512

Figure 3: Execution Time Using UPC

0

0.05

0.1

0.15

0.2

2 4 8 16 32
No. of Processes

Ti
m

e

UPC Time:
128x128
 256x256

 512x512

Figure 4: SpeedUp Using MPI

0

5

10

15

20

25

30

2 4 8 16 32
No. of Processors

S
pe

ed
UP

128x128

256x256

512x512

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

Figure 5: UPC SpeedUp

0
2
4
6
8

10
12
14
16
18

2 4 8 16 32
No. of Processors

Sp
ee

dU
p

Array size=128x128

Array size=256x256

Array size = 512x512

V. CONCLUSION

Partitioned global address space (PGAS) languages, such as

Unified Parallel C (UPC) have the promise of being productive. Due
to the shared address space view that they provide, they make
distributing data and operating on ghost zones relatively easy.
Meanwhile, they provide thread-data affinity that can enable locality
exploitation. In this paper, we are considering sparse matrix
multiplication which is an important operation for many scientific
and engineering applications. We were able to take advantage of that
feature provided by UPC, in the sparse matrix multiplication
operation as it would enable threads to read or write data from any
other thread’s memory directly without any inter-process
communication as the case with MPI. By that all the zero elements
were skipped from the multiplication operation when using UPC,
however, in MPI, the entire column still had to be sent to the other
process for multiplication even though most of the elements were
zeros. That obviously means more communication and in turn lowers
the performance. MPI seems to scale better than UPC based on the
figures, however, examining the execution time, it turns out that the
UPC execution time was significantly smaller than the MPI program
due to its longer execution time, MPI was able to hide more
interprocess communication overhead and artificially appear as if it
were performing better. However, UPC was able to minimize data
transfer which has resulted in its faster execution time. From the
results, we were able to conclude that UPC which supports
distributed shared memory model has better performance over
message passing when sparse matrix multiplication problems are
considered. It has shown based on the performance measurements
that UPC provides an effective alternative for programming parallel
sparse matrix multiplication.

REFRENCES

[1] S. Caglar, G. Benson, Q. Huang, and C. Chu. USFMPI: A Multi-threaded
Implementation of MPI for Linux Clusters.
<www.cs.usfca.edu/~qhuang/papers/usfmpi/pdf, Jan. 2005.

[2] F. Cantonnet, Y. Yao, S. Annareddy, A. Mohamed, and T. El-Ghazawi.
“Performance Monitoring and Evaluation of a UPC Implementation on a
NUMA Architecture”, IPDPS 2003.

[3] F. Cantonnet, Y. Yao, M. Zahran, and T. El-Ghazawi, “Productivity
Analysis of the UPC Language”, IPDPS 2004 PMEO Workshop.

[4] J. Dawson, “Co-Array Fortran for Productivity and Performance”, Army
HPC Research Center Bulletin, Vol. 14 No. 4, 2004.

[5] T. El-Ghazawi, W. Carlson, and J. Draper, “UPC Language
Specifications”, V1.1.1 (http://upc.gwu.edu), October 2003.

[6] T. El-Ghazawi, W. Carlson, T. Sterling, and K. Yelick. “UPC
Distributed Shared Memory Programming”, John Wiley & Sons Inc.
Publication, 2005.

[7] T. El-Ghazawi and S. Chauvin, “ UPC Benchmarking Issues”, 30th
Annual Conference IEEE International Conference on Parallel Processing,
2001 (ICPP01), pp. 365-372.

[8] T. El-Ghazawi and F. Cantonnet, “UPC Performance and Potential: A
NPB Experimental Study”, SuperComputing 2002.

[9] W. Kuchera and C. Wallace. “The UPC Memory Model: Problems and
Prospects”, PDPS 2004.

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007

