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Abstract—Partitioned global address space (PGAS) languages, 

such as Unified Parallel C (UPC) have the promise of being 
productive.  Due to the shared address space view that they 
provide, they make distributing data and operating on ghost 
zones relatively easy.  Meanwhile, they provide thread-data 
affinity that can enable locality exploitation.  In this paper, we 
are considering sparse matrix multiplication which is an 
important operation for many scientific and engineering 
applications.  Recently, several different high-performance 
algorithms and libraries have been developed for that operation.  
However, in this work, we were able to take advantage of  one of 
the advanced features provided by UPC, which is the fact that it 
is a globally addressable memory model. Due to that feature, 
using UPC in this operation would enable threads to read or 
write data from any other thread’s memory directly without any 
inter-process communication as the case with MPI.  Our goal is 
to evaluate the performance of both parallel programming 
models based on experimental evaluation of sparse matrix 
multiplication. The comparative analysis will consider conceptual 
complexity and execution time.  It will be shown that UPC which 
supports distributed shared memory model has a great 
productivity advantage over message passing when sparse matrix 
multiplication problems are considered.   

 
 
Index Terms—PGAS, UPC, MPI,  and Sparse matrix  
 
 

I.  INTRODUCTION  
 

The capability of supercomputers/high performance computers 
has grown significantly over the past decade.  During this 
period, the development of complex parallel programming 
paradigms required for evolving parallel computing 
architectures has made it increasingly difficult to develop high 
performance computing applications. Most high performance 
computing systems today are distributed memory systems, 
where each CPU has its own local memory. It takes much 
longer for a CPU to get data from another CPU’s than from its 
own.  One of the major challenges of efficient parallel 
programming is dealing with the relatively slow transfer of 
data from other CPU’s memory.  The performance of parallel 
programs is limited by the speed of the communication 
between the CPUs[4].   The two most popular parallel 
programming paradigms available are message-passing and 
shared memory.  Both models usually require domain 
patitioning and load.  Message passing requires distributing 
data structures across the processes and explicitly handling 
interprocess communications. While in shared memory, 
manipulating the data may require synchronization in addition 
to the lack of of data locality exploitation. Performance 

decreases due to the communication overhead which could be 
substantially large especially in small messages [8]  and 
effects of synchronization.  An emerging programming model 
is the global address space. UPC is a new parallel 
programming language that considers a partitioned global 
address space (PGAS) and provides ease of programming 
shared memory paradigms and also enables the exploitation of 
data  locality. Due to the shared address space view that they 
provide, they make distributing data and operating on ghost 
zones relatively easy.  Meanwhile, they provide thread-data 
affinity that can enable locality exploitation.  The success of 
any  programming language depends on many factors.  Some 
of the important factors are the ease of use, efficient execution, 
and foundation on a good programming model.   

In our work, we are considering sparse matrix multiplication 
which is an important operation for many scientific and 
engineering applications.  Recently, several different high-
performance algorithms and libraries have been developed for 
that operation.  However, we were able to take advantage of 
one of the advanced features provided by UPC, which is the 
fact that it is a globally addressable memory model. Due to 
that feature, using UPC in this operation would enable threads 
to read or write data from any other thread’s memory directly 
without any inter-process communication as the case with 
MPI. 

Our goal is to evaluate the performance of both parallel 
programming models based on experimental evaluation of 
sparse matrix multiplication. The comparative analysis will 
consider conceptual complexity and execution time.  It will be 
shown that UPC which supports distributed shared memory 
model has a great productivity advantage over message 
passing when sparse matrix multiplication problems are 
considered.   

This paper is organized as follows: Section 2 presents an 
overview of UPC and the sparse matrix multiplication 
implementation using UPC, while section 3 shows the sparse 
matrix multiplication implementation using MPI.  Section 4 
presents the experimental  performance and analysis 
measurements, followed by the conclusions in section 5. 

 
 
               II.  UNIFIED PARALLEL  C (UPC) 
 
Unified Parallel C (UPC) is a new parallel programming 

language that extends ISO C with support for parallel 
processing. UPC is based on partitioned global address space 
(PGAS) and provides ease of programming shared memory 
paradigms and also enables the exploitation of data  locality. 
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Due to the shared address space view that they provide, they 
make distributing data and operating on ghost zones relatively 
easy.  Meanwhile, they provide thread-data affinity that can 
enable locality exploitation.  In other words, it enables 
processors to read or write data from any other processor’s 
memory. 

UPC keeps the powerful concepts and features of C and 
adds parallelism; global memory access with an understanding 
of what is remote and what is local; and the ability to read and 
write remote memory with simple statements.  The simplicity, 
usability and performance of UPC have attracted interest from 
high performance computing users and vendors.  This interest 
resulted in vendors developing and commercializing UPC 
compilers [7].  Many parallel applications could scale more 
efficiently through the use of the high performance 
communication enabled by UPC.  Moreover, the development 
cycle for many  parallel applications could be dramatically 
reduced as a result of the clear, simple syntax that is inherent 
to UPC. 

 
A. UPC Programming Model 

 
UPC is a distributed shared memory programming model.  
The memory under UPC is logically divided into a shared 
memory space and a private memory space.  Each thread has a 
private memory space that can be accessed only by that thread.  
The shared memory space is logically partitioned into portions 
each of which has a logical association, or affinity to a 
given thread.  The entire shared memory space, regardless of 
affinity, can be accessed by all threads [7].  Figure 1 shows the 
memory layout for UPC.  The number of threads is given by 
the special constant THREADS[5],  and each thread 
is  identified  by the  special constant   
MYTHREAD [2].   

               
  Thread 0      Thread 1                                                       Thread 
                                                                                    THREADS-1 
                                                                                                                   
 
 
 
 
 
 
 
                                        
                                   Figure1.     
                     Distributed  Shared  Memory 
 
 
A UPC shared pointer can reference all locations in the 

shared space; while a private pointer may reference only 
addresses in its private space or in its local portion of the 
shared space.  Data in the local portion may only be accessed 
by the thread to which they have affinity, while data in the 

shared portion are accessible by all threads.  Threads access 
shared memory addresses concurrently through standard read 
and write instructions, rather than through explicit message 
passing [10].   

 
 
B  .  UPC Implementation 
 
In this application, two sparse matrices A and B are to be 

multiplied together and the result is stored in matrix C.  Matrix 
A is distributed by rows among the threads, while matrix B is 
distributed by columns among the threads. Since the UPC 
memory model  provides a distributed shared view to the 
programmer,  any element in any of  the matrices could be 
accessed by any thread.  The matrices could be distributed in 
such a way such that the first row in matrix A would be local 
to thread 0, and  the second column in matrix B would be local 
to thread 1.  To obtain a column in matrix C, we would 
multiply the row elements which are local to thread 0  by the 
column elements that are local to thread 1.  However, when 
doing so using UPC, we would first read the row elements in 
matrix A. If any were zero, then the multiplication would be 
skipped.  In other words,  multiplication would take place only 
for nonnegative zero elements.  In that sense,  thread 0 would 
access the column elements local to thread 1 so easily as they 
are as well global to all other threads.  That could only take 
place when we are using UPC since it is global addressable 
memory model. Therefore, by using UPC in this operation, 
threads would be able to read or write data from any other 
thread’s memory directly without any inter-process 
communication as the case with MPI.  As a result,  a great deal 
of computations could be saved since we are using sparse 
matrices where most of the elements in the matrices are zeros.   

In MPI, P1 would have to send the entire 2nd column to P0 
for the multiplication to take place.  That would still have to 
happen even if the elements of the 1st row in array A were 
zeros, (still P1 would send the column) 

In UPC, only the nonzero elements in the rows of  array A 
are the ones to be multiplied by the columns in array B.  As 
the elements in array B are seen by all the threads because 
they are stored in shared memory. 

 
C.    Message Passing Interface (MPI) 
 
The MPI is a library that considers message-passing the 

parallel programming paradigm. Calls to invoke the library 
routines are bulky and non-intuituve.  Every process has its 
own address space, so processes exchange data between each 
other through explicit message passing.  Each thread basically 
executes on its own CPU.  The threads are assigned a unique 
number called rank, ranging from 0 to P-1, where P is the 
number of threads running.  During communication between 
the threads, the threads specify the rank in their sending and 
receiving messages.  Processes communicate and synchronize 
with each other using point-point or collective communication.  
The point-to-point operations allow two processes to exchange 

 
                                    Shared 

Private0  Private 1                .   .   .                           Private 
                                                                                  Threads-1 

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007



data.  The core functions are MPI_Send( ) and MPI_Receive( ).  
These functions require a pointer to a buffer that will be used 
for sending or receiving data.  MPI_Send( ) requires an 
explicit source or MPI_ANY_SOURCE( ).  MPI allows 
blocking and nonblocking communication.  In collective 
communication, all processes or a subset of processes are 
involved in a particular operation.  For example, 
MPI_Barrier( ) is used to synchronize all processes at a 
particular point in the code.  The MPI_Bcast( ) function allows 
one process to broadcast data to all other participating 
processes[1].  The two-sided communication between 
processes results in substantial overhead in interprocessor 
communications, especially in the case of small messages. The 
complexity of communication involved on distributed memory 
computer systems would require more complex code to 
achieve satisfactory performance [5].  

 
   
III.  MPI  IMPLEMENTATION 
 
MPI is based on a master-slave process communication.  

The master process will distribute matrix A and matrix B 
among the different processes which act as the slaves. Every 
process will have its own chunk of rows from matrix A and 
columns from matrix B that are only accessible by the process.  
Matrix C will be computed from the multiplication of rows in 
matrix A by the columns in matrix B.  So if for example we 
multiply the row elements of process 0  by the column 
elements of process 1,  process 1 would have to send the entire 
row elements to process 0, and this has to happen even if most 
of the row elements in process 0 were zeros.   However, in 
UPC,  multiplication would be skipped if the row elements 
were zeros.  In MPI  inter-process communication  would have 
to occur and that results in  a large number of computations 
even if most of the elements were zeros.  On the other hand, 
those computations were skipped when the row elements were 
zeros when  UPC was used.  That certainly affects the 
performance and causes extreme  communication delay. 

 
 
 

IV.  PERFORMANCE EVALUATION 
 
In this paper, we are considering sparse matrix 

multiplication which is an important operation for many 
scientific and engineering applications.  Recently, several 
different high-performance algorithms and libraries have been 
developed for that operation.  However, in this work, we were 
able to take advantage of one of the advanced features 
provided by UPC, which is the fact that it is a globally 
addressable memory model. Due to that feature, using UPC in 
this operation would enable threads to read or write data from 
any other thread’s memory directly without any inter-process 
communication as the case with MPI.  Our goal is to evaluate 
the performance of both parallel programming models based 
on experimental evaluation of sparse matrix multiplication. 
Performance is assessed based on wall clock time 
measurements on an SGI Origin distributed shared memory 
system.  The comparative analysis will consider conceptual 
complexity and execution time. The execution time was used 
to evaluate the speedup using UPC and MPI programming 
models.  Different matrices sizes were used on different 
number of processes.  From the execution times, we were able 
to observe that UPC took much less execution time than MPI, 
and that is due to the fact that in UPC we were able to skip the 
computations with zero elements.  However, when MPI was 
used, communication was involved even with the zero 
elements, still the entire column had to be sent to the other 
processor to perform the multiplication.  

Figure 4 shows the speedup using MPI, while figure 5 
shows the speedup using UPC programming model.  The 
figures show that both models scale.  MPI seems to scale 
better than UPC based on the figure, however, examining the 
execution time in figures 1 and 2, it shows that the UPC 
execution time was significantly smaller than the MPI.   MPI 
was able to hide more interprocess communication overhead 
and artificially appear as if it were performing better.  
However, UPC was able to minimize data transfer which has 
resulted in its faster execution time.  From the results, we were 
able to conclude that UPC which supports distributed shared 
memory model has better performance over message passing 
when sparse matrix multiplication problems are considered.   
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Figure 2:  Execution Time Using MPI
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Figure 3:  Execution Time Using UPC
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Figure 4: SpeedUp Using MPI
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Figure 5: UPC SpeedUp
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V. CONCLUSION 

 
Partitioned global address space (PGAS) languages, such as 

Unified Parallel C (UPC) have the promise of being productive.  Due 
to the shared address space view that they provide, they make 
distributing data and operating on ghost zones relatively easy.  
Meanwhile, they provide thread-data affinity that can enable locality 
exploitation.  In this paper, we are considering sparse matrix 
multiplication which is an important operation for many scientific 
and engineering applications.  We were able to take advantage of that 
feature provided by UPC, in the sparse matrix multiplication 
operation as it would enable threads to read or write data from any 
other thread’s memory directly without any inter-process 
communication as the case with MPI.  By that all the zero elements 
were skipped from the multiplication operation when using UPC, 
however, in MPI, the entire column still had to be sent to the other 
process for multiplication even though most of the elements were 
zeros.  That obviously means more communication and in turn lowers 
the performance.  MPI seems to scale better than UPC based on the 
figures, however, examining the execution time, it turns out that the 
UPC execution time was significantly smaller than the MPI program 
due to its longer execution time, MPI was able to hide more 
interprocess communication overhead and artificially appear as if it 
were performing better.  However, UPC was able to minimize data 
transfer which has resulted in its faster execution time.  From the 
results, we were able to conclude that UPC which supports 
distributed shared memory model has better performance over 
message passing when sparse matrix multiplication problems are 
considered.  It has shown based on the performance measurements 
that UPC provides an effective alternative for programming parallel 
sparse matrix multiplication. 
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