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Abstract-The focus of this paper is the problem of 
recursive estimation for uncertain multisensor 
linear discrete-time systems. We herein propose a 
new suboptimal filtering algorithm. The basis of 
the proposed algorithm is the fusion formula for 
an arbitrary number of local Kalman filters. The 
proposed suboptimal filter fuses each local 
Kalman filter by weighted sum with scalar 
weights. This filter can be implemented in real 
time because the scalar weights do not depend on 
current observations in distinction to the optimal 
adaptive filter. The examples given, demonstrate 
the effectiveness and high precision of proposed 
filter. 
 
IndexTerms-Linear discrete-time system, 
multisensor, Kalman filter, fusion formula  

                   I.    INTRODUCTION 

 The consideration focused herein is the estimation 
of the state of a linear system with multisensor 
environment with uncertainties. Though there are 
many methods available for such kind of systems in 
the structure adaptation [1]-[3], we chose, for this 
paper, the partition method and Lainiotis-Kalman 
filter (LKF). It is composed of segregation of the 
original nonlinear filter into a collection of much 
simpler local Kalman filters (KF’s), where each local 
filter uses its own system model corresponding to 
each possible parameter value [1],[4]. The weighted 
sum of the local KF’s provides the optimal fusion 
estimate of the state of LKF. The problem with the 
LKF is that the optimal scalar weights depend on 
sensor observations which complicates the 
implementation of the LKF in real-time, knowing 
that the dimension of state vector and the number of 
sensors are large.  
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In [5], [6], we proposed to fuse the local KF’s by a 
weighted sum with matrix weights, which are 
independent of sensor observations, and hence can be 
pre-computed. However, for high-order systems the 
matrix weights are also complicated to use. 
 This paper concentrates on uncertain multisensor 
systems and put forward the idea to fuse the local 
KF’s using scalar weights independent from 
observations. Furthermore, the new filter helps in 
more than one way by assisting in minimizing the 
computation time and facilitating real-time state 
estimation, especially for large number of sensors. 

The paper is structured as follows. In Section 2, we 
present the formulation of estimation problem for 
multisensor linear systems with observation 
uncertainties. Section 3 gives the optimal filter for the 
above system based on the LKF for all stacked 
sensors. In Section 4, we propose the suboptimal 
filter (SF), which represents a weighted sum of the 
local KF’s with scalar weights depending only on 
time instance. Each local KF is fused by the 
minimum mean-square criterion. Section 5 tests the 
SF numerically. Conclusions are made in Section 6. 

          II.   PROBLEM FORMULATION 

Consider the following model of a multisensor 
system with observation uncertainties: 

 
0,1,2,...k,vGxFx kkkk1k =+=+        (1) 

 
,N1,...,i,wxHθy (i)

kk
(i)
k

(i)(i)
k =+=  (2)  

 
where, as standard, nℜ∈kx  is the state, 

( )kk Q0,N~v rℜ∈  is the normally distributed 
system noise. The system includes N  
sensors, im(i)

ky ℜ∈  is the observation vector of ith 

sensor, and ( )(i)
k

m(i)
k R0,N~w iℜ∈  is the normally 

distributed observation error. The system noise 
kv and observation errors (N)

k
(1)
k w,...,w  are mutually 

uncorrelated. The initial state 0x  is normal, 

( )000 P,xN~x . All the local filters (sensors) are 
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working on the same state vector,  therefore the 
estimated state kx has no superscript “i”.  
 There are a number of applications, where the 
probability that the observations contain only noise is 
non zero. Therefore we assume, that the unknown 
parameters N1,...,i,θ (i) =  come from the set { }.1,0  
The aim is to estimate kx . 
  In order to estimate a state of such system 
optimally, we can use the LKF [1], [4].  

    III.   THE OPTIMAL LAINIOTIS KALMAN 
FILTER 

 Bayesian approach forms the basis of the LKF in 
which the unknown parameter  (i)θ   is assumed to be 
random with prior known probabilities  
 

( ) ( )
N.1,...,i,1pp

,1θθpp,0θθpp
(i)
1

(i)
0

(i)
1

(i)(i)
1

(i)
0

(i)(i)
0

==+

======  (3) 

 
 Let us collect all scalar parameters (N)(1) θ,...,θ  into 
vector. Then we obtain the unknown parameter 
vector Nℜ∈Θ , which takes N2L =  values, i.e.,  
 

[ ]
⎩
⎨
⎧

=
=

==Θ
1.θ
0,θ

θ,θθ (i)
1

(i)
0(i)T(N)(1) K  (4) 

 
With the above as prelude, we can rewrite the 
multisensor system model (1), (2) in the form, 
 

( ) ,wxH~y

,vGxFx

kkkk

kkkk1k

+Θ=

+=+  (5) 

 
where 
 

[ ] [ ]
( ) [ ]

( ) .mmm,ΘH~,w,y

,Hθ,,HθΘH~
,w,,ww,y,,yy

N1
nm

k
m

kk

T(N)
k

(N)(1)
k

(1)
k

T(N)
k

(1)
kk

T(N)
k

(1)
kk

++=ℜ∈ℜ∈

=

==

× L

K

KK
 (6) 

 
Provided that the parameter vector Θ  belongs to the 
discrete space (4), i.e., N

i 1,...,2i,ΘΘ == , the 
optimal LKF opt

kx̂   represents the weighted sum of the 
local KF’s (estimates)  

( ) N
ik

(i)
k 2L1,...,i,x̂x̂ ==Θ≡  (7) 

 
matched to the linear system (5), (6) at fixed  
 

[ ] 0,1i,...,i,θθ N1
T(N)

i
(1)
ii N1

==Θ=Θ K . (8) 
 
We have 
 

,x̂c~x̂
L

1i

(i)
k

(i)
k

opt
k ∑

=

=                        (9) 

where (i)
kx̂  represents  the local Kalman estimate 

determined by the standard KF equations [1], [7]: 
 

[ ]

[ ]
( )

[ ] ,L1,...,i,RRdiagR

,HθH~,MH~KIP

,RH~MH~H~MK

,PP,GQGFPFM

,xx̂,x̂FH~yKx̂Fx̂

(N)
k

(1)
kk

(i)
k

(i)(i)
k

(i)
k

(i)
k

(i)
kn

(ii)
k

1-

k
(i)
k

(i)
k

(i)
k

(i)
k

(i)
k

(i)
k

0
(ii)
0

T
1k1-k1-k

T
1k

(ii)
1-k1-k

(i)
k

0
(i)
0

(i)
1-kk

(i)
kk

(i)
k

(i)
1-kk

(i)
k

TT

==

=−=

+=

=+=

=−+=

−−

L

 (10) 

 
and the weights   
 

( ) { } N
k0kki

(i)
k 1,...,2i,y,...,yY,Ypc~ ==Θ=  (11) 

 
correspond to a posteriori probabilities of iΘ  given 

.Yk  They are calculated through the recursive 
Bayesian formula [1], [4]. As discussed above, the 
efficiency of the LKF (7)-(11) depends on the 
dimension of the problem, since it requires 
calculations of a large number of a posteriori 
probabilities ( ) N

ki 1,...,2i,Yp =Θ   in real-time. In this 
paper we devise the alternative SF for the system (1), 
(2). This filter does not require calculations of a 
posteriori probabilities ( )ki Yp Θ  at each time 
instance .0k >  The obtained suboptimal filtering 
algorithm reduces the computational burden and on-
line computational requirements considerably.  

 IV.     THE SUBOPTIMAL FILTER  

 The SF is similar to the optimal LKF, as likewise 
the LKF it also represents the state estimate as a 
weighted sum of the local KF’s (7), however, unlike 
LKF the SF’s weights does not depend on current 
observations ky , but only on time instances .0k > As 
a result, the weights can be pre-computed thus 
reducing computational complexity and provides an 
opportunity to design the SF, which can be easily 
applied in real-time, especially in high dimension 
problems. According of this proposal, we have 
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,1c,x̂cx̂
L

1i

(i)
k

L

1i

(i)
k

(i)
k

sub
k == ∑∑

==

 (12) 

 
where, (N)

k
(1)
k c,,c K  are the scalar weights independent 

of current observations .yk They depend only on time 
instance k and determined by the mean-square error 
(MSE) criterion: 
 

.minx̂-xEJ
(i)
kc

2sub
kk →=  (13)  

 
Theorem.  (i)  The weights (L)

k
(1)
k c,,c K   satisfy the 

linear algebraic equations 
 

( )
.1cc,1L1,...,j

,0P-P-PPtrc

(L)
k

(1)
k

L

1i

(Li)
k

(iL)
k

(ji)
k

(ij)
k

(i)
k

=++−=

=+∑
=

L

 (14) 

 
and they can be explicitly written out in the following 
form 
 

[ ] ,c,ccc,
eAe

eAc T(L)
k

(2)
k

(1)
kk1

k
T

1
k

k K== −

−
 (15) 

 
where [ ] ( )(ij)

kkij,kij,k PtrA,AA ==  and  [ ].111e T
K=  

 
(ii)  The overall error covariance  

 
( )( )( )Tsub

kk
sub
kk

sub
k x̂xx̂xEP −−=  (16) 

 
 is given by 
 

( )
.L1,...,i,x̂xx~

,x~x~EP,PccP

(i)
kk

(i)
k

(j)
k

(i)
k

(ij)
k

L

1ji,

(ij)
k

(j)
k

(i)
k

sub
k

T

=−=

== ∑
=

 (17) 

 
In (13), tr(A)  is the trace of a matrix A.   
 The proof of Theorem is given in Appendix A. 
 
Note that formulas (14)-(17) depend on the local 
error covariances (ii)

kP    determined by the Riccati 
equations (10), and the local cross-covariances  

ji,P (ij)
k ≠ , which satisfy  the following recursive 

equation: 
 

,ji;L1,...,ji,,PP
,)H~K-I)(GQGFPF(

)H~KI(P

0
(ij)
0

T(j)
k

(j)
kn

T
1-k1-k1-k

T
1-k

(ij)
1-k1-k

(i)
k

(i)
kn

(ij)
k

≠==

+×

−=
 (18) 

 
where (i)

kK  stands for the local Kalman gains (10). 
 The derivation of (18) is given in Appendix B. 
 
 Thus, the suboptimal filter can be completely 
formed by the local Kalman estimates and 
covariances (ii)

k
(i)
k P,x̂  (see (10)), the local cross-

covariances ji,P(ij)
k ≠  (see (18)), and the fusion 

equations (14), (15). 
 
Remark 1 (Computational complexity).  In general, 
the both results, namely, linear equations (14) and 
expression (15) are equivalent, being the implicit and 
explicit forms of the solution, respectively. However, 
from the computational point of view, when the 
number of sensors N  is large or the local cross-
covariance matrices (ij)

kP  are ill-conditioned, the linear 
equations (14) may be more preferable than the 
explicit expression (15). 
Remark 2 (Real-time implementation). It is very 
interesting to note that once the observation schedule 
is settled, the real-time implementation of the SF 
requires only the computation of the local Kalman 
estimates (L)

k
(1)
k x̂,,x̂ K  and the final fusion suboptimal 

estimate sub
kx̂ , since the local Kalman gains (i)

kK , the 
local error cross-covariances (ij)

kP , and the weights (i)
kc  

can be pre-computed, as they are dependent only on 
the noise statistics and system matrices, and on the 
values  iΘ  of the parameter Θ , which are the part of 
system model (1),(2), (4), and not on the present 
observations kY .  
Remark 3 (Parallel implementation). Another 
important advantage of the SF is that each local 
estimate (i)

kx̂  is found independently of other 
estimates ijL;1,...,j,x̂(j)

k ≠= , and thus; can be 
evaluated in parallel, because of the fact that Θ  takes 
a finite number of values (8), the local Kalman 
estimates (10) are separated for each value of 

L,1,i K= .  
 
                  V. EXAMPLES 
 
Example 1. Consider a scalar linear system 
 

,0,1,2,...k,vaxx kk1k =+=+  (19) 
 
where ( ) ( ).σ,xN~x,q0,N~vconst,a 2

00k=  
 The observation model contains three sensors: 
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,3,1,2i,wxθy (i)
kk

(i)(i)
k =+=  (20) 

 
where ( ) 1,2,3,i,r0,N~w i

(i)
k = and the unknown 

parameters 3,2,1i,θ (i) =  take only two values with 
equal prior probabilities, i.e.,  
 

( )
( )⎩

⎨
⎧

==
==

=
.0.5θp,1θ
,0.5θp,0θ

θ (i)
1

(i)
1

(i)
0

(i)
0(i)  (21) 

 Here each sensor takes two modes, which are, 
1θ(i) = (signal-present) and 0θ(i) =  (signal-absent). 

Then the vector parameter [ ]T(3)(2)(1) θθθΘ =  takes 
8L =  values, iΘΘ =  as given below:  

 
[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] .000Θ,100Θ

,110Θ,010Θ,001Θ

,101Θ,011Θ,111Θ

T
8

T
7

T
6

T
5

T
4

T
3

T
2

T
1

==

===

===
 (22) 

 
 The model parameters are set to ,9.0a =  

.2r,1r,5.r3,5,x0.05,q 321
2

0 ====== σ   
 We compare the optimal LKF and  SF: 
 

( ).Θx̂x̂,x̂cx̂,x̂c~x̂ ik
(i)
k

(i)
k

8

1i

(i)
k

sub
k

8

1i

(i)
k

(i)
k

opt
k === ∑∑

==

 (23) 

 
The system (19)-(21) is simulated for all values of  
the parameter (22). The Figs. 1-3 present the time 
histories of the LKF and SF characteristics for the 
first case, 1Θ=Θ . Such time histories are perfect 
analogy for the other cases.   
 

 
Fig.1 Comparison of MSEs  for LKF and SF 

 

Fig.1 shows the overall MSE’s ( )2opt
kk

opt
k x̂xEP −=  and 

( )2sub
kk

sub
k x̂xEP −= , and three local MSE’s  

( )( )2ikk
(ii)
k x̂xEP Θ−= corresponding to the different 

values of the  parameter 531 ,, ΘΘΘ=Θ , but among 
them only the value 1Θ=Θ   is the true value in  (20).  
 
 

 
Fig. 2   Comparison of the weights (i)

kc~  and (i)
kc   

 
From Fig.1 shows us that  opt

kP  and sub
kP  are very close, 

due to the verity that optimal and suboptimal weights 
corresponding to the true value 1Θ Θ=  coincides 
very closely to each other, i.e., (1)

k
(1)
k c~c ≈  (see Fig. 2). 

It is very apparent from Fig.3, showing the 
comparison of the optimal and suboptimal estimates 
that performance of the SF is matching the optimal 
one which further proves that SF is a good alternative 
for LKF. 
 

 
Fig.3  Optimal and suboptimal  estimates 
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Example 2.   Consider the 2-dimensional system   
 

,0,1,2,...k,v
0
1

x
0.070.5

01
x kk1k =⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=+

 (24) 

 
where [ ] ( ) ( ).P,xN~x,q0,N~v,xxx 000k

T
k2,k1,k =  

 
 We are measuring the position k1,x  and velocity 

k2,x  using two sensors, 
 

,wxθy,wxθy (2)
kk2,

(2)(2)
k

(1)
kk1,

(1)(1)
k +=+=  (25) 

 
where ( ) { } .1,2i,0,1θ,r0,N~w (i)(i)

k =∈  
 
 In this case the vector parameter [ ]T(2)(1) θθΘ =  
takes 4L =  values with equal prior probabilities, 

iΘΘ =  , as given below: 
 

[ ] [ ] [ ] [ ] .00Θ,10Θ,01Θ,11Θ T
4

T
3

T
2

T
1 ====  (26) 

  

We compare the optimal LKF and SF. The model 

parameters are set to 

 

[ ] [ ].0.20.1diagP,0.00.5x

,1r,2.0q

0
T

0 ==

==  (27) 

 
Figs 4-6 present the time histories of the filter 
characteristics for the true value of 1Θ=Θ . This time 
history is similar for the other values of .Θ   
 
 

 
Fig.4   Comparison of MSEs for position  

 

In Figs. 4 and 5 we show the overall optimal opt
k11,P  and 

suboptimal sub
k11,P   MSE’s, and also two local MSE’s  

for the position and velocity,  respectively. The local 
MSE’s  ( )1ki,P Θ  and ( )4ki,P Θ   for position 1)(i =  and 

velocity )2(i =  correspond to the values 1Θ=Θ  and 

4Θ=Θ , respectively. 
 

 
Fig.5 Comparison of MSEs for  velocity 

 
 

The observation of Figs. 4 and 5 reveals very clearly 
that the differences between the optimal MSE 
( 1,2i,Popt

kii, = ) and suboptimal MSE ( 1,2i,P sub
kii, = ) 

are negligible. It is worth mentioning that in Fig. 4  
the local MSE ( )4k1,P Θ  corresponding to only noise 
observations is very poor since LKF’s and SF’s 
weights (4)

kc~  and (4)
kc ,  corresponding to 4Θ  are very 

small (see Fig. 6). Fig. 4 also shows that in the steady 
state regime the local MSE ( )1k1,P Θ   is also close to 

the optimal one opt
k11,P .  

 

 
Fig.6    Comparison of the weights (i)

kc~  and (i)
kc   
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      VI.         CONCLUSION 

 In this paper, we have designed a new SF for 
uncertain multisensor linear discrete-time systems. 
This filter represents a linear combination of the local 
KF’s with weights depending only on time instance. 
Each local KF is fused by the minimum mean-square 
error criterion. The proposed filter has a parallel 
structure and as a result of that is suitable for parallel 
processing.  Simulation results demonstrate the 
relative loss of accuracy of the SF as compared to the 
optimal LKF. 

     APPENDIX A: PROOF OF THE THEOREM 

Using (12) the criterion (13) can be rewritten as 
 

( )( )( )
( ) ( )

( )( )( ) .Pcctrx̂xx̂xEcctr

x̂xcx̂xctrE

x̂xx̂xtrEJ

L

1ji,

(ij)
k

(j)
k

(i)
k

L

1ji,

T(j)
kk

(i)
kk

(j)
k

(i)
k

L

1j

T(j)
kk

(j)
k

L

1i

(i)
kk

(i)
k

Tsub
kk

sub
kk

⎭
⎬
⎫

⎩
⎨
⎧

=−−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠

⎞
⎜
⎝

⎛
−=

−−=

∑∑

∑∑

==

==

 (A.1) 

 
The formula (A.1) gives the overall covariance (17). 
Next substituting ( )1)(L

k
(1)
k

(L)
k cc1c −++−= L  into 

(A.1) we obtain  
 

( ) ( )

( ).PPtrcc1

Ptrc1PtrccJ

1L

1i

(Lh)
k

(hL)
k

(i)
k

1L

1h

(h)
k

(LL)
k

1L

1h

(h)
k

1L

1ji,

(ij)
k

(j)
k

(i)
k

∑∑

∑∑
−

=

−

=

−

=

−

=

+⎟
⎠

⎞
⎜
⎝

⎛
−+

⎟
⎠

⎞
⎜
⎝

⎛
−+=  (A.2) 

 
Differentiating each summand of the criterion  J   in 
(A.2) with respect to 1)(L

k
(1)
k c,...,c −  and then setting the 

result to zero, we obtain the linear algebraic 
equations (14)  for the unknown weights (L)

k
(1)
k c,...,c . 

 Applying the Lagrange multiplier method for 
minimization the criterion J under the restriction 

1cc (L)
k

(1)
k =++L , we obtain 

 
  .1cλJΦ

L

1i

(i)
k ⎟

⎠

⎞
⎜
⎝

⎛
−+= ∑

=

  (A.3)  

 
Setting N1,...,i,0cΦ/ (i)

k ==∂∂  and ,0Φ/ =∂∂ λ  
and after simple manipulations we obtain (15). 
 This completes the proof of the Theorem. 

     APPENDIX B: DERIVATION OF EQUATION 
(18)  

 The derivation of (18) is based on the recursive 
equations for the state kx  and estimate (i)

kx̂ . Using  (1), 
(2), and (10) we obtain recursive equations for the 
local error (i)

kk
(i)
k x̂xx~ −= , i.e, 

 

[ ]
( )[

] ( )
( ) .wKvGH~KI

x~FH~KIvGx̂FH~
wvGxFH~K

x~Fx̂FH~yK

x̂F-vGxFx~

(i)
k

(i)
k1k1k

(i)
k

(i)
kn

(i)
1k1k

(i)
k

(i)
kn1k1k

(i)
1k1k

(i)
k

(i)
k1k1k1k1k

(i)
k

(i)
k

(i)
1k1k

(i)
1-k1-k

(i)
kk

(i)
k

(i)
1-k1-k1-k1-k1-k1-k

(i)
k

−−+

−=+−

++−

=−−

+=

−−

−−−−−−

−−−−

−−  (B.1) 

 
According to the assumptions that the error (i)

1kx~ −
, and 

white noises 1-kv  and (i)
kw  are mutually uncorrelated 

the equation (B.1) yields the Lyapunov recursive 
equation (18) for the local cross-covariances 

( ) .ji,x~x~EP
T(j)

k
(i)
k

(ij)
k ≠=  

 This completes the derivation of (18). 
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