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Abstract—In this paper, a recently developed fiber
tracking algorithm to be used with diffusion tensor
(DT) fields acquired via magnetic resonance imaging
(MRI) is improved and applied to real brain DT-MR
images. The method performs satisfactorily in re-
gions where branching and crossing fibers exist and
offers the capability of reporting a probability value
for the computed tracts. This certainty figure takes
into account both the anisotropy and the information
provided by all the eigenvectors and eigenvalues of the
diffusion matrix at each voxel. In previous papers of
the authors, a simpler algorithm was applied only to
elementary synthetic DT-MR images. As now pre-
sented, this algorithm is now adequately used with
more intricate synthetic images and is applied to real
white matter DT-MR images with successful results.
A novel neural network is used to estimate the main
parameters of the algorithm. Numerical experiments
show a performance gain over previous approaches,
specially with respect to convergence and computa-
tional load. The tracking of white matter fibers in the
human brain will improve the diagnosis and treatment
of many neuronal diseases.
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1 Introduction

The technique of Diffusion Tensor Magnetic Resonance
Imaging (DT-MRI) measures the diffusion of hydrogen
atoms within water molecules in 3D space. Since in
cerebral white matter most random motion of water
molecules are restricted by axonal membranes and myelin
sheets, diffusion anisotropy allows depiction of directional
anisotropy within neural fiber structures [4, 1]. The DT-
MRI technique has raised great interest in the neuro-
science community for a better understanding of the fiber
tract anatomy of the human brain. Though this field of
search is still in its early stages, its development is grow-
ing very fast.

There exist many important applications for white mat-
ter tractography: brain surgery (knowing the extension
of the fiber bundles could minimize the functional dam-
age to the patient), white matter visualization using fiber

∗ETSI Telecomunicación, University of Valladolid, 47010 Val-
ladolid, Spain. Tel: +34-983-423660, Fax: +34-983-423667. Email:
lsanjose@tel.uva.es.

traces (for a better understanding of brain anatomy) and
inference of connectivity between different parts of the
brain (useful for functional and morphological research
of the brain).

Apart from a very few approaches for direct volume ren-
dering [8], the great majority of DT-MRI visualization
techniques focuses on the integration of sample points
along fiber trajectories and their three-dimensional rep-
resentation [9]. These approaches usually only use the
principal eigenvector of the diffusion ellipsoid as an esti-
mate of the predominant direction of water diffusion [4].

However, due to both some deficiencies in these tracking
methods and several shortcomings inherent in datasets
(such as noise, artifacts or partial voluming), these algo-
rithms may depict fiber tracts which do not exist in real-
ity or miss to visualize important connectivity features,
e.g. branching structures. In order to avoid misinterpre-
tations, the viewer must be provided with some informa-
tion on the uncertainty of every depicted fiber and of its
presence in a certain location. In [10, 11] we proposed an
estimation algorithm that takes into account the whole
information provided by the diffusion matrix, i.e., it does
not only consider the principal eigenvector direction but
the complete 3D information about the certainty of con-
tinuing the path through every possible future direction.

Since in [10, 11] we presented an initial version of our
work, numerical simulations were only performed on sim-
ple DT-MR synthetic images. The algorithm also in-
cludes a procedure that adapts on-line the number of off-

spring paths emerging from the actual voxel, to the degree
of anisotropy observed in its proximity. This strategy has
been proved to enhance the estimation robustness in ar-
eas where multiple fibers cross while it keeps complexity
to a moderate level. Besides, a neural Network (NN) is
now proposed to adjust the parameters of the algorithm
in a user-directed training stage. The detailed study of
convergence depending on the strategy used to create the
pool of “future seeds” is new in this paper, as well.

For the sake of brevity, the reader interested in the review
of previous related approaches can see the corresponding
sections in [2, 3, 10].
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2 Tracking Algorithm Description

The basic version of the algorithm used in this paper was
first described in [10]. Thus, this section just presents
a summary of the method, with special emphasis on the
new aspects. The algorithm uses probabilistic criteria
and iterates over several points in the analyzed volume
(the points given by the highest probabilities in the previ-
ous iteration). The process starts in a user-selected seed
voxel, V0.

At every iteration, the method evaluates a set of param-
eters related to the central voxel of a cubic structure sim-
ilar to that shown in Figure 1, left. The central point,
Vc, (No. 14 in the figure) represents the last point of the
tract being analyzed. In the first iteration, Vc = V0.

2.1 Basic concepts

First, a measure Pi, i ∈ {valid points}, is evaluated based
on the probability of going from voxel Vc to voxel Vi.
This probability takes into account the eigenvalues and
eigenvectors available at point Vc from the DT-MR image
diffusion matrix. In order to calculate this probability,
the information shown in Fig. 1, right, is used.

The table shows, for every voxel shown in Fig. 1, left,
the changes that must occur in indices (m,n, p), when a
tract goes from voxel Vc to voxel Vi. For instance: when
going from point No. 14 to point No. 6, coordinate m
reduces by 1, n remains the same, and p increases by 1.
This is represented in the table with “πmπnπp = (−0+)”.
With this information, the probability of each possible
destination Vi can be calculated taking into account the
projection of each of the eigenvectors to each of the direc-
tions defined in the triplet πmπnπp. Besides, each pro-
jection is weighted by the corresponding eigenvalue λ.
Thus, in the previous example, Pi should be calculated
as Pi = V1yλ1 + V2yλ2 + V3yλ3 + V1zλ1 + V2zλ2 + V3zλ3,
where Vjα represents the α-component of eigenvector j,
1 ≤ j ≤ 3, α ∈ {x, y, z}.

The axes reference criterion for the (x, y, z) vector compo-
nents is also shown in Fig. 1. Note that, for this calculus,
the sign “−” in the triplet is equivalent to sign “+”. In
order to properly calculate Pi, it must be weighed by 0.33
if there are no zeros in triplet i, and by 0.5 if there is one
zero.

2.2 Anisotropy and local probability

The following anisotropy index is used in the algorithm:

fa =

√

(λ1 − λ2)2 + (λ2 − λ3)2 + (λ1 − λ3)2

2(λ2

1
+ λ2

2
+ λ2

3
)

, (1)

where λ1 ≥ λ2 ≥ λ3. When both fa(Vc) and fa(Vi) do not
exceed a certain threshold, then point Vi is eliminated as
a possible destination point.

Taking into account both Pi and the anisotropy given by
Eq. (1), the local probability of voxel i is defined as

P ′

i = a · µ1 · fa(Vi) + (1 − a) · µ2 · Pi, 0 < a < 1 (2)

where parameter a allows the user to give a higher relative
weight to either the anisotropy or the local probability,
and µ1 and µ2 are scaling factors (normally, 1 and 1000,
respectively). The set of values P ′

i is properly normalized
so that they can be interpreted as probabilities.

2.3 Eigenvectors and direction considera-
tions

Besides these considerations, the final probability of voxel
i makes also use of the so-called smoothness parameters

(described in [7]) which judge the coherence of fiber di-
rections among the trajectories passing through voxel Vc.
The mathematical expressions of these four parameters,
{spi}

4

i=1
, as well as their geometrical meaning, is ex-

plained in [10]. They measure the angles between the
directions that join successive path points, as well as the
angles between these directions and the eigenvectors as-
sociated to the largest eigenvalues found in those voxels.
sp2, sp3 and sp4 are used to maintain the local directional
coherence of the estimated tract and avoid the trajectory
to follow unlikely pathways [7]. The threshold for sp1

is set such that the tracking direction could be moved
forward consistently and smoothly, preventing the com-
puted path from sharp transitions.

Next, the following parameter is calculated for every valid
point whose smoothness parameters satisfy the four cor-
responding threshold conditions,

P
′′

i = b(ξ1sp1 + ξ2sp2 + ξ3sp3 + ξ4sp4) + (1 − b)P ′

i (3)

where, ξ1, ξ2, ξ3 and ξ4 are the corresponding weights of
the smoothness parameters (normally, 0.25), and b stands
for a weighting factor.

2.4 Path probabilities

Probabilities P ′′

i can be recursively accumulated, yielding
the probability of the path generated by the successive
values of Vc,

Pp(k) = P
′′′

i · Pp(k − 1) (4)

with k being the iteration number, and P
′′′

i =

P
′′

i /
∑

i P
′′

i .

At the end of the visualization stage, every estimated
path is plotted with a color that depends on its probabil-
ity Pp.

2.5 Final criterion and pool of “future
seeds”

A pool of voxels is formed by selecting, at the end of each
iteration, the s best voxels according to Eq. (3). The

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007



Figure 1: Modifications of indices (m,n, p) when moving from Vc to the neighboring voxel Vi, 1 ≤ i ≤ 27, i 6= 14.

Figure 2: Selection of seeds around Vc for different
anisotropies.

first voxel of the pool becomes the central voxel Vc at
next iteration, expanding, this way, the current pathway.

As proposed in [11], the value of s is adjusted depending
on the degree of anisotropy found in current voxel Vc

and its surroundings. When this anisotropy is high, it
means that a high directivity exists in that zone, and the
probability that Vc belongs to a region where fibers cross
is really low. Consequently, s takes a small value (1, 2
or 3). On the other hand, if Vc is found to be situated
in a region of high anisotropy, the probabilities of having
fibers crossing or branching is higher. In this case, it is
interesting to explore various paths starting in Vc. This
can be achieved by setting parameter s to a higher value.

This idea is illustrated in Fig. 2, where point V0 belongs
to a very anisotropic region. In this case, the pool of
surviving voxels should be augmented with those points
marked with a white filled triangle. On the other hand,
points like V ′

0
, which are situated in a region where two

orthogonal fiber bundles cross, have a small anisotropy.
In this case, all the points marked with black triangles
could be added to the pool in order to be considered as
seeds in future iterations.

2.6 Neural network for parameter estima-
tion

Optionally, a neural network with 4 hidden layers
and the backpropagation algorithm for learning can
be used to adjust the parameters of the algorithm

(a, b, µ1, µ2, ξ1, ξ2, ξ3, ξ4). When this strategy is used, the
user is requested to assign a certainty value to the paths
automatically generated. This is useful when the algo-
rithm is applied to a different part of the brain (fiber
bundles) or even to the same portion but having been
scanned with under different conditions. In these cases,
the volume of interest will have a different smoothness
and anisotropy characterization. To our knowledge, no
previous work has proposed any mechanism to estimate
the parameters and they are always heuristically ad-
justed.

3 Numerical Results

In order to evaluate the tracking properties of the pro-
posed algorithm, we have used both synthetic and real
DT-MR images.

3.1 Synthetic images

First, four different synthetic DT-MRI data in a 50×50×
50 grid have been generated (see Fig. 3). The first three
images (“cross”, “earth” and “log”) were used for testing
in [10, 11], while the most complex one –Fig. 3, bottom-
right– is new. To make the simulated field more realis-
tic, Rician noise [6] was added in the diffusion weighted
images which were calculated from the Stejskal-Tanner
equation using the gradient sequence in [12] and a b-value
of 1000.

The desired noisy synthetic diffusion tensor data was ob-
tained using an analytic solution to the Stejskal-Tanner
equation. Satisfactory tracing results for the first three
cases can be found in [10, 11], where a much simpler al-
gorithm was used. For the sake of brevity, in this paper
we have just included the new and most complex case,
the star. This image consists of six orthogonal sine half-
waves, each of them with an arbitrary radius. Under this
scenario the diffusion field experiments variations with
the three coordinate axes and there exists a crossing re-
gion. Three different tracking results are shown in Fig. 4
(b), right, each of them for a different seed V0

It can be seen how the algorithm can be designed in or-
der to pass through isotropic zones where different fiber
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Figure 3: Synthetic DT-MR images used for testing the
proposed algorithm: “cross” (left), “earth”, “log” and
“star” (right).

bundles cross. It is also appreciated how the algorithm
differentiates between the totally isotropic zones extrinsic
to the tracts and the fiber bundles.

The differentiation between voxels belonging to a fiber or
to a very isotropic area, respectively, is attained by map-
ping the path probabilities given by Eq. (4) into a color
scale and classifying them according to some fixed thresh-
olds. Three different seeds (S1, S2 and S3) are shown. S1

and S2 belong to the intrinsic volume (voxels with a very
high anisotropy) and the algorithm moves through the
most probable direction following the main direction of
the cross in each situation. On the other hand, when an
extrinsic point such as S3 is selected as seed, the algo-
rithm explores in the neighboring voxels until it finds a
voxel with a high anisotropy value (point P1). Once P1

is found, the tracking algorithm proceeds as in the case
of S1 and S2. Fig. 4 shows how the algorithm finds the
proper fiber path whatever (extrinsic or intrinsic) seed
voxel is chosen.

Notice that, the extrinsic seeds S3 are located far away
from the fiber bundles region, thus making the algorithm
explore a wider range of points before reaching the points
P1 that belong to an existing fiber path.

Next, the robustness of the tracking algorithm is now
studied for: (i) parameter s is fixed during the whole es-
timation of the path, and (ii) parameter s is dynamically
changed depending on the anisotropy.

• Parameter s fixed. The convergence performance

Figure 4: Tracking results for the “star” synthetic DT-
MR image. Green: seed points. Blue: fiber path voxels.
Red: extrinsic voxels. Initial seeds V0 = {S1, S2, S3.

for different SNRs is shown in Table 1. It can be
seen how the algorithm converges properly within
a wide range of SNRs. The percentages obtained
for the “cross” and the “earth” test images are very
close, while for the “log” case the algorithm exhibits
a slightly lower convergence. Notice that this table
also shows the results for a third method used for
comparison1 [5]. Comparing both methods, we see
that the proposed algorithm performs slightly better
when the SNR is low, while both methods tend to
similar results with high SNRs.

• Parameter s depends on the anisotropy. Fig. 4 (b)
also shows the results for the “star” image when: (i)
s = 1 and (ii) s = f(anisotropy), as explained in
section 2.5.

Analyzing the simulations of the four synthetic images
considered, it is seen that convergence results improve
whenever the MR image contains branching or crossing
areas –as it is the case in real DT-MR images. This is
the case of our “cross” image. For this image, the con-
vergence results are improved ∼ 5% when parameter s is
modified according to the anisotropy. Besides, for these
studied cases, we see that the influence of the procedure
that adapts s is higher for low SNRs. In case the SNR
of the image is large, this procedure scarcely affects the
results.

Consequently, the algorithm converges properly within a
very wide range of SNRs. The percentages obtained for
the “cross” and the “earth” test images are very close,
while for the “log” case the algorithm exhibits a slightly

1The Bayesian algorithm implemented for comparison is a
slightly modified version of the method proposed in [5]. This stands
for the results given in Tables 1 and 2.
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SNR (dB)
5 10 15 20 25 30

Cross 78.3/82.8 89.7/93.6 92.1/94.3 98.3/98.7 99.0/99.0 100/100

76.8 89.0 90.7 97.0 100 100
Image Earth 77.7/76.2 88.6/87.5 89.9/89.0 98.2/98.2 99.0/99.0 100/100

74.4 83.2 85.0 97.3 99.2 100
Log 71.0/69.7 82.1/81.0 86.1/85.5 96.0/95.8 98.0/97.8 100/100

68.8 78.3 85.2 96.0 98.0 100

Table 1: Convergence performance for different SNRs values. Cell values represent percentage of right convergence
for two configurations of the algorithm: s = 1/s = 4, as well as the results obtained with [5].

lower convergence. Besides, when parameter s is on-line
tuned-up the robustness of the algorithm in branching
and crossing situations becomes more flexibly controlled
and the computational load can be maintained to its low-
est value for the kind of desired estimation.

Next, Table 2 shows a computational load comparison
with respect to [5]. Values are normalized to the time re-
quired by our method with s = 1 considering the “cross”
image.

Proposed algorithm
Adaptive s Method

s = 1 s = 6 s = 9 1 ≤ s ≤ 12 [5]
Cross 1 2.1 3.2 4.9 18.9
Earth 1 2.1 3.2 4.9 20.1
Log 1.1 2.1 3.3 5.0 19.9
Star 1.1 2.2 3.3 5.1 20.0

Table 2: Comparison of computational load. Execution
times required to estimate 20 fibers of 200 points. Values
normalized to the first case shown (the proposed method
with s = 1 and “cross” image.

The Bayesian approach of [5] requires much more compu-
tational time and resources, while it does not get better
convergence results (see Table 1) than the proposed al-
gorithm with fixed or adaptive s. Furthermore, it can be
seen that the computational load of the proposed proce-
dure does not increase linearly with the size of the sur-
viving seeds’ pool, s.

3.2 Real images

To conclude this paper, we have applied the proposed
tracking algorithm to real DT-MR images. Specifically,
we have selected the corpus callosum of the brain (Fig. 5)
and the fiber pathways in the optic radiations (Fig. 6).

Simulation results are shown on the right. It can be ap-
preciated how the algorithm is able to follow the main
fiber bundle direction without getting out of the area of
interest. These figures show some bundles of properly es-

timated tracts. Red/green color indicates high/low cer-
tainty.

Figure 5: Tracking results for the corpus callosum area
of the human brain.

The NN-based procedure was useful when changing the
volume being analyzed. For instance, with just 8-12
training steps, in synthetic images, or 18-20, in real im-
ages, the parameters of the algorithm are fine-tuned so as
to get satisfactory results. It is interesting to note that,
the choice of the Mahalanobis distance in the RBF basis
function allows some advantages over the Euclidean one
due to the non-spherical shape of the multidimensional
clusters (highly non-linear problem).

Future work will focus on: semiautomatic selection of
seeds, improvement of visualization characteristics, de-
velopment of a user-friendly interface, and study of dif-
ferent techniques and criteria to create and maintain the
pool of “future seeds” (directly related to the behavior in
crossing and branching regions).
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Figure 6: Tracking results for the optic radiation. Seeds
are selected lateral to each of the lateral geniculate nuclei.

4 Conclusions and Future Work

A fiber tracking algorithm has been improved and tested
with several synthetic and real DT-MRI data. This
algorithm combines both the probability of advancing
in a specific direction based on the projection of all
the eigenvectors components into the corresponding di-
rections (making use of more information than merely
the principal eigenvector) and four smoothness criteria
based on the relation between the voxels and eigenvec-
tors’ orientations. The number of possible paths emerg-
ing from the actual point is on-line adjusted based on
the local anisotropy. Numerical simulations show that
the two main consequences of this are: (i) a better
use of computational resources, and (ii) a better per-
formance in regions with crossing or branching fibers.
The method was tested with synthetic and real DT-MR
images with notably satisfactory results, showing better
computational and convergence properties than already
existing Bayesian methods. Finally, a brand new NN-
based scheme has been proposed for the estimation of
the parameters of the algorithm, a task that has been
heuristically approached in our previous and other au-
thors’ works.
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