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Abstract—The subject of extracting high-resolution data from 

low-resolution images is one of the most important digital 
processing applications in recent years, attracting much research. 
In this work the authors show how to improve the resolution of an 
image when a small part of the image is given in high-resolution. 
To obtain this result the authors use an iterative procedure 
imposing the low frequencies complete data of the original 
low-resolution image and the high-resolution data present only in 
a fraction of the image. The result is a clearer image, with higher 
correlation to the required high-resolution image. The authors 
show the use of such a procedure on Rosetta images to 
demonstrate the higher frequencies obtained and on a text sample 
to show improvement in textual understanding. 
 

Index Terms—Image Processing, Signal reconstruction, Super- 
resolution.  
 

I. INTRODUCTION 
 In recent years many researchers tried to address the subject 

of super resolution (SR). SR refers to recovering high 
resolution data from images that due to mis-focus, compression 
or other forms of distortion have lost the high frequencies data 
that were originally embedded in the image, and hence are now 
given as low resolution images. The methods to overcome this 
problem of data loss, and generate SR, are quite versatile. In 
some cases the method is to obtain data about the blurring 
function and use an inverse filter to reconstruct the 
high-resolution image [1,2]. Unfortunately, two main problems 
limit this approach. The first, usually it is impossible to identify 
the exact blurring function since it is a result of stochastic noise 
and thus only its statistical properties are known. 

The second, even if the blurring function is known making 
an inverse filter might not be practical (e.g. if the original 
blurring filter has zeros the inverse filter must have singular 
values to obtain exact restoration). Other methods use large 
databases; they are divided into two groups. In the first group 
[3,4] one takes a large amount of different test-images present 
both in low resolution and high resolution and attempt to find 

the blurring procedure that will yield the best results with 
respect to all images. There are two problems with this 
approach, no two pictures are identical and therefore we cannot 
be sure that the inverse blurring procedure found will be 
applicable for the required new image, and, usually the blurring 
procedure varies from one test-image to another and thus the 
“anti-blurring” filter will be an average of many filters, and not 
an exact filter. 
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The second group of SR using large databases assumes one 
has many low-resolution pictures of the required subject [5,6]. 
Since in every picture a different portion of the high-resolution 
data is missing it is possible to extract some high-resolution 
data from these images to obtain a single high-resolution 
image. The main drawback of these methods is the large 
database required in order to increase the resolution of a single 
image. 

In our work we suggest a novel approach assuming only one 
image is given – the required image. Suppose one has to scan an 
image with high resolution, it is time and memory consuming. 
However, if only a small portion will be scanned with high 
accuracy and most of the data scanned with lower accuracy the 
process it much faster and the storage capacity required to store 
the images is much smaller (e.g. with CT scanning if the patient 
has to spend less time on the scanning device his/her 
inconvenience is reduced). This is the exact principle used in 
this work. We assume only a small portion of the required 
image is given in high-resolution and use this data (assuming it 
has similar statistical properties to the neighboring 
low-resolution portion of the image) to increase the resolution 
of the entire image. To do this we use an iterative procedure 
relying on two initial assumptions: in one small portion of the 
image we have all the high-resolution data, and the entire image 
contains all the low frequencies of the original high-resolution 
image. In the following sections we explain the procedure and 
show some test cases supporting this approach. 

 

II. ITERATIVE SINGLE IMAGE SUPER-RESOLUTION 

A. Concept 
When using a single image we need to know the limits of our 
data. In our case we know for certain that the low frequencies 
exist in the low-resolution image as they would exist in the 
high-resolution image (we assume the blurring function has a 
relatively sharp frequency response, and thus the lower 
frequencies are not distorted). Thus we can impose a 
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frequency-domain restriction on the image. We also know that 
a certain portion of the image is presented in high-resolution so 
we can impose an object-domain restriction on the image. 
These two restrictions allow us to bounce back and forth from 
the object-domain to the frequency-domain, with a procedure 
similar to the one used for phase retrieval, as shown in the 
following subsection.  

B. Review: Iterative Phase Retrieval 
A well-known problem is to determine the phase of a phase 

only object plane filter that will produce a required intensity 
distribution in the Fourier domain. In there paper [7] Gerchberg 
and Saxton suggested an iterative manner to do just that. This 
method is proven to converge to a phase filter with a minimal 
MSE [8]. 

The concept is quite simple: We begin with an arbitrary 
phase-only filter in the object domain multiplying the input 
object (the original image), after a Fourier transform we obtain 
a Fourier domain image and we impose the require Fourier 
intensity (actually the magnitude), leaving the phase unharmed. 
An inverse Fourier transform brings us back to the object 
domain. Since we demand a phase-only filter we impose the 
intensity of the input object in this plane. Next we calculate the 
Fourier transform and return to the Fourier domain, and so on. 
This procedure is required since using only the phase of the 
complex filter that converts the input image exactly to the 
Fourier image gives poor results. As can be seen, if we impose 
half of the information (intensity or phase) in both the input and 
the output domains the procedure converges monotonically. In 
later work Gerchberg [9] and Papoulis [10] suggested the use of 
this method for super-resolution. However, both presented 
relatively simple test cases and assumed the properties of all 
iterations to be identical (accept when noise reduction was 
addressed). 

There are of course other methods for obtaining the phase 
filter, such as Simulated Annealing [11], which ensures that the 
MSE has indeed a global minimum, but it is time and resources 
consuming.  

C. Super-Resolution by factor of 2 
Now we present the approach used to obtain a factor-2 

Super-resolution (i.e. the original image had 2N by 2N pixels 
but we obtain only an N by N pixels image). 

Let us indicate the required image by  where 
, and the low-resolution image as 

( nmg , )
N2nm1 ≤≤ , ( )nmgLR ,  

where . Since the size of the images is not the 
same we begin by planting zeros between each row and column 
element of , thus generating: 
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The new image has the same number of pixels as the required 

high-resolution image. 

We assume that a certain portion of the image is known 
completely, so we may impose it on the new image: 
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In the Fourier plane we obtain for the high-resolution image: 
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whereas for the low-resolution image, the DFT is 
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Since the low-resolution image contains all the low 

frequencies of the high-resolution image we may deduce that 
we can use the following restriction: 

 
( ) ( ) NlMklkG4lkG LR1 ≤≤×= ,,,        (5) 

 
 Where  is the DFT of , and the factor of 4 is 

required since the size of  and  is not the 
same.  

If M1mm 12 =+−  and  then we have only 
25% of the data in the object plane and 25% of the data in the 
Fourier plane. This is less than the required amount stated by 
the phase retrieval algorithm shown before and therefore the 
convergence to a minimal MSE is not assured.  

N1nn 12 =+−

In fact, when using the iterative procedure for this case we 
obtain the following: at first, the MSE decreases 
monotonically, but after several iterations the requirements are 
not strong enough to keep the results in the right track, and the 
MSE starts to rise. For this reason we add a new condition to 
the iterative procedure: halt when MSE reaches local minima. 

In addition we noticed that a smaller (better) MSE minimum 
could be obtained by gradually increasing the frequency 
domain requirements, i.e., imposing only very low frequencies 
at the beginning and gradually increasing the frequencies 
imposed, up to the maximum value given in (5). This is due to 
the fact that primarily ( )nmg1 , is quite different from ( )nmg ,  
(yielding a large MSE) and thus imposing a large portion of the 
Fourier domain at an early stage sets the results way out of 
track. 

 
The following summarizes the procedure steps: 
1. Obtain low-resolution image and set initial low 

frequencies range to impose. 
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2. Implant zeros between data points to increase image 
size to . 

3. Impose high-resolution portion on image. 
4. Perform DFT. 
5. Impose low frequencies on DFT. 
6. Perform IDFT. 
7. Impose high-resolution portion on image. 
8. Calculate MSE. If local minimum is obtained then 

increase the range of low frequencies to impose. 
9. If the range of low frequencies has reached the 

complete range available in the original low-resolution 
image then stop, else go to step 4. 

 
When using this method we can obtain a sharp image at 

relatively short processing times. To demonstrate this lets 
assume that each M by N image requires 1 time unit to process. 
Thus the original high-resolution image would require 4 time 
units (because its size is 2M by 2N), however, an image 
containing only one quarter of the data in high-resolution will 
require 1.75 time units: 1 time unit for the N by M high 
resolution and 0.25 time units per each remaining M/2 by N/2 
quarters (the zero padding is not relevant in this case). Thus, the 
processing time is less then half of the original one required if 
all data were given at high resolution. 

 

III. SIMULATION RESULTS 
We tested the method on two typical examples. The first, a 

test rosette containing a variety of frequencies, thus making it 
easy to view how resolution is improved. The second, a text 
example showing how barely readable text can be sharpened. 

Fig. 1 shows the required high-resolution rosette image, 
whereas Fig. 2 shows the low-resolution rosette. Fig. 3 
collaborates the low-resolution data, after padding with zeros to 
obtain same image size as the high-resolution image, with a 
portion of the high-resolution image in the first quarter of the 
image. The first quarter was used since in most cases the higher 
frequencies lie in the center of the image and we wanted to 
avoid a biased result.  

 

 

 
 
 

 
As can be seen, the high-resolution portion of the image 

contains both high and low frequencies. The MSE between the 
first two images is calculated to be (normalized to 
1). In Fig. 4 one can see the result of the super resolution 
iterative procedure. MSE is reduced to  (normalized 
0.0388) and the correlation coefficient between the 
high-resolution image and the one obtained is 97.4%. 

6103374 ×.

5106851 ×.

 
 
 
 
 

Fig. 2. Original low resolution rosette 
image containing 64 by 64 pixels. 

Fig. 3. Low-resolution rosette image 
after padding with zeros and embedding 

the high-resolution data in top left 
corner. 

Fig. 1. Original high-resolution rosette 
image containing 128 by 128 pixels. 
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The results of the second test case are given in Fig. 5 through 

Fig.7. 
 

 
 

 
 
 

 
As can be seen, in the original high-resolution image (Fig. 5) 

the text is relatively sharp, whereas in the original 
low-resolution image the text is quite smeared (Fig. 6). The 
original MSE in this case is and the correlation 
coefficient is 78.2%.  

5102143 ×.

 

 
 
However, when applying the novel iterative approach one 

obtains the image shown in Fig. 7. The MSE is (an 
improvement by a scale of over 4) and the correlation 
coefficient is 90.8%, which is much higher than the one 
obtained by simple reconstruction. 

41000888 ×.

  

Fig. 4. Reconstructed rosette image 

Fig. 7. Reconstructed text image, 
according to super resolution 

iterative procedure. 

Fig. 5. Original high-resolution text 
image containing 128 by 128 

pixels. 

IV. CONCLUSION 
In this paper the authors suggested a novel iterative method 

for achieving super resolution using a low-resolution image 
accompanied by a small portion of the high-resolution image. 
The new method allows obtaining only a small part of the data 
with high accuracy and thus saving time while obtaining the 
images and memory while saving the data before processing. 
This method may be applicable either as a simple and fast 
algorithm for slightly improving image content, or as a 
preliminary process before applying advanced digital 
techniques (e.g., text oriented recognition methods).  

Fig. 6. Original low-resolution 
text image containing 64 by 64 

pixels. 
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