
  

Abstract— The build up of water ice on aircraft flight surfaces 

poses a significant safety risk. As a result, much effort has gone 

into studying this problem in order to understand how individual 

droplets contribute to the accretion process. One approach has 

been to capture the moment of impact of a supercooled droplet 

onto a surface placed in an icing tunnel. However, this produces a 

large number of images that must be analysed manually. This 

paper describes the development of an automated analysis system, 

employing image processing techniques, that is capable of 

classifying the impact images without operator input. Using a 

carefully chosen feature vector and K-means clustering algorithm, 

the classification results from the automated system are 

comparable with that achieved using the manual approach. 

 
Index Terms—Aircraft Icing, Droplet Splash, Feature 

Extraction, Surface Classification 

I. INTRODUCTION 

The topic of in-flight icing has been an important issue for many 

years. When aircraft fly through clouds or precipitation, icing 

will occur at temperatures below freezing. Given the importance 

of aviation flight safety, more research is required into in-flight 

icing. The two main fields being developed include large 

super-cooled water droplet impact for ice shapes prediction and  

understanding the ice accretion process for ice protection 

system. At Cranfield University, investigations are being 

carried out into the effects of super-cooled droplet impact 

splashes onto a simulated airfoil surface. The water droplets 

have similarity in size and speed in the ambient conditions 

relevant for super-cooled large droplet (SLD) icing. The term 

“SLD icing conditions” refers to the situation in which the cloud 

volume median diameter (VMD) is greater than 50µm and the 

water is cooled below zero Celsius degree but without 

freezing.
[1]-[2]

, The material from which the airfoil surface is 

constructed plays an important role during ice formation 

process, as it may influence the extent to which water films build 

up. To monitor this process, image sequences are captured 
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showing droplets impacting a test surface. In the past, images 

were manually classified, one by one, in accordance with 

droplet splash models to identify the surface conditions at the 

time of impact. However, due to the subjective nature and time 

consuming nature of manual classification, digital image 

processing techniques are being introduced to improve the 

image classification. In addition, image processing techniques 

allow a more objective classification of impact events. This 

paper describes the development and implementation of an 

automatic image classification scheme that allows sample 

surfaces to be categorized according to the presence of the water 

film. Specifically, attempts are made to differentiate between 

‘dry’ and ‘wet’ surfaces. 

II. MANUAL IMAGE CLASSIFICATION OF DROPLET SPLASH 

Before starting to implement specific image processing 

approaches, it is important to illustrate a few test cases as 

classification criteria for software validation. The images 

generated by experiment consisted of a side view of the target 

sample, which was inclined at an angle to the horizontal to 

encourage the liquid to run off. The droplet impacted the sample 

from above. An initial run of 200 training images were manually 

classified to validate the automated process. From this analysis, 

four classes were initially identified: 

� Diffusion images – Dry surface 

� Corona images – Wet surface 

� Mixed events images –Ambiguous  

� Useless images  

However, there are a number of factors that make 

interpreting the images problematic. For example, the camera 

exposure, though constant (1ms), was not synchronized with 

individual impact events since exposure times were longer than 

the event duration. This means there is a chance that multiple 

droplets hit the target surface within the duration of the 

exposure, and in some cases, at the same location.  

 
Figure 2.1 Multi-droplet impacts in different locations 
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To illustrate typical scenarios we present some examples. 

Figure 2.1 represents four droplets which impact on a target 

surface at the same time, but at different locations. On the left 

hand side of target, we assume a water film has developed due to 

previous droplet impacts. The impact of another droplet onto 

the water film will result in a corona or the ejection of water 

droplets from the surface. On the right hand side, we assume  

that the interval since the last impact has been sufficient for any 

water film to have dissipated. Subsequently, when droplets 

strike this region we see a more diffuse behaviour. However, 

depending upon the surface conditions at the time of impact, it is 

possible that a mixture of these events may occur, making it 

difficult to correctly identify the sample from this information 

alone.  

 In Figure 2.2, the sequence of four images represents two 

droplets hitting a sloping target at different times at the same 

location. Initially, the sample surface is dry when droplet 1 

impacts causing diffuse behaviour at time t2. Droplet 2 impacts 

at the same location as droplet 1, but before the latter has had 

time to run off (t3). The resulting splash image would then show 

wet behaviour for that surface.  

Furthermore, we see samples that exhibit a limited buildup 

of surface water in the form of beads (figure 2.3a). In this 

scenario we can have a droplet impacting the beads, leading to 

what appears to be ‘wet’ surface behaviour (Figure 2.3b).  

The mixed events category encompasses these scenarios, 

making it difficult to classify the images into ‘wet’ or ‘dry’ 

surfaces. In reality the material samples themselves could not so 

easily be classified into wet or dry, it being more likely that they 

would be characterized by a continuous value representing the 

likelihood of a film forming on their surface. However, for the 

purposes of identifying characteristics of the image, this 

classification is sufficient. 

 

 

The remainder of this section will describe the four 

categories of impacting events, with an image used to illustrate 

each. 

 

 

Diffusion Image 

 

    
 

Figure 2.4 Diffuse mist due to dry surface  

 

In Figure 2.4, ignoring anything to the right of the target 

boundary, we can focus on the droplet splashing region on the 

target surface. This form of this impact illustrates a droplet 

hitting a dry surface and producing a dense mist. This can be 

seen at the left-top corner of Figure 2.3. From this we classify a 

diffuse structure being related to a dry surface. 

 

Corona Image 

 

 
Figure 2.5 Corona structure indicating wet surface 

 

Figure 2.5 shows a corona
[3] 

structure which demonstrates 

how a larger droplet strikes a reasonably smooth water layer and 

produces a string of droplets pointing backwards out of the 

water layer. There may also be some diffuse aspect, but the 

coronal structure confirms this as a wet surface.  

 

 

 

      

t1:droplet 1  
approach 

t2:droplet 1  
splash 

t3:droplet 2 
approach 

t4:droplet2 
splash 

 

Figure 2.2 Multi-Droplets impact at different time 

    
(a) droplet approach (b) droplet splash 

 

Figure 2.3 Droplet Splash onto beading up surface 
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Mixed with diffusion and corona images  

 

 
Figure 2.6 Mixed events  

 

In Figure 2.6, it is a complicated impacting event. It has not 

only a diffusion section, but also a sequence of droplet points, 

namely the corona. How to characterize these mixed events’ 

features becomes a big issue as part of this investigation. Image 

309 shows that there is more than one droplet impacting onto the 

surface during the impacting period. In certain circumstances, it 

is possible that a little water remains on part of target, but the 

other region stays dry where no droplet hit. Therefore, when 

droplets impact onto different sections, the perspective in the 

2D image displays a mixed event with both a diffusion area and 

the corona. In this case, it is rather difficult to distinguish 

whether the surface is wet or dry. 

 

Useless images 

 

 
Figure 2.7 Useless image 059 

 

In Figure 2.7, the picture appears to have been captured at 

a point where no droplet has impacted the surface. There are no 

noticeable characteristics in the droplet splashing region. As a 

result, it is impossible to tell what, if anything, has occurred in 

this impact image.  

In summary, when the images display a brighter diffusion 

region, it can be identified as dry surface. Meanwhile, the 

presence of backward corona is usually related to a wet surface. 

However, the corona sometimes has forward direction or the 

brightness is weak. The difficulty in detecting coronas rises in 

relation to the variable thickness of remaining water layer on the 

target surface
 [4] [5]

. Mixed events are the most challenging 

classification among the four categories because of the 

complexity of distinguishing the wet or dry behaviour in the 

original image.  

III. IMPLEMENTATION 

The implementation was performed using the OpenCV image 

processing library and Microsoft Visual Studio with C++. Some 

additional steps, such as the classification stage, were 

performed using Matlab. 

The processing chain for each image consisted of three steps:  

(i) pre-processing, (ii) feature extraction, (iii) classification. 

Pre-processing activities included masking off unnecessary 

parts of the image and applying Gaussian filtering to reduce 

artifacts from the image capture process. The important step of 

feature extraction allowed the identification and measurement 

of those aspects of each image that could be later used for 

classification. Finally, a K-means clustering method was used to 

determine which class the image fell into according to its feature 

vector. The K-means algorithm is one of the simplest 

unsupervised learning algorithms for solving clustering 

problems 
[7]

. The choice of four classes used in the K-means was 

defined by the manual classification performed earlier. 

There are a wide variety of techniques used for feature 

extraction. Statistical measurements are the fundamental 

approach taken here, which included average greyscale 

brightness, contrast, correlation, and entropy. From these, a 

feature vector was defined that also included Hough lines to add 

a structural aspect to the feature space. 

 

Average Brightness 

This operator can characterize the average of brightness within 

whole image. Equation 3.1 is described the operator to calculate 

average brightness.  
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where p(i, j) is the greyscale value of each pixel, Nheight and 

Nwidth represent respectively value of height and width of source 

image.  

 

Mean & Standard Deviation 

The images are sub-divided into 25x25 windows, and the mean 

and standard deviation of each was calculated with following: 

 

                            0

*

N

i

height width

p(i)

p
N N

==
∑

                             3.2 

                                                                                                                                    

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007



2

0

( )
N

i
p

p(i) p

N
σ =

−

=
∑

                      3.3 

 

where p(i) is the value of pixel, Nheight  and  Nwidth are height and 

width of sub images, and N is the number of sub images. 

 

Entropy  

Here we use entropy to define the level of structure in each 

sub-window. It allows us to make a distinction between those 

areas of diffuseness and those in which a more definite structure 

exists. It is defined as: 
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with its associated standard deviation defined as: 
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where p(i, j) is the value of pixel of image, N is the number of 

sub images. 

 

Ratio of Entropy 

To further differentiate between wet and dry behaviour, a ratio 

was defined based on the entropy of each sub-window. We 

defined this ratio as follows: 

_

_

n HEP
ratio

n LEP
=                      3.6 

where n_HEP is the number of sub-windows whose entropy is 

larger than 5000 per image, n_LEP is the number whose entropy 

is lower than 5000. The threshold was determined empirically, 

comparing the entropy between the sub-windows containing 

corona and diffusion features. 

 

Hough Line  

Although statistical metrics are useful, they do not identify 

specific structures within each sub-window. To provide extra 

structural information, we used the fact that the wall of the 

corona forms an angle with the surface of the target (Figure 3.1). 

 

             
Figure 3.1 A typical corona shape 

     
Figure 3.2 Probabilistic Hough Transform of Image 102 

 

The Canny edge detection algorithm
[6]

  was used to 

emphasize the edges of corona, and the Hough transform
[6]

  was 

applied in order to detect the lines. The Hough routine returns a 

distance and an angle parameter which can be used to define 

another parameter set in the feature vector. Figure 3.2 shows an 

example of the Hough Transform detecting four lines which 

represent possible coronal structures. 

Since we are not interested in any activity below the target 

surface, we can also mask out any Hough lines contained there 

by defining a threshold angle. The angle is dependent upon the 

experimental setup of the sample, and a typical set for 4 

different samples is shown in Table 3.1 Thus, the detectable 

angle of any useful structure detected by the Hough routine 

should be in the approximate range 28º < θ < 203º, with any 

Hough lines outside of this range being discarded.   

The corona is the key feature used to detect a wet surface. 

However, some ambiguous images appeared to show corona 

ejecta moving down the slope to the right with no left hand 

structure. To further improve  the discrimination of wet images 

we targeted corona that displayed either both walls of the 

structure, or just the left-hand wall. Thus, we try to detect the 

‘backwards’ corona with the angle between 28º and 90º, and 

calculate a ratio of the number of ‘backward’ lines compared 

with the total lines within the image. If the ratio is large, it 

indicates that the presence of a corona is more likely. 

The full feature vector therefore includes the global image 

brightness, the sub-image brightness with its standard deviation, 

entropy of sub-image, standard deviation of entropy, ratio of 

entropy, and Hough lines with the ratio of backward lines 

compared with total Hough lines.  

 

Table 3.1 Target surface Hough angle 

Group Hough Angle 

A: Image 1- 78 22.5º 

B: Image 79-84 22.3º 

C: Image 85-95 24.17º 

D:Image 96-662 24.19º 

{ }log
i j

p(i, j) p(i, j)

E =
N
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Figure 3.3 Processing algorithm 

 

IV. RESULTS AND DISCUSSION  

The 200 manually validated images were processed using the 

automated algorithm (Figure 3.3). The metrics defined in the 

previous section were calculated for each image, and the 

resulting feature vector then used to categorize the image into 

one of the four classes using the K-means clustering method.  

The initial feature vector used to classify the images 

contained a total of eight metrics. However, analysis of the 

results showed that there was insufficient detail in each image to 

distinguish between the values of the global greyscale mean and 

the individual sub-window means. Furthermore, the standard 

deviation of the sub-window greyscale values also showed 

insufficient discrimination of the results to justify its inclusion 

in the feature vector. As a result, both of these sub-window 

metrics were dropped from the final feature vector. The final 

form of the feature vector comprised of: 

• Global average greyscale brightness 

• Average sub-window entropy  

• Standard deviation of sub-window entropy 

• Ratio of entropy  

• Hough line angle 

• Ratio of Hough lines 

 

After the normalization of feature space values, the output 

of the classification stage categorized the images into the four 

groups: dry surface, wet surface, ambiguous images and useless 

images. Figure 4.1 shows how the images are sorted into the 

four groups, using only two of the feature metrics: average 

brightness and ratio of Hough Lines. We can see that the images 

fall into the four categories with relatively little overlap. Using 

additional parameters of the feature vector increased the 

discrimination between groups still further. 
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Figure 4.1 Classification of 200 Images in 2D space 

 

The ratio here shows the number of Hough lines with the 

angle between 28º and 90º, compared to the total Hough lines. 

The “+” group represents the useless images as they all have 

lower brightness and no Hough lines. Besides, the “.” group has 

a greater ratio of Hough Lines with lower brightness, which can 

be interpreted as wet surface category. The “x” and “◊”group 

has a greater brightness which illustrates the diffusion in the 

images. The “◊” group shows that the images also detected 

Hough lines, so that we can define these as ambiguous images, 

with the remaining group being the dry surface category. 

When we define the structure of feature space as entropy, 

ratio of entropy and ratio of Hough Lines, we can see the images 

still separate into four categories (Figure 4.2). The ratio of 

entropy represents the comparison between dry surface and wet 

surface in the 25x25 sub-images. The green group represents the 

dry surface as its entropy and the ratio is greater, which means 

those images have a large area of diffusion part. The other 

groups have similar characteristics as with Figure 4.1. 

     Table 4.1 shows the comparison of the automatic 

classification and the manual classification. Roman numerals 

are used to represent the four cluster categories in the automatic 

analysis. In the manual analysis, ‘D’ stands for dry surface, ‘W’ 

stands for wet surface, ‘A’ stands for ambiguous group, and ‘U’ 

for unusual images.  
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Figure 4.2 Classification of 200 images in 3D space 
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Automatic 

Category 
Manual Category 

I 32 'W', 5 'U', 9 'A' 

II 14 'D', 8 'A' 

III 8 'W',1 'D', 43'U', 13'A' 

IV 3 'W',24'D', 1'U', 36 'A', 
Table 4.1 Formation of 200 images classification 

 

Each of the images assigned to an automatic group has its 

corresponding manual classification added to the second 

column of Table 4.1. For example, of the images assigned to 

group I, the manual classification showed that 32 of these were 

assigned as ‘wet’. Hence, from the table, group I and II seem to 

be related to wet surface and dry surface images respectively. 

Although it is difficult to clarify category III and IV, we can 

assume that group III represents the useless category and IV is 

related to ambiguous images.  Finally, comparing the number of 

each cluster with total training test images, the classification 

results are shown in Table 4.2. 

We can see that the automatic classification is comparable to 

the manual results, with a few discrepancies, the most notable 

being that of the ‘dry’ classification. Examining the 

corresponding images shows that many images that should have 

been categorized as ‘dry’ were designated as ‘ambiguous’ by 

the automated system. This is due to the low brightness values in 

the diffuse areas, as is demonstrated in Figure 4.1. Further 

optimization of the feature vector should improve these results 

and this remains an area for future work. 

  

V. CONCLUSION 

A methodology has been developed that automatically classifies 

images previously captured during a super cooled large droplet 

splash experiment. This reduces the necessity for manual 

analysis, which can be both time consuming and prone to 

subjective interpretation.  

 The set of feature metrics used as part of the image 

processing included greylevel brightness, sub-window entropy 

and identification of structures using the Hough transform. 

 

 

Ratio(member / total image) 

Category Automatic 

Classification 

Manual 

Classification 

I 
Wet surface 

image 
23.3% 21.8% 

II 
Dry surface 

image 
11.2% 19.8% 

III 
Useless 

image 
33.0% 24.9% 

IV 
Ambiguous 

image 
32.5% 33.5% 

Table 4.2 Classification of automatic and manual systems 

Using a manually validated test set of images, the automated 

method has been successful in correctly classifying them into 

wet, dry, ambiguous or useless groups. Results have shown that 

the outcomes from the automated and manual classifications are 

broadly comparable, although further optimization of the 

feature vector could improve the results still further. 
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