
 
 

 

  
Abstract—Container throughput plays a major role in the 

development of operational strategies and long-term investment 
plans for container terminals. Support Vector Machine (SVM), as 
a powerful technique for regression and classification, shows 
impressive performance in the area of time series analysis. This 
paper presents a modified version of SVM, called the least squares 
support vector machine (LS-SVM), as an effective technique to 
forecast the monthly container throughput in Hong Kong. It also 
proposes a method for fast training LS-SVM by employing an 
approximate approach to accelerate the training process and 
lower the memory requirement. The proposed Approximate 
LS-SVM (ALSSVM) has a shorter training time than LS-SVM 
and a forecasting accuracy comparable to that of the standard 
SVM and the LS-SVM. To evaluate the effectiveness of ALSSVM, 
numerical experiments are conducted to compare its performance 
with that of standard SVM, LS-SVM and RBF Neural Network 
for forecasting Hong Kong’s container throughput. The results 
show that the proposed method is an excellent forecasting tool for 
logistics management. 
 

Index Terms—Approximate LS-SVM, Container through- 
-put forecasting, Time series analysis.  
 

I. INTRODUCTION 
Hong Kong is the world’s 7th largest maritime centre with ship 
owners managing about 8% of the global merchant fleet and 
millions of tonnage of cargoes passing through its container 
terminals every year. In 2005, Hong Kong handled 22.6 million 
Twenty-foot Equivalent Units (TEUs) of containers resulting in 
a 2.8% increase year to year as compared to the 2004 
throughput. Currently, the container terminals in Hong Kong, 
in aggregate, handles over 80 percent, by weight, of Hong 
Kong's trade, making them the busiest in the world. 
Containerization is a preferred form of transport for almost all 
imported/exported materials, components, and manufactured 
products. Its growth has a significant impact on container 
terminal operations, and has important implications on a 
container terminal’s future infrastructure requirements. Indeed, 
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container throughput forecast is playing an increasingly 
important role in container terminal management. However, it 
is commonly known that container throughput is affected by 
many varying factors, such as seasons, the amount of imports 
and exports, as well as general economic conditions. The 
complex nature of these factors and their dynamic interactions 
make precise forecasting of container throughput a long-term 
challenge. Hence, to better assist local terminal operators in 
developing operational strategies and investment plans, it is 
important to develop an efficient methodology for forecasting 
Hong Kong’s container throughput.   

Support Vector Machine (SVM) proposed by Vapnik and his 
co-workers [1] is a classic algorithm for regression estimation 
and classification. In view of its successful applications in time 
series analysis [2,3], the technique has been used in numerous 
areas of forecasting, e.g. predicting the complex financial 
indexes [4] and random wind speed [5]. When combined with 
some heuristic algorithms, such as simulated annealing, SVM 
can adjust its hyper-parameters to achieve better forecasting 
results [6]. Moreover, SVM for classification can also be used 
to accomplish some predictions if the output outcome can be 
classified into binary category [7].  

Usually, the training of a standard SVM involves the 
solution of a quadratic optimization problem with inequality 
constraints [1]. A traditional method is to solve the problem 
directly by using numerical optimization software [8]. 
However, this method is normally not satisfactory because of 
the low training speed and the large memory requirement when 
the amount of training data is huge. In order to facilitate 
application of the technique, LIBSVM [9] provides a library 
that implements several popular algorithms to solve 
SVM-related problems efficiently. Most of these algorithms are 
computationally better than those adopted in other commercial 
optimization software. A modified version of SVM is the Least 
Squares SVM (LS-SVM) [10] which involves the solution of a 
quadratic optimization problem with a least squares loss 
function and equality constraints instead of inequality 
constraints. As a result, the constrained quadratic optimization 
problem can be converted into solving a set of linear equations 
that satisfy the Karush-Kuhn-Tucher (KKT) condition. 
Although LS-SVM is easily understood and programmed, the 
required storage and training time are 2( )O n and 3( )O n , 
respectively, where n is the amount of training data involved. 
Hence, when n is large, the kernel matrix cannot be 
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accommodated in the memory and a large amount of 
computational effort would be required in the training process.   

To accelerate the training speed and lower the memory 
requirement, several approximate methods have been derived 
recently, which include the Incomplete Cholesky Factorization 
[11,12], the NYSTRÖM method [13], the Sparse Greedy 
Matrix Approximation [14], and the Reduced set vectors 
method [15]. The key essence of these approaches is to replace 
the kernel matrix with a lower rank version through some 
approximate techniques. It is commonly known that such kinds 
of approximate methods can largely improve the computational 
performance of kernel machines but do not lose their good 
generalization capability. Among these approximate methods, 
Incomplete Cholesky Factorization (ICF) is originally used for 
training SVM, a particular type of kernel machines, with an 
interior point algorithm [11]. The technique has been shown to 
possess good computational characteristics [16]. It builds a 
lower-rank rectangular matrix k ( ( )n m m n× < ) column by 
column in order to greedily decrease the trace of the residual 
matrix between the exact kernel matrix H and the approximate 
one TK kk=% . This lowers the required storage from 2( )O n  to 

( )O mn and reduces the amount of computational load from 
3( )O n to about 2( 2)O nm [11].  

Sherman-Morrison-Woodbury (SMW) equation [12] which 
is a useful means for performing matrix inversion, can be 
employed to train an LS-SVM efficiently when the kernel map 
is explicitly known (e.g., the kernel function is linear or 
quadratic) [18]. However, this method cannot be directly 
applied to some nonlinear kernels (e.g., the RBF kernel). This 
paper therefore proposes an approximate method called 
ALSSVM for training an LS-SVM. It firstly uses ICF [11,12] 
to derive one rectangular matrix and to replace the kernel 
matrix in the LS-SVM by a lower-rank version. The SMW 
equation is then employed to solve the set of linear equations 
efficiently when numerical instability does not occur.   

It is shown that the proposed Approximate Least Squares 
Support Vector Machines (ALSSVM) exhibits a good 
performance, when applied to forecast the Hong Kong’s 
container throughput. Compared to other machine learning 
algorithms, e.g. standard SVM, LS-SVM and RBF Neural 
Network, the proposed method performs very well in terms of 
fast computational speed and good prediction accuracy.  

The remainder of the paper is organized as follows. Section
Ⅱ introduces the basic theory of LS-SVM for regression. 
Section Ⅲ shows the proposed approximate method, and to 
highlight the concepts of the Incomplete Cholesky 
Factorization approach and the Sherman-Morrison-Woodbury 
(SMW) equation. The application of the proposed method to 
forecast Hong Kong’s container throughput and the analysis of 
the results obtained are shown in Section Ⅳ. The conclusion is 
presented in Section Ⅴ.  

II. LS-SVM FOR REGRESSION  
In this section, we briefly introduce the basic theory of 

LS-SVM for regression [10]. Given a training set 1{(x , )}n
i i iy =  

with inputs x d
i ∈ �  and outputs iy ∈ � , training the SVM for 

regression is firstly to map the input data into a 
high-dimensional feature space by a kernel function that 
satisfies Mercer’s condition: ( , ) ( ) ( )i j i jK x x x xφ φ= . Typical 

kernel functions include Linear ( , ) T
k kK x x x x= , 

Polynomial ( , ) ( 1)T d
k kK x x x x= + , 

RBF 2( , ) exp( 0.5 )k kK x x x x σ= − ∗ −  and 

MLP ( , ) tanh[ ]T
k kK x x x xκ θ= + . Then a linear regression is 

implemented in this high-dimensional feature space. The 
approximate function has the form:  

( ) ( )Tf x x bφ= +w �                              (1) 

where w and b are the coefficients and the bias, respectively, 
which can be estimated from the training data; ( )φ �  is the 
kernel mapping data from the input space into the feature space. 
In LS-SVM, the following constrained optimization problem is 
considered: 
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where iξ  is the error variable, and C  is the tradeoff parameter 
adjusting the function complexity and the approximating errors. 
The most obvious feature of LS-SVM is that it uses the least 
square of error as the loss function, instead of the ε -insensitive 
loss function or Huber function as in the case of standard SVM 
for regression [1,8]. This feature allows the whole problem to 
be transformed from solving a quadratic programming problem 
to solving a set of linear equations. The Lagrangian function is 
given as: 
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The optimal solution of this problem is given by the 
Karush-Kuhn-Tucher (KKT) conditions, thus resulting in the 
following set of linear equations: 
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Elimination of w and ξ  gives 
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where 1 2[ ; ; ...; ]ny y y=y  denotes the column vector formed 
by the outputs of the training points. The matrix H is defined by 

( , )ij i j ijh K x x Cδ= +  where ijδ  denotes the Kronecker delta. 
Since the matrix at the left side of equation (5) is not positive 
definite, equation (5) can not be solved by iterative methods 
efficiently. Similar to the LS-SVM for classification [17], the 
problem can be reformulated as solving the equation 
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                     (6) 

where  
1( ) 0Ts −= >1 H 1                                    (7)  

In this case, the coefficient matrix of the linear system is a 
positive definite matrix that allows the use of existing 
numerical optimization methods to solve equation (6). Also, the 
solution of equation (6) can be found by using the following 
three steps: 
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Step 3:
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                                (8) 

Step 1 is the most important step, which consumes a large 
percentage of the computational effort. The solution 
complexity is equal to 3( )O n , indicating that large amount of 
computational effort will be required when the training number 
becomes huge. Although an existing optimization method, e.g. 
the conjugate gradient algorithm, can be used to solve equation 
(6), a huge data set still cause problems in memory storage and 
long training time. Hence, it is necessary to develop an efficient 
method to overcome these difficulties.  

 

III.  DEVELOPMENT OF METHODOLOGY 

A.  Incomplete Cholesky Factorization 
The above discussion clearly shows that the conventional 

LS-SVM runs into two difficulties caused by the large but not 
sparse coefficient matrix. To alleviate these difficulties, some 
approximate methods have been proposed recently, which 
include the Incomplete Cholesky Factorization (ICF) [11,12], 
the NYSTRÖM method [13], the Sparse Greedy Matrix 
Approximation [14] and the Reduced vectors method [15], to 
replace the exact kernel matrix with an approximate version. In 
view of the excellent results displayed by ICF in a previous 

experimental study [16], the method is adopted in this paper to 
provide an approximate version of the coefficient matrix. The 
procedure is outlined in the next few paragraphs.  

Any positive definite matrix Q can be represented by its 

Cholesky factorization TQ qq= , where q  is a lower triangular 
matrix [11,12]. If Q  is positive semi-definite and singular, it is 
still possible to compute an “incomplete” Cholesky 
factorization Tqq , where some columns of q are zero. 
Choosing an appropriate threshold value, the procedure can 
also produce a rectangular matrix q  ( ( )n m m n× < ) by 
pruning the column corresponding to the pivots that are below 
the threshold. This method can achieve a small numerical error 
and a good approximation to original matrix.  

In view of the above argument, Fine and Scheinberg [11] 
have derived a method to construct the approximate kernel 
matrix Q%  by directly approximating the Cholesky factorization 
of Q with symmetric permutations. This method is a column by 
column process to obtain the rectangular matrix. In each 
iteration, greedy strategy and pivoting technique are used to 
obtain the best reduction of the trace of the residual matrix. 
Then one of subsequent columns is updated as the normal 
Cholesky factorization. The algorithm developed has 
complexity of 2( )O m n . The general description of the 
algorithm is shown in Fig. 1 and its details can be found in [11]. 
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Fig. 1 Incomplete Cholesky Factorization algorithm 

B. Sherman-Morrison-Woodbury (SMW) update 
After the establishment of the low-rank approximate matrix 

TQ qq=% , a low-rank update of an inverse of a matrix in the form 
of /ijQ Cδ+% needs to be considered. To the best our knowledge, 
there are two existing methods that can perform such updating 
efficiently. They are the Sherman-Morrison- Woodbury (SMW) 
update [12] and the rank-m Cholesky factorization update [11]. 
The SMW update is almost twice as fast as the Cholesky 

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007



 
 

 

factorization update. However, it may experience numerical 
instability when the condition number of the matrix is 
sufficiently large. In LS-SVM, the coefficient matrix in (8) is 
positive definite, although it may become positive 
semi-definite when C goes to infinity. Generally, when C is not 
very large, the condition number of the matrix should not be 
large enough to make SMW update engenders obvious 
numerical instability. Therefore, the SMW equation is applied 
to conduct the matrix inversion here because of its fast speed 
and it is introduced in the following section. 

In some cases, when a  matrix G%  is found to approximate the 
original matrix G , it may be factorized as TG XBX=% , 
where G%  is an approximate matrix whose rank is ( )m m n< , 
X  is a n m×  matrix, B  is an identity matrix [11] or a diagonal 

matrix with the diagonal entries equal to eigenvalues of a 
sub-matrix [13].  The Sherman-Morrison-Woodbury (SMW) 
equation 

1 1 1 1 1 1 1( ) ( )T T TA XBX A A X B X A X X A− − − − − − −+ = − +        (9) 

can then be used to update the inverse of the low-rank matrix 
[12]. 
    When the SMW equation is used to solve the set of linear 
equations α β=%H , the n n×  approximate kernel matrix H%  
can be expressed as ( )+ TA XBX . Hence, the solution α  is 
given by 

     
1

1

( )α β

γ μ

−

−

= +

= −

TA XBX
A X

                                                  (10) 

where 
1Aγ β−=                                                                      (11) 

1 1: ( )T TB X A X Xμ μ γ− −= + =                                  (12) 

This also indicates that only the diagonal matrices A and B, and 
matrix X need to be stored in the memory, not the matrix 
H% [11]. 
    The m m× matrix 1 1( )− −+ TB X A X  in equation (12) is 
symmetric positive definite and can be solved by using 
Cholesky factorization which has a complexity of 3( )O m . The 
time complexity of the overall work required to solve Hα β=%  
is about 2( 2)O nm  [11]. 

C. Approximate LS-SVM 
   The procedure of the proposed Approximate Least Square 
Support Vector Machine is outlined below: 
 
Step 1: Select the rank (m) of the approximate matrix K% ; 
Step 2: Generate a rectangular matrix  ( )k n m× with ICF to 

approximate the kernel matrix K such that 
TK K k k≈ =% ; 

Step 3: Use the SMW equation to solve the first two sets of 
equations given by the step 1 of equation (8); 

Step 4: Obtain the solution by using the last two steps of 
equation (8). 

 

IV. CONTAINER THROUGHPUT FORECASTING 

A. Container Data Collection 
As container throughput greatly influences the operational 

strategies and investment plans of a container terminal, it is 
important to provide container terminal operators in Hong 
Kong with an efficient method to forecast Hong Kong’s 
container throughout. In order to validate the effectiveness of 
the various forecasting models, this study has collected the 
historical data of container throughout in Hong Kong from the 
Marine Department of Hong Kong SAR of PR China. The 
whole data set covers the period from January 1995 to October 
2006, totally 142 observations. 

B. System Analysis 
This study views the Hong Kong’s container throughout 

value as a time series data stream. Hence, if the embedded 
dimension is h and the time-delay isτ , the next output value is 
predicted on the base of the previous h consecutive data as 
follows:  

( 1) ( ( )), 1,2,...,X k f X k k n+ = =  

where 

( ) [ ( ), ( ),......, ( ( 1) )]TX k x k x k x k hτ τ= − − − . 

All data are normalized into the range of [0, 1] in order to 
utilize the dataset effectively. The embedding dimension is set 
to 12, which corresponds to the seasonal trend. As a result, the 
data set is processed to obtain 142-12 = 130 groups of data with 
each group of data expressed as a 12-d vector. The processed 
set is then divided into three parts. The first part contains the 
first 90 data for training the SVM model. Since the RBF kernel 
is employed in the analysis, training the SVM model needs to 
determine two more parameters: the tradeoff parameter C for 
complexity adjustment and the bandwidth parameter 2σ  for the 
RBF kernel.  The second part includes the next 20 data to be 
used to determine these two model parameters. The optimal 
pair of C and 2σ  are obtained by grid searching [15,17]: 

3 2 0 9 10{2 ,2 ,......,2 ,......,2 ,2 }C − −∈ and 2 5 0 9{2 ,......,2 ,......,2 }σ −∈ . The 
total number of parameter pair is 14 15 210× = . A pair of 
optimal parameters is obtained when the model has achieved 
the highest validation accuracy. The last 20 data is reserved for 
testing the prediction accuracy and comparing the performance 
of the various models. 

To evaluate the proposed method for forecasting Hong 
Kong’s container throughout, its performance is compared to 
that of another popular neural network, viz. RBF Neural 
Network (RBFNN). The clustering based training of RBF 
Neural Network is divided into two steps. Firstly, the k-means 
clustering algorithm is executed to determine the centers and 
corresponding variances. Then an optimization method is used 
to provide the linear weight between the hidden layer and the 
output layer. In analyzing the forecasting model, all the 
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parameters are determined when the validation data set 
achieves the best predictive result. The rank of the approximate 
matrix of the proposed ALSSVM is set to 15.  

 

 
Fig. 2 Forecasting result of ALSSVM 

The various models are trained by using all 90 data in the 
first part and evaluated by using the 20 data in third part of the 
dataset. Fig 2 shows the actual throughput value in the whole 
dataset and the forecast produced by using the proposed 
method. Table 1 compares the performances of the various 
methods in terms of two criteria, namely, the Mean Absolute 
Error (MAE) and the Mean Square Error (MSE). To compare 
the training speed, the SVM and the LS-SVM are executed 500 
times to determine the average training time. The proposed 
ALSSVM is also executed 500 times to determine the average 
training time for each rank of the approximate matrix. The final 
results are shown in Fig 3.  

Table 1. Forecasting Error of Different Models 

Type RBFNN Standard 
SVM LSSVM Approximate 

LSSVM 

 
1

1 n

i
y y

n =

−∑ %  0.0858 0.0750 0.0696 0.0696 

( )2

1

1 n

i
y y

n =

−∑ %  0.0126 0.0099 0.0088 0.0096 

 

 
Fig. 3 Training time of SVM, LS-SVM and ALS-SVM 

The results listed in Table 1 indicate that all four methods 
can achieve good and similar results for forecasting the Hong 
Kong’s container throughput. The forecasting accuracy of 
LSSVM and ALSSVM are close to that of the standard SVM, 
but better than that of RBFNN. Moreover, the curves in Fig.3 
show that the average training time of ALSSVM is almost 
proportional to the rank of the approximate matrix, and is 
significantly shorter than that of SVM and LSSVM.   

V. CONCLUSION 
Information concerning container throughput is important 

for container terminal operators in Hong Kong in making 
operational strategies and investment plans. This paper has 
proposed a method, called Approximate Least Squares Support 
Vector Machines (ALSSVM), to forecast Hong Kong’s 
container throughput. The method uses the Incomplete 
Cholesky Factorization technique and the Sherman-Morrison- 
Woodbury (SMW) equation to alleviate the difficulty related to 
memory storage and to improve the training speed. The results 
of applying ALSSVM to past container throughput data 
obtained from the Marine Department of HKSAR clearly 
demonstrate that the proposed method is an effective and 
efficient forecasting tool. In addition, comparison of the 
performances of ALSSVM, LSSVM, standard SVM and RBF 
neural network shows that ALSSVM, LSSVM, standard SVM 
exhibit similar performances which are better than RBF neural 
network, and ALSSVM is better than SVM and LSSVM in 
terms of computational speed.  
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