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Abstract— Texture analysis plays an increasingly important 

role in computer vision. Since the textural properties of images 
appear to carry useful information for discrimination purposes, it 
is important to develop significant features for texture. Various 
texture feature extraction methods include those based on 
gray-level values, transforms, auto correlation etc. We have 
chosen the Gray Level Co occurrence Matrix (GLCM) method for 
extraction of feature values.  Image segmentation is another 
important problem and occurs frequently in many image 
processing applications. Although, a number of algorithms exist 
for this purpose, methods that use the Expectation-Maximization 
(EM) algorithm are gaining a growing interest. The main feature 
of this algorithm is that it is capable of estimating the parameters 
of mixture distribution.  This paper presents a novel unsupervised 
segmentation method based on EM algorithm in which the 
analysis is applied on vector data rather than the gray level value.  

 
 

Index Terms—Texture, Segmentation, GLCM, EM, Bayes 
 

INTRODUCTION 
     Image segmentation is a fundamental task in machine vision 
and occurs very frequently in many image-processing 
applications. Texture based segmentation provides an 
important cue to the recognition of objects. Texture is one of 
the visual features playing an important role in scene analysis. 
Intuitively, it is related to patterned variations of intensity 
across an image. Texture segmentation in general is composed 
of two steps, namely, the extraction of texture  based  features  
and secondly the grouping of these features.  

There are a number of methods for texture feature extraction. 
These methods can be classified into feature-based methods, 
model-based methods, and structure-based methods. 
Structure-based methods partition images under the assumption 
that the textures in the image have detectable primitive 
elements, arranged according to placement rules. In 
feature-based methods, regions with relatively constant texture 
characteristics are sought. Model-based methods hypothesize 
underlying processes for textures and segments using certain 
parameters of these processes. Model based methods can be 
considered as a subclass of feature-based methods since model 
parameters are used as texture features. 

 
This paper describes an unsupervised segmentation 

technique with maximum-likelihood parameter estimation 

problem for parameter estimation and the 
Expectation-Maximization problem for its solution.  The main 
feature of this algorithm is that it is capable of estimating the 
parameters of mixed distribution.  Texture measures are 
derived using the gray-level co occurrence matrices. The EM 
algorithm is applied to estimate the mean and variance of 
features for every texture in the image.  At last a Bayesian 
classification rule is applied to attribute a label for each pixel by 
defining a likelihood function, which computes the probability 
for a given pixel as belonging to a given class. 

 
 

Texture analysis has been used in a range of studies for 
recognizing synthetic and natural textures. It is very useful in 
the analysis of aerial images, biomedical images and seismic 
images as well as the automation of industrial applications. 

I. IMAGE TEXTURE  
 

Texture is an important property of many types of images. 
While there isn’t a universally agreed definition of what a 
texture is, features of a texture include roughness, granulation 
and regularity.   Visual texture contains variations of 
intensities, which form certain repeated    patterns. Those 
patterns can be caused by physical surface properties, such as 
roughness, or they could result from reflectance differences, 
such as the color on a surface.   Texture is an important part of 
the visual world of animals and men and their visual systems 
successfully detect, discriminate and segment texture.  

A class of simple image properties that can be used for 
texture analysis are the first-order statistics of local property 
values, i.e., the mean, variance, etc. In particular, a class of 
local properties based on absolute differences between pairs of 
gray levels or average gray levels has performed well; Usually 
different kinds of measures are derived from difference 
histograms, such as contrast, angular second moment, entropy, 
mean, and inverse difference moment. 

There is a large need to classify images based on textural  
features in various fields like scene analysis, medical images 

analysis, etc. Various texture analysis systems were proposed 
over the years. Three different types of texture analysis are 
popular: segmentation, classification and synthesis. Texture 
segmentation deals with detecting the texture boundaries in an  
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Figure 1: Images consisting of different textured regions 
 
image to obtain a boundary map. Texture classification 

deals with the recognition of image regions using texture 
properties. Each region in an image is assigned a texture class. 
The goal of texture synthesis is to extract three-dimensional 
information from texture properties. 

II. IMAGE SEGMENTATION 
 

A central problem, called segmentation, is to distinguish 
objects from background. An image consists of a number of 
natural objects defined by distinct regions. The image 
background in itself is a distinct region. These regions are 
defined by their boundaries that separate them from other 
regions. Image segmentation aims at identifying these 
boundaries and as to which pixel comes from which region. 
The segmentation problem can be informally described as the 
task of partitioning an image into homogeneous regions. For 
textured images one of the main conceptual difficulties is the 
definition of a homogeneity measure in mathematical terms. 
A texture method is a process that can be applied to a pixel of a 
given image in order to generate a measure (feature) related to 
the texture pattern to which that pixel and its neighbors belong. 
The performance of the different families of texture methods 
basically depends on the type of processing they apply, the 
neighborhood of pixels over which they are evaluated 
(evaluation window) and the texture content. 

Texture methods used can be categorized as: statistical, 
geometrical, structural, model-based and signal processing 
features [1]. Van Gool et al. [2] and Reed and Buf [3] present a 
detailed survey of the various texture methods used in image 
analysis studies. Randen and Husoy [4] conclude that most 
studies deal with statistical, model-based and signal processing 
techniques. Weszka et al. [5] compared the Fourier spectrum; 
second order gray level statistics, co-occurrence statistics and 
gray level run length statistics and found the co-occurrence 
were the best. Similarly, Ohanian and Dubes [6] compare 
Markov Random Field parameters, multi-channel filtering 
features, fractal based features and co-occurrence matrices 
features, and the co-occurrence method performed the best. The 
same conclusion was also drawn by Conners and Harlow [7] 
when comparing run-length difference, gray level difference 
density and power spectrum. Buf et al. [8] however report that 
several texture features have roughly the same performance 
when evaluating co-occurrence features, fractal dimension, 
transform and filter bank features, number of gray level 
extrema per unit area and curvilinear integration features. 
Compared to filtering features [9], co occurrence based features 
were found better as reported by Strand and Taxt [10], 
however, some other studies have supported exactly the 

reverse. Pichler et al. [11] compare wavelet transforms with 
adaptive Gabor filtering feature extraction and report superior 
results using Gabor technique. However, the computational 
requirements are much larger than needed for wavelet 
transform, and in certain applications accuracy may be 
compromised for a faster algorithm. Ojala et al. [12] compared 
a range of texture methods using nearest neighbour classifiers 
including gray level difference method, Law's measures, 
center-symmetric covariance measures and local binary 
patterns applying them to Brodatz images. The best 
performance was achieved for the gray level difference 
method. Law's measures are criticized for not being rotationally 
invariant, for which reason other methods performed better. 

III. PROPOSED METHOD 
This section describes in detail the proposed technique for  

feature extraction and classification . The overall block  
diagram  of texture feature extraction  and classification and 
hence segmentation of the input image  is presented in Figure 2. 
The proposed technique is divided into three stages. Stage 1 
deals with the quantization  and  feature extraction  from the 
texture images, stage 2  deals with  the estimation of  the 
Gaussian parameters by applying the EM algorithm and finally 
stage 3 implements the labeling process and thereby the 
segmentation  of the texture regions. 

A. Feature Extraction 
The feature extraction algorithms analyze the spatial 

distribution of pixels in grey scale images. The different 
methods capture how coarse or fine a texture is.  The textural 
character of an image depends on the spatial size of texture 
primitives. Large primitives give rise to coarse texture and 
small primitives fine texture. To model these characteristics, 
spatial methods are found to be superior to spectral methods. 
The most commonly used texture measures are those derived 
from the Grey Level Co-occurrence Matrix (GLCM). Haralick 
suggested the use of grey level co-occurrence matrices 
(GLCM) to extract second order statistics from an image. 
GLCMs have been used very successfully for texture 
segmentation. 

The GLCM is a tabulation of how often different 
combinations of pixel brightness values (grey levels) occur in 
an image.  

 
Figure 2. Block Diagram 
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Haralick defined the GLCM as a matrix of frequencies at 

which two pixels, separated by a certain vector, occur in the 
image. The distribution in the matrix will depend on the angular 
and distance relationship between pixels. Varying the vector 
used allows the capturing of different texture characteristics. 
Once the GLCM has been created, various features can be 
computed from it. These have been classified into four groups: 
visual texture characteristics, statistics,  information theory and 
information measures of correlation. 

To reduce the computational time required for extracting 
features for 256 pixel values the input image is quantized 
before applying the feature extraction process. Quantization 
can be done either to the pixel values or to the spatial 
coordinates. Operation on pixel values is referred to as 
gray-level reduction and operating on the spatial coordinates is 
called spatial reduction. 

Texture feature extraction is performed on the quantized 
image by using Gray level co-occurrence matrix (GLCM) 
method, one of the most known texture analysis method which 
estimates image properties related to second-order statistics. A 
GLCM or SGLD matrix is the joint probability occurrence of 
gray levels i and j for two pixels with a defined spatial 
relationship in an image. The spatial relationship is defined in 
terms of distance d and angle θ. If the texture is coarse and 
distance d is small compared to the size of the texture elements, 
the pairs of points at distance d should have similar gray levels. 
Conversely, for a fine texture, if distance d is comparable to the 
texture size, then the gray levels of points separated by distance 
d should often be quite different, so that the values in the SGLD 
matrix should be spread out relatively uniformly. From SGLD 
matrices, a variety of features may be extracted. From each 
matrix, 14 statistical measures are extracted including: angular 
second moment, contrast, correlation, variance, inverse 
different moment, sum average, sum variance, sum entropy, 
difference variance, difference entropy, information measure of 
correlation I, information measure of correlation II, and 
maximal correlation coefficient. The measurements average the 
feature values in all four directions. The results may be 
combined by averaging the GLCM for each angle before 
calculating the features or by averaging the features calculated 
for each GLCM. To reduce the computational complexity, only 
some of the features were selected. In our experiments   gray 
level co occurrence matrices were calculated for each pixel 
using a neighborhood of size 8 x 8 at angles of 0, 45, 90, 135 
etc.   
Algorithm for creating a symmetrical normalized GLCM  
1. Create a framework matrix 
2. Decide on the spatial relation between the reference and 
neighbour pixel 
3. Count the occurrences and fill in the framework matrix  
4. Add the matrix to its transpose to make it symmetrical  
5. Normalize the matrix to turn it into probabilities 
6. Change the value of angle and offset to get matrices in the 
other directions. 

B. Features calculated from a normalized GLCM based on 
textures 
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We had calculated the features from the co occurrence 
matrices obtained . The average of the  features for each case  
gives the feature value for the particular case.  Typical values 
obtained for  one of the test images is shown in Table  1. 

C. Maximum Likelihood Estimation 
We have a density function p (x | θ) that is governed by the 

set of parameters θ (e.g., p might be a set of Gaussians and θ 
could be the means and covariances).  
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Figure 3: Maximum-likelihood estimation and relative-frequency estimation 
 

We also have a data set of size N, supposedly drawn from 
this distribution, i.e., X = {x 1,………., x N}. That is, we assume 
that these data vectors are independent and identically 
distributed  with distribution p. Therefore, the resulting density 
for the samples is  

1

( / ) ( | ) ( | )
N

i
i

p X p x Lθ θ
=

= =∏ Xθ

θ

 

 
This function L (θ | X) is called the likelihood of the 

parameters given the data, or just the likelihood function. The 
likelihood is thought of as a function of the parameter θ where 
the data X is fixed. In the maximum likelihood problem, our 
goal is to find the θ that maximizes L. That is, we wish to find  
θ * where 

* arg max ( | )L Xθθ θ=  
 

D. Expectation-Maximization (EM) algorithm 
The EM algorithm is a general method of finding the 

maximum-likelihood estimate of the parameters of an 
underlying distribution from a given data set when the data is 
incomplete or has missing values. 

There are two main applications of the EM algorithm. The 
first occurs when the data indeed has missing values, due to 
problems with or limitations of the observation process. The 
second occurs when optimizing the likelihood function is 
analytically intractable but when the likelihood function can be 
simplified by assuming the existence of and values for 
additional but missing (or hidden) parameters. The latter 
application is more common in the computational pattern 
recognition community [13,14]. 
Let   X  be the  observed data  generated by some distribution  
and suppose a complete data set exists  Z  = ( X,Y )  . We also 
have a joint density function  
p ( z | θ )  =  p ( x ,y | θ )  =  p ( y | x , θ )  p(x | θ ) 

We can define a likelihood function  L ( θ | Z ) = L ( θ | X,Y ) 
= p ( X , Y | θ ) , called the complete data likelihood.  The 
original likelihood L (θ | X) is referred to as the incomplete data 
likelihood function. 

The EM algorithm first finds the expected value of the 
complete data log likelihood log p ( X , Y | θ )  with respect to 

the unknown data  Y  given the observed data  X  and  the 
current parameter estimates.  That is, we define: 

(i-1) ( 1)Q( , ) [log ( , | ) | , ]iE p X Y Xθ θ θ θ −=  
 
where θ (i – 1)   is  the current parameter estimate used to 

evaluate the expectation and θ is the new parameter  optimized 
to increase Q.  The evaluation of this expectation is called the 
E-step of the algorithm.  

The second step of the EM algorithm is to maximize the 
expectation computed in the first step.   

(i) ( 1)arg max ( , )iQθθ θ −=  
These two steps are repeated as necessary. Each iteration is 

guaranteed  to increase the log- likelihood  and   the  algorithm  
is  guaranteed  to  converge  to  a  local  maximum  of  the  
likelihood  function. 

In the case of a Gaussian distribution, the iterative EM 
algorithm for density function parameter estimation is given 
by: 
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where  is an intermediate function. ( )ij xkω
  

A validation procedure is also added to aid the EM process. 
The procedure is terminated if the difference between the 
estimated parameters of two consecutive EM steps is inferior to 
a fixed threshold ε. 

 
 

Figure 4: Input and output of the EM algorithm 
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Figure 5: Procedure of the EM algorithm 

 

Algorithm 
1. Initialize the value for the mixture parameters 
2. Calculate the intermediate function for the 

given set of initial values  
3. Calculate the new mixture parameters by using 

the intermediate function and the previous 
mixture values. 

4. Continue the calculation until the threshold or 
validation condition is met. 

5. Repeat for each class of texture in the image. 
 

 

E. Bayesian Classification 
 

Classification is a basic task in data analysis and pattern 
recognition that requires the construction of a classifier that is a 
function that assigns a class label to instances described by a set 
of attributes. The classifier takes an unlabeled example  and 
assigns it to a class.  Numerous approaches to this problem are 
based on various functional representations such as decision 
trees, decision lists, neural networks, decision graphs, and 
rules. One of the most effective classifiers, in the sense that its 
predictive performance is competitive with state-of-the-art 
classifiers, is the Bayesian classifiers.   

This classifier learns from training data the conditional 
probability of each attribute Ai  given the class label C. 
Classification is then done by applying Bayes rule to compute 
the probability of C given the particular instance of A 1 

…………..An ,   and then predicting  the class with the highest 
posterior probability.  So Bayesian classification and decision 
making is based on probability theory and the principle of 
choosing the most probable or the lowest risk (expected cost) 
option. Assume that there is a classification task to classify 
feature vectors (samples) to K different classes. A feature 
vector is denoted as x = [x1, x2,…..,xD]T where D is the 
dimension of a vector. The probability that a feature vector x 
belongs to class kω  is )|( xP kω . The classification of the 
vector is done according to posterior probabilities or decision 
risks calculated from the probabilities. 
 

The posterior probabilities can be computed with the Bayes 
formula 

( | ) ( )( | )
( )
k k

k
P x PP x

P x
ω ωω =  

where )|( kxP ω  is the probability density function of class 
kω  in the feature space and )( kP ω  is the apriori probability, 

which tells the probability of the class before measuring any 
features. If prior probabilities are not actually known, they can 
be estimated by the class proportions in the training set.  
 
The divisor 

1

( ) ( | ) ( )
K

i i
i

P x P x Pω ω
=
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is merely a scaling factor to assure that posterior 
probabilities are really probabilities, i.e., their sum is one.  

After estimating the Gaussian parameters that correspond to 
each region a labelisation process is required in order to 
attribute a label to each pixel. This is carried out by using the  
Bayesian classification method. 

 
Algorithm 

1. Calculate the probability  for each pixel value in 
the  feature vector 

2. Normalize the value by multiplying weight and 
dividing by the sum total 

3. Find the product of the probability matrix for 
different texture features 

4. Calculate the probability for each pixel to 
belong to a particular class 

5. Assign label to each class. 

IV. RESULTS 
The method has been tested on a number of  256x256 grey 

level images  from the Brodatz textures . Using GLCM method 
with an offset of 1 and for  4 different angles the different 
texture features were extracted. The parameters of the Gaussian 
mixture model were calculated for each texture in the image 
using EM algorithm. A likelihood function is calculated which 
gives the probability of a pixel as belonging to a particular class 
which forms the basis of labeling of the pixel.  

For the test image taken, the amount of local variations in the 
image is considerable as indicated by the high contrast value 
obtained. It also indicates that most elements do not lie on the 
diagonal of the GLCM.  The difference of each element from 
other elements of the co-occurrence matrix is indicated by the 
dissimilarity feature. Homogeneity is measure for uniformity of 

 
TABLE I: TYPICAL VALUES FOR THE TEXTURE FEATURES OBTAINED FOR THE 

SAMPLE TEST IMAGE 
 

Features Value 
obtained 

Contrast 0.966 
Dissimilarity 0.664 
Homogeneity 0.698 
Energy 0.1383 
Entropy 2.09 
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                      Figure 6.1 Test Image      Figure 6.2 Dissimilarity feature 
 

          
                  Figure 6.3 Energy feature      Figure 6.4 Homogeneity feature 
 
                  

                                 
        Figure 6.5 Entropy feature                        Figure 6.6 Segmented Image 

 
co-occurrence matrix, and if most elements lie on the main 

diagonal, its value will be large, compared to other case. 
Energy is the measure of the textural uniformity of the image. It 
reaches a high value when gray level distribution has either a 
constant or a periodic form. Entropy measures randomness and 
it will be very large when all elements of the co- occurrence 
matrix are same. When the image is not texturally uniform,  the 
GLCM elements will have small values and  therefore entropy 
is large. The above values can be represented pictorially as 
shown above. 

The segmented image shows reasonably good accuracy.  
Accuracy can be improved by using additional features from 
the GLCM.  
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