
 
 

 

  
Abstract— This paper discusses the potential of Particle Swarm 

Optimisation (PSO) for inducing Bayesian Networks (BNs).  
Specifically, we detail two methods which adopt the search and 
score approach to BN learning. The two algorithms are similar in 
that they both use PSO as the search algorithm, and the K2 metric 
to score the resulting network. The difference lies in the way 
networks are constructed. The CONstruct And Repair (CONAR) 
algorithm generates structures, validates, and repairs if required, 
and the REstricted STructure (REST) algorithm, only permits 
valid structures to be developed. Initial experiments indicate that 
these approaches produce promising results when compared to 
other BN learning strategies.  
 

Index Terms—Particle Swarm Optimisation, Bayesian 
Network Construction. 
 

I. INTRODUCTION 
   Many algorithms have been developed which induce the 
structure of Bayesian Networks (BNs).  In general, learning the 
structure from a dataset is regarded as a NP-hard problem [1]. 
Reference [2] shows through complexity analysis the extent of 
difficulty with the task.  The underlying challenge in deriving 
an efficient network relates to the large cardinality of the search 
space. Some algorithms attempt to reduce cardinality by 
assuming knowledge about the ordering of nodes in a network 
[3, 4]. However, in a domain where such expertise is 
unavailable, or the number of domain variables is large, 
defining the ordering may not be possible.  

An alternative approach to the use of exhaustive searches  is 
to employ heuristic search techniques. Work in this area can be 
divided into two main approaches: those that attempt to 
measure the dependencies of the underlying model, and 
algorithms that search for a structure that best represents the 
data.   Our research extends the work performed in the second 
of these two areas. 

We examine the use of Particle Swarm Optimisation (PSO) 
to derive an optimal Bayesian network.  Although other 
evolutionary approaches have been examined for BN 
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structuring, PSO has yet to be applied in this context, thus 
rendering our research as novel and highly relevant to the BN 
community.   

In Section II we discuss existing methods for deriving BNs, 
identifying both statistical and heuristic approaches. Our 
research examining the use of PSO is detailed in Section III and 
the two algorithms developed are introduced. Section IV 
discusses the experiments conducted and the results to date are 
provided in Section V. We conclude in Section VI with a 
discussion of findings and directions for further research. 

 

II. METHODS FOR CONSTRUCTING BAYESIAN NETWORKS 
Many BN learning algorithms have been developed which 

employ heuristics to derive a network. They can be broadly 
grouped into two categories: dependency analysis approaches 
and methods based on search and score strategies. A review of 
these two approaches is provided below:  

A. Algorithms using Dependency Analysis 
Automatic learning of a BN from a dataset seeks to generate a 

directed acyclic graph (DAG) reflecting the dependencies 
existing between variables [5]. Dependency analysis 
techniques attempt to produce a list of conditional 
(in)dependencies using statistical conditional independence 
(CI) tests.  Evaluation of the networks derived is performed by 
testing conditional independence (CI) between tuples of 
variables.  

The most popular CI based algorithm is the PC algorithm [6]. 
It begins with the complete undirected graph, then ‘thins’ the 
graph by removing arcs with zero order CI relations, then thins 
again with first order conditional independence relations, and 
so on until an optimal BN is generated.  

One of the main disadvantages of this technique is the number 
of tests required to derive the final network structure.  CI based 
approaches become quickly computationally infeasible due to 
the number and complexity of the tests performed, thus 
reducing the efficiency of the algorithm [7-9].  

B. Search and Score methods  
Search and score approaches seek to discover the 

probabilistic dependency network which most likely generated 
a dataset [8]. This is typically achieved by an efficient search 
engine which is guided by an evaluation function. The 
approach begins with a graph containing no arcs, then 
recursively adds, deletes, or reverses the direction of arcs in an 
attempt to find the structure that maximizes the score. The best 

Particle Swarm Optimisation for learning 
Bayesian Networks 

J. Cowie, L. Oteniya, R. Coles 

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007



 
 

 

scoring network represents the graph that is most representative 
of the data.   

1) Search strategies 
Search and score methods can be divided into sequential 

approaches (such as simulated annealing) and 
population-based approaches (such as genetic algorithms). One 
disadvantage of sequential approaches is that they are strongly 
subject to local minima given that they only refine a single 
candidate solution [10]. Using a population-based approach is a 
means of overcoming this drawback. It is a population-based 
approach on which our research is built. 

Population-based search and score algorithms for BN 
learning are generally nature-inspired. Several researchers have 
applied different nature-inspired techniques to the problem of 
BN structure learning. Such techniques include ant colony 
optimization [11], genetic programming [12], and artificial 
immune systems [13]. 

One of the most popular nature-inspired approaches used for 
BN learning is Genetic Algorithms (GAs). There exists a 
significant body of published literature which documents the 
use and empirical evaluation of genetic algorithms for deriving 
a Bayesian network. References [4, 14, 15] detail much of the 
work in this area.  

Outside the field of genetic algorithms and the other 
approaches listed above, the amount of research conducted in 
the area of nature-inspired algorithms is relatively sparse. To 
the best of the authors’ knowledge, there is no published 
literature or evidence to suggest that the use of Particle Swarm 
Optimisation (PSO) has been adopted for network derivation. 
Although the evidence in the literature suggests that GAs 
produce good results for BN learning, we believe that there is 
scope for PSO to provide comparable if not better results.   

2) Scoring metric 
The Cooper and Herskovits’s metric (CH/K2 metric) [8] is a 

widely used evaluation measure used in learning BNs.  The 
metric calculates the probability of a network structure being 
representative of a dataset by calculating the joint probability of 
a BN and a dataset. It is derived by assuming uniform prior 
distributions on the values of an attribute for each possible 
instantiation of its parent attributes. K2 is detailed in this paper, 
as it the metric we adopt in our research. 

 

III. PROPOSED APPROACH   
Our particular interest lies with the use of PSO for learning a 

BN structure. PSO [16] emerged from experiments with 
algorithms that modeled the flocking behaviour seen in many 
species of birds [17].  In PSO, particles fly through a search 
space, hunting for an optimal solution by means of 
socio-cognitive theory [18], where particles evaluate and 
compare themselves to others, and imitate the behaviour of 
those who are regarded as more successful in the search. With 
each iteration of PSO, particles compare their current position 
with that of superior neighbours, and calculate a trajectory and 
associated velocity to determine where they should move to in 
the next iteration of the algorithm. 

PSO is a population based stochastic search heuristic where 
the population is initialized with random variables, and each 

individual in the swarm is assigned a fitness score. With each 
iteration, a particle’s personal best (pBest) is referenced as well 
as the swarm’s global best score (gBest). It is these two factors 
that influence where the particle moves to in the next iteration. 

The original PSO algorithm was designed for use with real 
numbers, however this approach has been extended to include a 
binary representation of the approach.  It is this version of PSO 
that our technique utilizes. 

Evidence from the literature suggests that for certain 
problems, PSO can be seen as a superior technique to GAs.  For 
example, [19] compares the use of GAs and PSO  techniques to 
evolve an optimal chemotherapy schedule for patients suffering 
from cancer. Their results concluded that PSO was able to find 
feasible regions for possible solutions faster than GAs. In 
addition, PSO was successful in finding a better solution to the 
problem than the GA approach.  Other examples include the 
work of Mouser and Dunn [20], whose research shows PSO 
outperformed GAs when designing an optimal aircraft design. 
Furthermore there is published research that shows PSO to 
have the same effectiveness (finding the true global optimal 
solution) as GAs, but with significantly better computational 
efficiency (less function evaluations) [21].  

Although the research detailed above shows PSO as 
comparable or outperforming GAs in significantly different 
application areas to our own, we hypothesize that PSO will 
outperform GAs when applied to the problem considered in this 
research, as the fundamentals of the task are essentially the 
same as those reported. That is, the technique is used to search a 
large solution space for a solution which satisfies a given 
fitness function.   

Population-based approaches to BN learning, particularly 
when the ordering assumption is not upheld (as is the case 
here), tend to require apparatus to validate solutions in the 
population. For example, in the GA approach, crossover and 
mutation are not closed operators, thus there is a chance that 
these operators may generate structures that do not respect 
DAG conditions. Accordingly, a ‘repair’ strategy is widely 
used to convert an illegal solution into a legal solution.  In a 
similar way, the PSO approach can also find solution encodings 
which violate DAG conditions, thus again, a repair strategy is 
required.  

Our initial approach to using PSO for BN learning began by 
investigating PSO as a search heuristic for Bayesian network 
learning and used a repair strategy to guarantee DAG 
conditions. One of the primary concerns of this approach is that 
by using a random repair strategy (as our approach does), we 
run the risk of randomly jumping through search space rather 
than learning from previous generations as to where the best 
areas of search space lie.  

A second approach was developed which avoids the issue of 
repair operators by only permitting legal structures to be 
generated.  The possible concern of this strategy is that by 
never allowing illegal structures to be generated, potentially 
high scoring structures may be overlooked.  

The pseudocode for the implementation of CONOR and 
REST is given in Table I. As is evident, the two approaches are 
broadly the same except for the difference in network 
generation strategies. As the pseudocode suggest, the algorithm 
is repeated until a stopping criterion is reached. This critierion 
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BA

could be when solutions appear to have converged on the best 
scoring network, or when a specified number of iterations have 
been performed. 

Sections III.A and III.B to follow detail the two algorithms 
developed: the CONstruct And Repair (CONAR) algorithm 
which generates structures, validates, and repairs if required, 
and the REstricted STructure (REST) algorithm, which only 
builds valid structures.   

 
 
Initialize population 
Initialize pBest 
Select arbitrary gBest 
Repeat 
 For each particle 
  Determine pBest 
  Determine gBest 
  Update velocity  
  Update position → P’ 
   [CONAR only] 

If P’ represents illegal structure 
    Repair 
    Update position  

   End If 
End For 

Until termination criterion is met 
 

A. CONAR 
The CONAR process is based on the search and score 

approach, using PSO as its search mechanism and K2 as the 
scoring metric.  K2 is widely accepted metric for evaluating 
network structures [4, 11]. At each iteration of the PSO 
algorithm, the K2 metric is used to determine the current ‘best’ 
network, and the results are used to guide the direction of 
search in the subsequent iteration. 

The network structure generated with each iteration of 
CONAR is represented as a connectivity matrix (C). The 
connectivity matrix C has n rows and n columns (where n is the 
number of variables, and i infers the row, and j the column) 
where 

Cij  =   1 if i is a parent of j  
  0 otherwise  

 
Figure 1 shows an arbitrary BN structure, consisting of n=3 
nodes and 2 arcs and the corresponding connectivity matrix.   
 
 
 
 
 
 
 
 
Thus, each particle (p) in the swarm is composed of n x n binary 
dimensions. Furthermore, each dimension of a particle p takes 
on the value of exactly one element, Cij, in C. Therefore, a 
particle represents precisely one point in the search space, 
which in turn represents a candidate BN structure. As the node 

ordering assumption is relaxed, a given particle can be 
represented as the flattened binary encoding of the matrix in the 
following form: 
 

C11, C12, …, C1n, C21, C22, …, C2n,  …, Cn1, Cn2, …, Cnn 

 
1) Illegal structures 

The CONAR update operator is not closed with respect to 
DAG conditions and as such, it is possible for the algorithm to 
generate invalid structures. This is caused primarily by the 
choice of solution representation and the stochastic nature of 
the PSO velocity update algorithm. An example of an illegal 
structure is shown in Figure 2, where a self-cycle exists for 
Node A.  

 
 
 
 

 

 
CONAR identifies cycles in a 3-stage process where it firstly 

detects self-cycles, then bi-cycles, and lastly regular-cycles. 
The method by which these are determined, and the repair 
strategies adopted are outlined below. 

a) Repairing self-cycles 
A self-cycle occurs when a node has an arc which points 

directly to itself.  An example of a self-cyclic arc can be seen 
graphically in Figure 2. In the connectivity matrix, a self-cycle 
arc is identified by the presence of a ‘1’ in any element along 
the diagonal; element 1 in the example shown in Figure 2. The 
repair strategy is simply to replace the value in the offending 
element of the connectivity matrix with a ‘0’.   

b) Repairing bi-cycles  
 
 
  
 
 
 

 
Bi-directional cycles, as shown in Figure 3, occur when two 

nodes in a generated structure are seen to influence each other.  
In Figure 3, we see the scenario where Node A influences node 
B, and in turn, Node B influences Node A. Currently, CONAR 
removes one of the arcs at random in order to resolve the 
conflict.  As such, there is a 0.5 probability that the optimal arc 
is lost.  

c) Repairing regular cycles 
Regular cycles are characterized by three or more directed 

arcs forming a cycle, as shown in Figure 4. Here, Node A 
influences node C, Node C influences Node B, and Node B 
influences Node A.  Such cycles are identified using Warshall’s 
algorithm [22], which calculates whether a path exists from 

 Aj Bj Cj 
Ai 0 0 1 
Bi 0 0 1 
Ci 0 0 0 

 Aj Bj Cj 
Ai 1 0 1 
Bi 0 0 1 
Ci 0 0 0 

 Aj Bj Cj 
Ai 0 1 1 
Bi 1 0 1 
Ci 0 0 0 

Fig 3: Bi-cycle BN with corresponding connectivity matrix 

C

BA

Fig 2: Self-cycle BN structure with corresponding connectivity 

Table I: Pseudocode of CONAR and REST algorithms 

Fig 1: BN Structure with corresponding connectivity matrix 
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Node X to Node Y (transitive closure). Sub-graphs with regular 
cycles are currently repaired in the same fashion as the bi-cyclic 
graphs, where one of the offending arc is removed randomly. 
 
 
 
 
 
 
 
 
 
 
Although the strategies outlined above for repairing illegal 
structures are simple in their approach, it was felt that these 
represented a good starting point for evaluating the potential of 
PSO for BN learning.  It is our intention to investigate the use 
of more complex strategies such as utilizing the 
decomposability property of the K2 metric to determine arc 
importance. This is discussed further in Section VI. 

B. REST 
The REST algorithm is similar to CONAR in that it again is 

built upon the search and score approach, using PSO as the 
search method and K2 as the scoring metric. However, unlike 
CONAR which permits both legal and illegal BN to be 
generated, REST restricts the structures generated to those that 
contain no cycles.  REST was developed in order to evaluate 
which of the two strategies for BN learning results in a better 
scoring network.  
 CONAR encodes a BN structure as an n x n connectivity 
matrix. However, if we restrict use of the matrix to the upper 
triangular matrix which excludes the diagonal, the binary string 
of this representation will always represent a legal encoding. 
This representation is referred to as a triangulated connectivity 
matrix (TC) and is the representation used by REST.  However, 
just adopting this policy alone is too restrictive, as only a subset 
of possible legal network structures can be represented. In the 
example shown in Figure 5, BN1 can be represented, but BN2 
cannot.  
 
  
 
 
 
 
 
 
 
 
 
 
Node B can be the parent of Node D if we assume that Node B 
comes before Node D. However, Node D cannot be the parent 
of Node B, if that same assumption of node ordering is 
enforced.  However, our aim is to derive BNs without the need 
for prior knowledge of orderings. This is achieved by virtue of 
the acyclic property inherent in the triangulated connectivity 
matrix. The TC matrix representation is still adopted but a 

mapping strategy is generated for each possible permutation of 
the nodes. This allows all possible legal structures to be 
represented using the TC matrix. Thus, using our mapping 
strategy, the representation of BN2 is represented as the 5th 
permutation of ABCD, ADBC. This information would be 
represented as an 11 bit string where from left to right, bits 1-6 
represent the values in the TC matrix, and bits 7 – 11 are the 
binary representation of the permutation. For BN1 and BN2 we 
would have the following strings respectively [110110 00001], 
[100110 00101]. Figure 6 shows the corresponding matrices 
for BN1 and BN2. 

 
 

IV. EXPERIMENTS 
To evaluate the effectiveness of our PSO approaches, a set of 

experiments were performed.  The experiments were conducted 
using the WEKA tool [23]. WEKA facilitates the use of 
different search algorithms and scoring metrics and thus 
allowed us to compare different approaches in the same 
development environment.  

In these experiments, CONAR and REST were tested using 
the ASIA model dataset [24] to identify their ability to generate 
an optimal BN. To evaluate their effectiveness against other 
methods, we also performed experiments using the K2 
algorithm at generating the Asia network. 

A. K2 Algorithm 
The K2 algorithm [8] is a well-known method for learning 

BNs. The algorithm uses the K2 metric to evaluate the score of 
a resulting BN. K2 requires two parameters: a domain variable 
order and an upper bound for the number of parents variables 
permitted. K2 searches for the best set of parents a variable has 
within the previous subset of variables.  

As discussed in Section III, CONAR and REST do not use 
node ordering information to generate a BN. This is seen as one 
of their advantages. However, it is recognized that to test the 
three approaches fairly, the ordering requirement of the K2 
algorithm should be considered. As such, we tested two 
versions of K2, referred to as K2_O (the standard K2 algorithm 
that uses node ordering as an input to the algorithm) and 
K2_NO (that does not take node ordering into account). As K2 
is known to operate best when node ordering is given, a 
compensation factor is incorporated into the experiments such 
that the K2_NO method is not disadvantaged. K2_NO is run 
10n times (where n is the number of variables), while CONAR, 
REST and K2_O are only executed 10 times. This approach is 
recognized by other researchers as a sensible way to compare 
K2’s effectiveness when no prior node ordering information is 
given [25]. 

 Aj Bj Cj 
Ai 0 0 1 
Bi 1 0 0 
Ci 0 1 0 

 Aj Bj Cj Dj 
Ai  - 1 1 0 
Bi  -   - 1 1 
Ci  -  -  - 0 
Di -  -   -  - 

 Aj Dj Bj Cj 
Ai  - 1 0 0 
Di   -  - 1 1 
Bi  -  - -  0 
Ci  -  -  -  - 

Fig 4: Regular cycle BN with corresponding connectivity 
matrix 

C

BA

Fig 5:  Bayesian Networks BN1 and BN2      

D

B C

A

B

C D

A

Fig 6:  Mapping Matrices for BN1 and BN2   
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B. CONAR and REST parameters 
CONAR and REST were initialized with 80 particles (10 x n, 

where n is the number of variables), and executed over 100 – 
1000 iterations (in step sizes of 100).  Executing the two 
algorithms over different iterations allows us to evaluate 
whether a better scoring BN can be generated by letting the 
algorithms run for a longer period of time. 

 

V. RESULTS 
The results from executing the CONAR and REST 

algorithms show no statistical significant difference in the score 
of the BN generated from 100 iterations and that of the BN 
generated from 200 iterations. The mean score of the BN 
generated from 100 runs was -22525.79 (2dp) and -22529.06 
for CONAR and REST respectively. Similarly, there was no 
statistical significance between the mean scores generated from 
runs 200 – 1000. We can therefore conclude that although a 
slightly better scoring BN was achieved by increasing the 
number of iterations, that there is no significant gain from 
executing the algorithms for more than 100 generations. Table 
II provides the mean best score, standard deviation, standard 
error and the 95% confidence intervals for CONAR and REST 
when the algorithms are generated for 100 runs.  
 

Table II: Statistics for 100 iterations of CONAR and REST 

 
The results obtained from executing the K2_O and K2_NO 

algorithms show that although as compensation for excluding 
node orderings, K2_NO is run 80 times, it produces the worst 
scoring BN. K2_O produces a higher scoring network, 
however its score is not as high as those generated by the 
networks derived by CONAR and REST. These results are 
highlighted further in Figure 8, which show there is a high 
degree of significance in the results produced by CONAR and 
REST. 

 
Table III: T-test results 

 
Two-sample T-tests where unequal variances are assumed 

were performed to evaluate the differences between the results. 
Three tests were performed: TT1(comparing CONAR with 
REST), TT2(comparing REST with K2_O), TT3 (comparing 

K2_O with K2_NO). The results are given in Table III. 
As can be seen from Table III, the P-values for each test are 

all very close to zero.  There is marginal significance between 
the scores of BNs generated by CONAR and REST.  However, 
there is high significance between REST and K2_O and K2_O 
and K2_NO. This validates further the significance of our 
findings, and clarifies the difference in the results obtained. 

 

 
 

 The known score of the original Asia network is -22521.95. 
As shown in Table I, the results indicate that all methods come 
close to this score but none actually achieve it. However, it 
should be noted that the maximum scores for each set of 
iterations performed by CONAR and REST outperform the 
original score when the algorithms are ran for 200 iterations or 
more. In addition, the mean score for CONAR executed over 
300 iterations is -22521.13, and therefore on average, returns 
networks that outperform the original.  
 The actual BN derived by the best scoring algorithm 
CONAR is depicted in Figure 9. As can be seen, it is similar to 
the known network representing the Asia dataset, but an 
additional 2 arcs are included (Tuberculosis → Bronchitis and 
Tuberculosis → XRay Result), giving a Hamming Distance of 
4 between the two structures. 

 
 

 CONAR REST K2_O K2_NO 
Mean -22525.79 -22529.06 -22534.63 -22543.81 
Std.Dev 2.16 4.19 3.83 x 10-12 19.57 
Std.Err. 0.68 1.33 1.12 x 10-12 2.19 
95% CI 1.55 3.00 2.74 x 10-12 4.36 

 TT1 TT2 TT3 
P-value 0.047 7.023 x 10-5 4.071 x 10-7 
T-value. -2.20 12.93 4.20 
95% CI for 
difference 

(-6.4957, 
-0.0527) 

(7.2930, 
10.3864) 

(4.8289, 
13.5397) 

Fig. 9: BN generated by CONAR 

Fig 8: Mean scores and 95% CIs for algorithms 
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VI. CONCLUSIONS AND FUTURE RESEARCH 
The results detailed in Section V show the potential of 
harnessing PSO for BN learning. The results show both 
CONAR and REST find significantly higher scoring network 
structures than the K2 algorithm (with or without node ordering 
supplied).  The findings also allay our concerns that the 
randomness of the repair operator used in the CONAR 
algorithm would result in a random search of search space 
rather than using information to learn the best areas of search 
space to move to.  This is compounded by the fact that CONAR 
and REST were found to be comparable, and significantly 
better than K2 for producing high scoring BNs. Despite the 
findings, we do intend to evaluate the use of a more controlled 
approach to arc addition/removal within the REST algorithm. 
A more structured approach would be to score the result of 
removing or adding different arcs and only make the change 
that results in the highest scoring network. Such a strategy is 
learning using the decomposability property, a property 
inherent of the K2 metric.  

Despite these promising results, we recognize that the 
findings are restrictive in that only one other algorithm is used 
in comparing CONAR and REST and only one dataset is used. 
Current research is focused on evaluating our techniques 
against the ability of GAs and Estimation of Distribution 
Algorithms (EDAs) to derive high scoring BN structures.  In 
addition, we hope to evaluate the techniques for other datasets. 
Current work is focused on testing the approaches using the 
well known Alarm dataset. We are also in the process of 
generating a dataset of possible dementia suffers with a view to 
generating a network to classify if dementia is present and the 
underlying syndrome associated with it. This builds on our 
existing work in the area of using BN for diagnosis applications 
[26, 27]. 
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