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Abstract� Common MRI sampling patterns in k-
space, such as spiral trajectories, have nonuniform
density and do not lie on a rectangular grid. We
propose mapping the sampled data to a pseudo-hex
lattice, taking advantage of its approximate isotropic
nature in k-space and square nature in the recon-
structed image space. The group structure of the lat-
tice is exploited to implement the Fourier transform
computations on the data using a separable FFT al-
gorithm, which provides signi�cant computational ef-
�ciency. We suggest this method can be generalized
to multiresolution lattices, in which the signal is rep-
resented in di¤erent regions in k-space with varying
sampling densities. The operations on index sets and
mapping to separable FFT can be implemented e¢ -
ciently in software or custom hardware (e.g., FPGA).

Keywords: magnetic resonance imaging, multidimen-
sional signal processing, discrete Fourier transforms

1 Introduction

In magnetic resonance imaging (MRI), data is measured
on a �nite set of points in k-space (the spatial frequency
domain), usually in two or three dimensions. Normally,
the reconstructed image needs to be recovered on a �nite
set of points on a uniformly sampled square grid within
a prescribed �eld of view (FOV). However, the mea-
surements in k-space are usually in a nonuniform pat-
tern, with varying sampling densities in di¤erent regions
of k-space. The sampling pattern in k-space is usually
determined by physical constraints such as the ability to
change the excitation magnetic �eld precisely and quickly,
as well as by the desire to have a higher sampling density
near the origin of k-space, which generally contains more
signi�cant information. In fact, relative to standard re-
sults of sampling theory, the region near the origin of
k-space is typically oversampled while the outer regions
of k-space are undersampled.

The image reconstruction process usually involves re-
gridding in k-space to a square lattice, and applying
standard fast Fourier transform (FFT) techniques [1].
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Sometimes these steps are combined, as in the case of
the non-uniform FFT (NUFFT) algorithm [2]. Regrid-
ding is essentially an interpolation process that can in-
volve approximating �ideal� interpolation functions, or
can be achieved by solving a constrained (weighted) least-
squares problem. The simplest form of regridding is
mapping the data at an acquired point ~ki to the near-
est point in a square lattice of a prescribed density; this
is called nearest-neighbor regridding. In order to use a
square grid that is not excessively dense, more precise
interpolation techniques are generally required.

We propose, instead, to resample the data onto what we
call a multi-resolution lattice (MRL): points that lie on a
base lattice of maximal density, or sublattices (or cosets
of sublattices) of the base lattice, for example, as shown in
Figure 1. The local sampling density of the MRL re�ects
that of the original measurement process. Once an MRL
sampling structure is obtained, a variety of techniques
of multirate signal processing can be applied, including
optimized decimation and interpolation �lter banks and
generalized Cooley-Tukey FFT computations. A key
feature of a lattice is that, like a square grid, it has a
group structure, which permits a Fourier transform to
be de�ned on it. Speci�cally, if V is a nonsingular ma-
trix, the lattice generated by V , denoted LV , is the set
of all points of the form V ~n where ~n is an integer vec-
tor. If U is a generator of a sublattice (i.e., LU � LV ),
then the elements of the quotient group LV =LU can be
associated with points in LV that lie within a unit cell
for LU , and the �periodicity� that gives rise to a classi-
cal DFT here takes the form of periodicity with respect
to the sublattice LU . A �nite Fourier transform can
be de�ned on this group, resulting in points in the tar-
get image space on the lattice LÛ , where Û =

�
U�1

�T
,

within a unit cell for LV̂ , where V̂ =
�
V �1

�T
. Note

that the sampling density in k-space, jdetV j, and the
area (or volume) of the FOV in the target image space,���det V̂ ���, are inversely proportional, as expected; similarly,
the �bandwidth�in k-space, essentially the largest

���~k��� at
which samples are taken, determined by jdetU j, �xes the
resolution (sampling density) in the target image space,

essentially
���det Û ���, and these quantities are inversely re-

lated.
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By analogy, the ordinary DFT computes the Fourier
transform on the quotient group Z=NZ, i.e., the cyclic
group with N elements. The DFT is normally applied
to the index set f0; 1; � � � ; N � 1g. Now, identi�cation
of subgroups of Z=NZ leads to decimation-in-time and
decimation-in-frequency type operations, which are the
basis for FFT. In the multidimensional case, when the
sampling pattern is square (or, more generally, rectangu-
lar), the DFT operation is separable and separable FFT
can be applied. The separability leads to computational
advantages in addition to the Cooley-Tukey decomposi-
tions of the FFT. In the case of the DFT over a lattice
quotient group, LV =LU , identi�cation of subgroups also
can give rise to decompositions similar to decimation-in-
time and decimation-in-frequency operations. It turns
out that the DFT over LV =LU can also be decomposed
in such a way as to be computed, at its core, by a sep-
arable FFT operation (this follows from the Smith form
decomposition [3] of integer matrices).

When these more general sampling patterns are employed
in k-space, many standard signal processing algorithms,
such as multirate �ltering (e.g., decimation and interpo-
lation) can be applied. One sampling pattern that can
provide certain advantages is a hexagonal lattice, which
has a more isotropic nature than a rectangular lattice.
Consider the task of nearest-neighbor regridding. For
the same sampling density, the maximum distance from
any point in k-space to a lattice point is about 13% less in
a hexagonal lattice than in a square lattice, because of the
more circular nature of the pattern. However, use of a
hexagonal lattice in k-space leads to a hexagonal lattice in
the target image space; this in turn would require regrid-
ding after image reconstruction to a square lattice, which
is normally required for display and other post-processing
operations. A pseudo-hex lattice, on the other hand,
is a rational lattice that approximates a hexagonal one,
and can lead to a rectangular lattice in the target image
space.[4] That is, LV , the lattice of support in k-space,
is pseudo-hexagonal, while LÛ , the lattice of support in
the target image space is square.

Our basic proposed image reconstruction process is as
follows:

� Perform nearest-neighbor regridding from the origi-
nal points in k-space to points on a pseudo-hex lat-
tice LV , bounded within a Voronoi cell of a sublattice
LU , which is chosen so that LÛ is square.

� Perform multirate operations, as necessary, to ac-
quire data in a �nal form prepared for Fourier trans-
formation. For example, the original lattice can
have a high density so that the errors associated with
nearest-neighbor regridding are negligible, and then
the signal can be downsampled using optimized �l-
ters which can be determined in a more systematic
way than optimized interpolation functions that are

Figure 1: Points on a multi-resolution pseudo-hex lattice.

designed for original, nonuniform sampling patterns.

� Implement the computation of the generalized DFT
for LV =LU data set with a core separable FFT opera-
tion. This requires a remapping of the data, possibly
both before and after the separable FFT operation,
analogous to bit-reversed addressing that occurs in
the one-dimensional case.

In this paper, we present e¢ cient nearest-neighbor algo-
rithms, which require minimal computational e¤ort, and
demonstrate the mapping of the general form of the DFT
considered here to a separable FFT. A sample recon-
structed image is shown.

2 Discrete Fourier Transform on Multi-
Resolution Lattices

Although the pseudo-hex lattice described later in this
paper is two-dimensional, in this section we will be more
general. We associate vectors in RD with D � 1 column
matrices; h~x; ~yi denotes the inner product of vectors ~x; ~y
in RD; for an invertible matrix A, Â =

�
A�1

�T
; and

e (�) = exp (�j2��). For ~x 2 RD, j~xj denotes its Euclid-
ean length, and for a �nite set S, jSj denotes its cardi-
nality. Our signals, corresponding to baseband represen-
tations of voltages detected by receiver coils, are complex
scalar or vector valued (as arises in the case of multichan-
nel MRI).

Given an invertible real matrix V , the lattice generated
by V is LV =

�
~x : ~x = V ~n, ~n 2 ZD

	
. We denote an as-

sociated unit cell as UV . The reciprocal lattice is LV̂ ,
and a reciprocal unit cell is UV̂ . In general, LU � LV i¤
U = VM where M is an invertible integer matrix, and
LU = LV i¤ U = V E where E is unimodular (an integer
matrix with jdetEj = 1) [3]. Thus, given a lattice, the
generator matrix is not uniquely determined, nor is the
unit cell. However, the volume of the unit cell, jdetV j,
and the sampling density, 1= jdetV j, are uniquely deter-
mined. For LU � LV , the quotient group LV =LU is com-
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prised of the cosets of LU in LV ; jLV =LU j =
��detV �1U ��,

does not depend on choice of generators. From V̂ =
ÛMT , we have LV̂ � LÛ , and

��LÛ=LV̂ �� = jLV =LU j. An
index set I (U; V ) (or I (LU ;LV )) is a minimal complete
set of coset representatives of LU in LV (i.e., contains
exactly one point from each coset). Every unit cell UU
of U generates an index set via I (U; V )= UU \ LV . A
signal g is LV -periodic (or V -periodic) if, for all ~k in the
domain of g, g

�
~k +~�

�
= g

�
~k
�
for all ~� 2 LV . The

set of LU -periodic signals with support on LV is denoted
P (LU ;LV ), or P (U; V ); every such signal is uniquely de-
termined by its values on any index set I (LU ;LV ).

If g : LV ! CL is a complex vector valued signal with
support on LV , we de�ne the lexicographic form of g as
gV : ZD ! CL given by gV [~n] = g (V ~n). Note that the
lexicographic form depends on the choice of generator
matrix. Here, square brackets [�] denote lexicographic in-
dex vectors in ZD, and parentheses (�) denote �physical�
coordinates in RD. With this structure, we can express
the �nite Fourier transform and inverse transform formu-
las associated with the quotient group LV =LU as:

G (~r) =
X

~k2I(U;V )
g
�
~k
�
e
�
�
D
~k; ~r

E�
(1)

g
�
~k
�

=
1

jI (U; V )j
X

~r2I(V̂ ;Û)
G (~r) e

�D
~k; ~r

E�
For g 2 P (U; V ), we have G 2 P

�
V̂ ; Û

�
. We denote the

formulas (1) as themultiresolution lattice discrete Fourier
transform (MRL-DFT) and inverse transform formulas,
respectively. Notice that these formulas do not depend
on the choice of generators or index sets (by virtue of the
signals�periodicity). The MRL-DFT can be expressed in
lexicographic form, with the result that GÛ and gV are
related via the conventional multidimensional DFT [3]
with respect to periodicity matrix M = V �1U , as shown
in equation (2) below. Note that the lexicographic for-
mulation of the Fourier transform depends on the choice
of generator matrices, and in fact the physical structure
of the lattice is lost because it forces the base lattices of
support in both domains to be ZD.

The MRL-DFT equations (1) can be rewritten in lex-
icographic form as follows. From U = VM , we have
V̂ = ÛMT . With I the identity matrix, we denote
I (M; I) = I (M); that is, this is a complete set of in-
teger vectors that are distinct modulo M . I

�
MT

�
is

de�ned similarly. Then:

GÛ [~m] =
X

~n2I(M)

gV [~n] e
�
�


~m;M�1~n

��
(2)

gV [~n] =
1

jdetM j
X

~m2I(MT )

GÛ [~m] e
�

~m;M�1~n

��

Now, every invertible integer matrix M can be expressed

in Smith form as:

M = E1M0E2 (3)

where E1; E2 are unimodular and M0 =
diag f�1; � � � ; �Dg where �i are positive integers.
From U = VM , if we take U0 = UE�12 and V0 = V E1,
then we have U0 = V0M0. Note that LU0 = LU and
LV0 = LV , and M0 =M

T
0 Also:



~m;M�1

0 ~n
�
=

DX
i=1

��1i mini (4)

where fmigDi=1, fnig
D
i=1, are the components of ~m, ~n, re-

spectively. If we take a �natural� choice for I (M0) =
I
�
MT
0

�
as I0 =

�
~p 2 ZD : 0 � pi � �i � 1

	
, then, in

light of (4), the DFT formulas (2) reduce to those of
a D-dimensional separable DFT, with respective radixes
�1; � � � ; �D in each dimension. Thus, a separable FFT
can be applied.

Then what is the di¤erence between the original equation
(1) and the ordinary separable multidimensional DFT?
We could select as generators U0; V0 at the outset, al-
though as will be discussed later that may not always be
possible. The problem is that the choice of I0 for both
I (M) and I

�
MT

�
corresponds to the index set V0I0 in

k-space, and U0I0 in the target image space, and neither
may be the desired set. Speci�cally, they will not be, in
general, con�ned to the Voronoi regions for LU and LV̂ ,
respectively. For example, in the 1-D case, the natural
index set for an N = 8 point DFT is f0; 1; � � � ; 7g, but
in many cases the centered set f�4;�3; � � � ; 2; 3g is more
desirable. In the multidimensional case, this requires
a mapping between each desired index set, I (U; V ) and
I
�
V̂ ; Û

�
, and I0. It may be di¢ cult to characterize

this mapping in a concise form (i.e., other than a look-up
table). However, the procedure we outline in this paper
does provide guidance for determining e¢ cient represen-
tations of this mapping in many situations.

3 Nearest Neighbor Regridding for
Pseudo-Hex Lattices

We consider MRI data originally sampled on an irregu-
lar pattern, speci�cally points that do not lie on a lat-
tice and with a sampling density that varies through k-
space. There is often a signi�cantly higher density near
the origin, and the sampling density in many cases is
somewhat isotropic (i.e., does not vary signi�cantly with
direction). The �rst step is a nearest neighbor regrid-
ding onto a base lattice LV of maximal density. This
is equivalent to a perturbation in k-space measurement.
The Fourier transform relates the points in k-space to the
physical coordinate vector ~r in the target image space

through the factor e
�
�
D
~k; ~r

E�
. Thus, the perturbation

of the sample point in k-space introduces phase errors
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on the measure data, with maximum phase error given

by ��max � 2�R
����~k���

max
, where R is the maximum dis-

tance of any point in the FOV in image space from the

origin, and
����~k���

max
is the radius of the circumscribing

circle for the Voronoi cell of LV . Since there are other
distortion e¤ects, such as undersampling and bandlim-
ited sampling in k-space (since the object of interest in
image space has �nite extent, its actual spectrum in k-
space has in�nite extent), and necessarily imperfect in-
terpolation and noise, the value ��max does not have to
be prohibitively small. For example, in standard regrid-
ding methods, to reconstruct a 256� 256 image, k-space
grid sizes from 256�256 up to 1024�1024 ares typically
used. Here, we employ pseudo-hex grids of comparable
sizes.

A generator for a hex lattice is Vhex =�
2=
p
3 �1=

p
3

0 1

�
. The Voronoi cell is a regular

hexagon, but there is no square sublattice. A pseudo-
hex lattice is obtained by using a rational approximation

to Vhex , for example V =

�
8=7 �4=7
0 1

�
[4]. In this

case, M = p

�
7 4
0 8

�
, for p 2 Z+, yields a generator

U = VM for a square lattice, so that the MRL-DFT
generates an image that has support on a square grid.

For identical sampling density,
����~k���

max
is about 12.3%

less in the pseudo-hex lattice than in a square lattice.

For an arbitrary point ~k, we want to �nd a nearest
lattice point onto which the data can be mapped. In
other words, we must �nd an integer vector ~n such that
~e = ~k � V ~n has minimum length, j~ej. In general, a
search among several indices is necessary. In particu-

lar, n̂ = round
�
V �1~k

�
, where every component of V �1~k

is rounded to the nearest integer, may not be the cor-
rect choice. This is because distance is measured in the
physical coordinate space, ~k, not the lexicographic space,
~n. In fact, depending on the choice of V , the best choice
for n̂ may not even be rounding each coordinate of V �1~k
either up or down. The goal is to develop an algorithm
that requires searching through a minimal possible set of
n̂ vectors, since each test requires computing a distance.

In our approach, by expressing the column vectors in V
in an appropriate orthogonal basis, we can express j~ej2
as:

j~ej2 = 64

65
(�1 � n1)

2
+
65

49

�
�1008
65

(�1 � n1) + (�2 � n2)
�2
(5)

where ~n =
�
n1 n2

�T
and ~� =

�
�1 �2

�T
= V �1~k.

Given n1, then n2 must be chosen to minimize the second
term. We should pick n1 by rounding �1 either up or
down. However, for the pseudo-hex lattice we consider

here, the circumscribing radius of the Voronoi cell, which
provides a bound on the maximum value of j~ej, is 65=98;
therefore, we can reject one of these choices outright if it
would cause the �rst term to exceed (the square of) this
bound. Thus, we obtain the following simpli�ed nearest
neighbor algorithm:

1. Compute ~� =
�
�1 �2

�T
= V �1~k.

2. Compute " = j�1 � round (�1)j.

3. If " � 1� 65
p
65

8�98 � 0:3316, then n1 = round (�1) and
n2 is given by:

n2 = round

�
�2 �

1008

65
(�1 � n1)

�
(6)

4. Otherwise, compute the total error associated with
the following two choices: n1 = b�1c, and n2 as
above, or n1 = d�1e, and n2 as above. Select the
(n1; n2) pair that minimizes j~ej2.

Note that, since j�1 � round (�1)j � 0:5, on average we
need to perform a comparison between two choices only
about 33% of the time; otherwise, the nearest neighbor
is computed directly without the need for trial-and-error
comparisons.

4 Lexicographic Mapping

Here we discuss the algorithm for mapping the MRL-
DFT over the pseudo-hex lattice to a form suitable for
application of a separable FFT. The Smith form of the
M matrix given above is M = E1M0E2 where:

E1 =

�
1 0
16 �1

�
, E2 =

�
7 4
2 1

�
, M0 =

�
1 0
0 56

�
p

(7)
with p is a positive integer determining the overall size of
the data set. In standard MRI applications, the target is
a 256� 256 square grid, but sometimes a higher density
lattice is used for pre-processing, say 1024� 1024. With
the pseudo-hex lattice, the total number of points needs
to be a multiple of 56 (as indicated by jdetM j = 56p2).
This suggests using 256 � 224 grid, with p = 32, or
1024� 896, with p = 64. The k-space indices in I (U; V )
are typically scaled so that the coordinates lie in the range
�128 � ki < 128. Thus, the appropriate U0 matrix
(whose Voronoi cell lies in that region of k-space) is:

U0 =

�
�256 1024
512 �1792

�
(8)

For a 256� 224 grid, we use:

V0 =

�
�8 4=7
16 �1

�
(9)
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and for a higher density 1024� 896 grid we use:

V0 =

�
�2 1=7
4 �1=4

�
(10)

The previous section described an e¢ cient nearest neigh-
bor regridding algorithm for the �rst V0 matrix; a similar
algorithm can be derived for the second V0 choice. Here
we similarly describe a method for generating an index
set I (U; V ) comprised of points in LV inside a Voronoi
cell of LU , and associating these points with the indices
for the separable DFT associated with M0. Again, for
illustration purposes, we consider the case p = 32 only.

Since M0 = diag f32; 1792g, the core DFT operation is a
32-point DFT in one dimension and 1792-point DFT in
the other dimension. The association between I (M0), as
required by the separable FFT operation, and I (U; V ) is
given as follows:

1. I (M0) = f0 � p1 � 31g � f0 � p2 � 1791g.

2. Compute J = V0I (M0).

3. If amod b means the integer a0, 0 � a0 � b � 1 such
that b divides a� a0, then:

a0 = ((a+ b=2)mod b)� b=2 (11)

produces an index in the range �b=2 � a < b=2. We
apply this formula componentwise to the points in J
as follows:

I (U; V ) = ((J + 128)mod 256)� 128 (12)

The resulting points are in the range �128 � ki <
128.

4. The points in I (U; V ) lie in LV . The correspond-
ing lexicographic index vectors ~n, such that V0~n 2
I (U; V ), are computed via:

I 0 (M0) = V
�1I (U; V ) (13)

Thus, I 0 (M0) is the set of integer vectors that produce
points in the Voronoi cell of U0 when multiplied by V0,
and I (M0) is the set of integer vectors that are used
as indices for the separable FFT operation. A similar
process can be used in reverse.

Once the FFT operation is applied, the indices I (M0)
associated with the standard DFT operation must be
mapped to an index set I 0 (M0) such that ÛI 0 (M0) cor-
responds to an index set of LÛ=LV̂ inside a Voronoi cell
of LV̂ . This Voronoi cell has an approximately hexago-
nal shape. Because V is a rational matrix, this region
can be described by a set of linear inequalities with ra-
tional coe¢ cients, and thus the mapping of an arbitrary

point ~r 2 LÛ to a point in the Voronoi cell can be ob-
tained by a sequence of integer modulo operations similar
to (12). The formulation is a bit more complex because
these operations cannot be applied componentwise, and
the details are omitted here for brevity. However, it
is important to note that a precise formulation can be
developed, and it can be realized using �xed-point (i.e.,
integer) arithmetic. Thus it can be implemented in an ef-
�cient manner, both in software and in custom hardware
(e.g., FPGA) implementations.

We consider one other situation where we must associate
di¤erent sets of lexicographic indices. When we compute
the LV =LU MRL-DFT, the set of lexicographic indices
representing points in k-space depends on the choice of
generator V , and the lexicographic indices representing
points in target image space depends on the choice of
generator U . The physical coordinates in the two spaces
do not change, since the Voronoi cells in each domain do
not depend on the choice of generator. However, since
any two choices for generators are related via a unimod-
ular matrix, for example V 0 = V E, we can map the as-
sociated lexicographic indices readily through an integer
arithmetic operation, namely if V 0~n0 = V ~n, then:

~n0 = E~n (14)

5 Results

With the methods described above, an image is recon-
structed from a set of 57344 lattice points via separa-
ble 32 � 1792 FFT. The computational complexity of
the core FFT operation is 32�1792� (log 32 + log 1792),
compared with (32� 1792)2 without a separable FFT ap-
proach. The nearest neighbor regridding operation re-
quires computing and comparing the results of two pos-
sible choices for only about 33% of the points; in other
cases, the nearest neighbor lattice point can be computed
directly. We also have presented a systematic map-
ping between the lexicographic indices corresponding to
the standard index set for the lattice (i.e., located in a
Voronoi cell) and the indices used by the separable FFT.

In the case of the nearest neighbor regridding, when mul-
tiple points map to the same lattice point, their value is
averaged. Where the sampling density is more sparse,

typically for large
���~k���, there are lattice points which are

not the nearest neighbors to any of the original sample
points, in which case the data at these lattice points is
taken to be zero.

This result, when applied to data obtained from a phan-
tom by a GE Signa 1.5T scanner, is shown in Figure 2.

We are not proposing that a simple nearest neighbor re-
gridding is appropriate for general image reconstruction
problems. Instead, we have demonstrated the feasibil-
ity of the core operation of image reconstruction built
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Figure 2: Reconstructed image.

around a non-rectangular grid. In the next section we
discuss how these results can be utilized as the basis for
more sophisticated image reconstruction operations to be
developed.

6 The Multiresolution Lattice Frame-
work

The proposed strategy is to �rst employ a nearest neigh-
bor regridding to a lattice of su¢ cient density that the
errors associated with the regridding are negligible com-
pared to other e¤ects, such as imprecision in the measure-
ment process. In general, the original data is sampled
at spatially varying densities. Thus, by applying ap-
propriate multirate operations on the dense lattice (e.g.,
decimation �lters), the signal can be represented in a mul-
tiresolution framework.

Suppose the base lattice of maximal sampling density is
LV , and the data points are con�ned to the Voronoi cell
associated with a coarse lattice LU � LV . The signal,
in general, would be sampled on various sublattices (or
their cosets) that lie between LU and LV . Thus, a multi-
resolution signal is associated with a structure similar to
wavelet packets [5]. This structure allows optimized and
�exible procedures, such as multirate �ltering and deci-
mation and interpolation to alternative lattice structures,
as well as generalized Cooley-Tukey FFT computations,
to be developed. For example, the passband of a decima-
tion or interpolation �lter is associated with a certain re-
gion in the FOV of the image space, and thus suppression
of aliasing and imaging distortions, as well as amplitude
and phase distortions, can be achieved in a prescribed
region of the FOV [3]. In the regions of k-space that
are undersampled, regridding to a lattice with uniform
density creates a large number of samples that actually
represent the same measurement. By contrast, in our ap-
proach, a sparser lattice is employed locally. Alternative
methods, for example those which avoid regridding and

instead perform �direct�reconstruction, say from a least-
squares approach or based on sophisticated interpolation
kernels, are signi�cantly more analytically di¢ cult and
therefore are harder to adapt or �ne-tune to particular
needs [1], [2].

A key process in reconstructing images from such a
multiresolution structure is the ability to compute the
DFT for an arbitrary quotient group LV 0=LU 0 , where
LU � LU 0 � LV 0 � LV . We have outlined a procedure
for e¢ cient mapping of such DFT operations to separa-
ble FFTs, speci�cally for the case of a pseudo-hex lattice.
In particular, the process of index mapping can be ex-
pressed compactly using �xed-point arithmetic, and can
be implemented e¢ ciently in software or custom hard-
ware (e.g., FPGA) when a look-up table implementation
is not practical. Suppose we start with LV =LU where
the generator matrices are chosen so that U = VM with
M diagonal. If, say, we change the base lattice LV to a
sublattice LV 0 � LV (corresponding to decimation), then
the matrix M 0 relating U and V 0 via U = V 0M 0 may no
longer be diagonal. Thus, working with the MRL frame-
work may require changing the generator matrix associ-
ated with a particular sublattice, but as indicated above,
this change of generator can be achieved by integer arith-
metic (i.e., multiplication by a unimodular matrix) on the
lexicographic index set.

Our particular choice of a pseudo-hex lattice in k-space
o¤ers the advantages of direct reconstruction to a rectan-
gular grid (avoiding the need for postprocessing regrid-
ding), with a hexagonal FOV (avoiding computation of
points in the corners of image space, which are often un-
necessary in MRI), and with smaller phase errors (caused
by the distance in k-space from original measurements to
lattice points) than those associated with square grids in
k-space.
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