
 
 

 

  
Abstract—In this paper, we analyze the bounds of the fixed 

common step-size parameter GMDFµ  for the generalized 
multidelay adaptive filter (GMDF). Frequency domain adaptive 
filters are attractive in applications requiring a large number of 
coefficients such as acoustic echo cancellation (AEC). However, 
the very restrictive convergence bound for block LMS has limited 
its usefulness. Derivations on step-size bounds for the partitioned 
frequency-domain block LMS have been reported recently, but 
are not consistent with each other. Contrary to other researchers’ 
work, this paper derives a not-restrictive step-size bound that 
supports a stable GMDF. We also derive relations of step-size 
parameters for NLMS and GMDF to have similar convergence 
properties. The results of extensive simulation experiments are 
included in the paper. These results show the bounds and the 
convergence behavior predicted by the analysis is in very good 
agreement with the experimental results. 
 

Index Terms—Acoustic Echo Cancellation, Block LMS, 
Convergence Analysis, Frequency Domain LMS,  
 

I. INTRODUCTION 
The normalized least-mean-square (NLMS) scheme has 

been the most popular adaptive filtering algorithm in many 
applications. There are quite a number of variations of the 
NLMS algorithm being developed for certain specific 
applications. For example, frequency-domain fast block LMS 
(FBLMS) adaptive filters are attractive alternatives for acoustic 
echo cancellation (AEC), which may need thousands of filter 
coefficients to reach the desired level of performance [1]-[6]. 
The great reduction in computational complexity associated 
with FBLMS is due to the usage of fast Fourier transform (FFT). 
In the literature, the FBLMS is also referred to as the block 
frequency-domain adaptive filters (BFDAF). 

It is well known that the normalized block LMS (NBLMS), 
with block length N , and the NLMS algorithms converge at 
the same rate and achieve the same mis-adjustment if the 
step-size parameter of NBLMS is N  times as large as that of 
the NLMS [7]. However, both algorithms have the same 
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convergence bounds for the step-size parameter. Therefore, 
even for a moderate block length N , the NBLMS has to 
employ a fairly small step-size parameter to meet the very 
restrictive convergence bound. This limitation greatly reduces 
the usefulness of the NBLMS and its frequency-domain 
variations FBLMS. 

A major problem of FBLMS in AEC application is the long 
delay associated with the large filter size. Soo proposed a 
variation of FBLMS, which was referred to as the multidelay 
block frequency domain adaptive filter (MDF) to alleviate this 
delay trouble [4]. MDF segments the filter into several 
partitions and employ as many sub-filters as well. The MDF 
belongs to the class of partitioned FBLMS (PFBLMS) 
algorithms. The PFBLMS is most commonly implemented by 
normalizing its input in frequency domain (known as frequency 
bins) and is referred to here as the NPFBLMS. Some 
researchers thought that the frequency-bin normalization 
procedure resolves the problem of slow modes of the NLMS 
algorithm and the resulting algorithm converges faster than the 
NLMS [10]. However, some researchers reasoned that because 
of the restriction on the step-size bounds that supports a stable 
filter, the frequency domain algorithms actually do not perform 
better than the NLMS in convergence and tracking properties 
[5]. And they have introduced a hybrid coefficients update 
scheme that performs comparable to that of the NLMS with a 
computational complexity comparable to that of the standard 
frequency domain algorithms [5].  

Moulines [1] proposed the generalized MDF (GMDF) that 
allows one to select FFT size and the block delay separately. 
This advantage is owing to the controlling of the overlap 
between the successive input blocks. Because of this flexibility, 
the GMDF is more general than the NPFBLMS. However, like 
we just pointed out, researchers presented different views on 
the convergence performance of NPFBLMS, and the 
derivations of step-size bounds in the literature are not 
consistent [1], [6], [9]. In this paper, we make a further study on 
the step-size bounds of the generalized multidelay adaptive 
filter. The step-size bounds we derived in this paper is N  times 
larger than that of the NBLMS, and is much bigger than the one 
reported in [1] for GMDF, and a recent paper [6] as well. 
Because of this new analysis, we can now choose proper 
step-size so that the well-designed GMDF maintains good 
tracking and convergence performance and has great saving in 
computations as well. The rest of the paper is organized as 
follows. Section 2 summarizes the GMDF algorithm. Section 3 
investigates the range of step-size that supports a stable GMDF 
filter. We then compare our derivations with other work 
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currently available in the literature. Extensive simulation 
results confirming our performance analysis are presented in 
Section 4. The conclusions are made in the last section of the 
paper. 

 

II. SUMMARY OF THE GMDF 
Let ( )u n and ( )d n  represent the reference input and desired 

output signal, respectively, to the adaptive filter with order M. 
The NLMS is formulated by 

( ) ( ) ( ) ( )Te n d n n n= − w u , (1) 

0

( 1) ( ) ( ) ( )n n n e n
Mr
µ

+ = +w w u , (2) 

where ( )nu and ( )nw  are input and coefficient vectors, 
respectively, and 0r  is an estimate of the variance of ( )u n . The 
step-size µ  is bounded in (0, 2)  for convergence.  

The NBLMS with block size N  is formulated by 
( ) ( ) ( )e kN i d kN i kN i+ = + − +T

kw u ,  
 0,1, , 1i N= − , (3) 

1

00

( ) ( )
N

B

i

kN i e kN i
Mr N

µ −

=

= + + +∑k +1 kw w u , (4) 

where kw  denotes coefficient vector at block iteration k . The 
step-size Bµ  is bounded in (0, 2)  for convergence [7].  

The GMDF segments the filter into L  sub-filters, each with 
an order N  and is implemented in frequency domain with FFT 
size 2N . Without loss of generality, we assume that M NL= . 
The GMDF uses a positive integer α to control the overlap 
between the successive input blocks. Consequently, it updates 
the coefficients every R N= α  samples. In the thk  iteration, 
define reference input vector kx  and desired response vector 

kd , respectively, as 

[ ]( ), ( 1), , ( 1) T
k u kR u kR u kR N= + + −x , (5) 

[ ]( ), ( 1), , ( 1) T
k d kR d kR d kR N= + + −d . (6) 

Frequency-domain input vector for thl sub-filter, denoted as 
,l kX , 1, 2, ,l L=  is computed as 

, ( 1),
TT T

l k k l k lFFT − α − − α⎡ ⎤= ⎣ ⎦X x x . (7)  

The corresponding frequency-domain coefficient vector ,l kH  
is defined accordingly as 

, , ,
TT T

l k l kFFT ⎡ ⎤= ⎣ ⎦H h 0 , (8) 

where ,l kh  is the thl sub-filter’s time-domain coefficient 

vector. Filter output vector d̂k  is calculated as 

ˆ
k =d second part of  1

, ,
1

 
L

l k l k
l

FFT −

=

⎡ ⎤
⊗⎢ ⎥

⎣ ⎦
∑H X , (9) 

where ⊗  denotes element-wise multiplication. In practice, any 
weighted overlap and add reconstruction algorithm could be 
used to construct the final R -sample output at each block 

iteration. Frequency-domain error vector kE  is obtained as 
follows. 

ˆ
k k k= −e d d ,  (10) 

TT T
k kFFT ⎡ ⎤= ⎣ ⎦E 0 ,e . (11) 

Most NPFBLMS algorithms employ, although might be 
slightly different, frequency bin power normalization. We 
present a sub-filter based normalization scheme as follows. The 
frequency power of the thl  subfilter at thk  iteration is 
calculated as 

, , 1 , ,(1 )l k l k l k l k−= β + − β ⊗Z Z X X , (12) 

where ,l kX  denotes the complex conjugate of ,l kX , and β  is a 
forgetting factor. The coefficient vector ,l kH  is updated as 

, 1 , ,
2 GMDF

l k l k l kM+

µ
= +H H Φ , (13) 

where GMDFµ  is a fixed common un-normalized step-size 
parameter of the GMDF filter. In (13), ,l kΦ , the new 
information for updating, is obtained as 

, , ,
TT T

l k l kFFTΦ 0⎡ ⎤= φ⎣ ⎦ , (14) 

where 
,l kφ =  first part of 

( ) 1
, k l kFFT − ⎡ ⊗⎣ E X ,l k ⎤⎦Z , (15) 

where  denotes element-wise division. 
 

III. STEP-SIZE BOUNDS ANALYSIS 
We present a range of step-size that supports a stable GMDF 

filter in this section. A recent paper claimed that for sufficiently 
large block size N, NPFBLMS algorithm ought to perform 
similarly, regardless of whether the input process is white or 
correlated [10]. That is, as a consequence of the frequency-bin 
normalization process, the eigenvalue spread of the 
autocorrelation matrix would approach unity. However, [10] 
did not derive a range of the fixed common un-normalized 
step-size GMDFµ , it simply referred to the bounds presented in 
[1]. 

In this paper, we derive a bound for the fixed common 
step-size parameter GMDFµ . Note the Parseval’s theorem relates 
power computed in time domain and in frequency domain. 
Now assuming ( )u n is a white process with zero mean and 

variance 2
uσ , the expected value of averaged frequency bin 

power would equal 22 uNσ . Using this 22 uNσ  for each 
frequency bin power associated with (13), and noting that (13) 
is a frequency-bin normalized version of (4), we have the 
following equality for bounding step-size parameter 

2 2

2
(2 )

GMDFB

u uM M N
µµ

σ σ
= . (16) 

Transforming the bound on Bµ  to. GMDFµ  yields 
0 2GMDF Nµ< < . (17) 
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The bound in (17) is good for supporting a stable GMDF 
algorithm for all types of input processes provided the FFT size 
is large enough to de-correlate the transformed input samples. 
Contrary to a recent paper that explicitly states the limitation of 
frequency domain filters owing to the very restrictive step-size 
bounds [5], our results give a very good range of values that 
support a stable GMDF.  

In the following, we compare our step-size bound with other 
researchers’ work. Since the structures of the NPFBLMS 
algorithms presented in the literature are somewhat different, 
we rewrite the associated coefficient updating equations in the 
form of (13) for comparison. The updating equation in [1] is 
rewritten as  

1
1

2
4

B
k k k

L
M
µ

+ = +H H Φ , (18) 

where Hk  is the 2 1M × coefficient vector, and 1Bµ  is the fixed 
common un-normalized step-size. [1] derived the range of 
convergence as 

10 4 (1 )B Lµ< < + . (19) 
This is equivalent to confine GMDFµ  as 

0 (1 )GMDF L Lµ< < + . (20) 
Obviously, this bound is too restrictive compared to our 
derivation in (17). 

Sommen [6] had the equivalent updating equation  
2

, 1 , ,
2 B

l k l k l kM
µ

+ = +H H Φ , (21) 

and gave a range of convergence  
20 1Bµ< < . (22) 

Transform this bound to our version will result in 
0 1GMDFµ< < . (23) 

Regarding the convergence properties, it is well known that 
the NBLMS and the NLMS algorithms exhibit similar 
convergence performance if B Nµ = µ  when NBLMS adjusts 
the coefficients once per N  samples of data [7]. Follow the 
work in [7], and note that the GMDF modifies the weights 
every R  samples, we can show that NLMS and GMDF would 
perform similarly if 

GMDF R Nµ µ µ α= =  (24) 
for small value of µ  and N  is large enough. Even though the 
GMDF was first presented over a decade ago, to our best 
knowledge, this is the first one that derives relations of 
step-size parameters for NLMS and GMDF to have similar 
convergence properties. 
 

IV. SIMULATION RESULTS 
In this section, we present the results of several experiments 

that validate our analysis on step-size bounds as well as verify 
the convergence analysis. The adaptive filter was used to 
identify a 512-tap acoustic echo system, opth , measured in a 
small office. The acoustic echo system was kept unchanged for 
the first 2.4 seconds. During the next 4 seconds, the system 
turned to be time-varying. The evolution of coefficients is 

described by 
( ) ( )opt optn n= +h h g , (25) 

where ( )ng  is a Gaussian random vector with mean 0 and 
variance 0.1. The system was switched back to be 
time-invariant with coefficients opth  for the final 3.6 seconds. 
Several types of input signals (white Gaussian processes, 
moving average (MA) processes and autoregressive (AR) 
processes) were used. For all experiments, the power of the 
acoustic echo system was set to be unit (during the first 2.4 
seconds and the last 3.6 seconds) and the additive white 
Gaussian noise has variance 0.01. The reported mean squared 
error (MSE) curves are results of ensemble averages over 20 
independently runs, followed by 64-sample time averages. 
 

A. Example 1: Step-size bounds 
We have performed extensive simulations to validate our 

stable step-size bounds in (17). We observed satisfactory 
results with GMDFµ 1.6 128= ×  for all experiments with 
parameters 4L = , 128N = , and 1α = . We also performed 
GMDF with L  equals 8, 16, 32, and 64, respectively. We 
observed stable step-size bounds getting closer to 2N , where 
N is the block size associated with that particular L . The 
extreme case would be 512L = , 1N = , and stable step-size 
seem will approach to 2. Therefore, we conclude that Moulines 
[1] and Sommen [6] gave a too restrictive bound. The MSE 
curves associated with AR processes input signal for 

32, 2L α= = , 64, 2L α= =  are depicted in Fig. 1 and Fig. 2, 
respectively. Fig. 3 shows the MSE curves of white input signal 
for 32, 2L α= = . We never had any good result with step-size 
larger than 2N . 

B. Example 2: Convergence properties 
Extensive experiments were conducted to support the 

usefulness of our convergence analysis in (24). Due to the 
limitation of space, we only provide some MSE plots of the 
setup: 4L = , 128N = , NLMS with 0.4µ = , GMDF with 

1, 2, 4α =  and the corresponding fixed common step-size 
parameter 0.4 128GMDFµ α= × . The MSE curves associated 
with AR, MA, and white Gaussian inputs are depicted in Figs. 4, 
5, and 6, respectively. We observed the MSE curves of GMDF 
algorithms are fairly close in all experiments. The results 
verified our performance analysis presented in the previous 
section. The NLMS performed comparably to the GMDF for 
AR and white Gaussian inputs. However, the NLMS converged 
quite slowly for MA inputs. It should be noted that the NLMS 
did a better job in tracking the changing of the acoustic echo 
system. This might due to its sample-processing characteristic.  

Experimental results of NLMS with 0.8µ = , and GMDF 
filters with 0.8 128GMDFµ α= ×  are shown in Figures 7, 8, and 9 
for AR, MA, and white Gaussian inputs, respectively. The 
GMDF filters perform similarly, but the MSE curves are not 
that close as for the case 0.4 128GMDFµ α= × . This is because the 
associated µ  is not small enough. 
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V. CONCLUSIONS 
In this paper, we derived the bounds of the fixed common 

step-size parameter GMDFµ  for the generalized multidelay 
adaptive filter. Contrary to most work currently available in the 
literature, our results gave a very good range of values that 
support a stable GMDF. Extensive simulation results were 
provided to validate the analysis. We also derived relations of 
step-size parameters for NLMS and GMDF to have similar 
convergence properties. The performance analysis was verified 
by extensive simulations. 
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Figure 1, MSE curves (Example 1) of GMDF algorithms with 
step-size 2.0 16GMDF = ×µ ,1.8 16× , and 1.6 16× . AR input 

signal. 32 2( , )L α= = . 

 

Figure 2, MSE curves (Example 1) of GMDF algorithms with 
step-size 2.0 8GMDF = ×µ , 1.8 8× , and 1.6 8× . AR input 

signal. 64 2( , )L α= = . 

 

Figure 3, MSE curves (Example 1) of GMDF algorithms with 
step-size 2.0 16GMDF = ×µ , 1.8 16× , and 1.6 16× . White 

Gaussian input signal. 32 2( , )L α= = . 
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Figure 4, MSE curves of GMDF algorithms (with step-size 
0.4 32GMDF = ×µ , 0.4 64× , 0.4 128× ), and NLMS (with 

0.4=µ ). (AR input, 4 128,L N= = ) 

 

Figure 5, MSE curves of GMDF algorithms (with step-size 
0.4 32GMDF = ×µ , 0.4 64× , 0.4 128× ), and NLMS (with 

0.4=µ ). (MA input, 4 128,L N= = ) 

 

Figure 6, MSE curves of GMDF algorithms (with step-size 
0.4 32GMDF = ×µ , 0.4 64× , 0.4 128× ), and NLMS (with 

0.4=µ ). (White Gaussian input, 4 128,L N= = ) 

 

Figure 7, MSE curves of GMDF algorithms (with step-size 
0.8 32GMDFµ = × , 0.8 64× , 0.8 128× ), and NLMS (with 

0.8µ = ). (AR input, 4 128,L N= = ) 

 

Figure 8, MSE curves of GMDF algorithms (with step-size 
0.8 32GMDFµ = × , 0.8 64× , 0.8 128× ), and NLMS (with 

0.8µ = ). (MA input, 4 128,L N= = )  

 

Figure 9, MSE curves of GMDF algorithms (with step-size 
0.8 32GMDFµ = × , 0.8 64× , 0.8 128× ), and NLMS (with 

0.8µ = ). (White Gaussian input, 4 128,L N= = ) 
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