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Abstract—This paper proposes two models of
adding relations to a linking pin type organization
structure where every pair of siblings in a complete K-
ary tree of height H is adjacent: (i) a model of adding
an edge between two nodes with the same depth N
and (ii) a model of adding edges between every pair
of nodes with the same depth N . For each of the two
models, an optimal depth N∗ is obtained by maximiz-
ing the total shortening path length which is the sum
of shortening lengths of shortest paths between every
pair of all nodes.
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1 Introduction

The basic type of formal organization structure is a
pyramid organization [6] which is a hierarchical structure
based on the principle of unity of command [2] that every
member except the top in the organization should have
a single immediate superior. On the other hand an or-
ganization characterized by System 4 of Likert [3] has a
structure in which relations between members of the same
section are added to the pyramid organization structure.
Members of middle layers of System 4 which are both
members of the upper units and chiefs of the lower units
are called linking pins, and this type of organization is
called a linking pin type organization.

In the linking pin type organization there exist relations
between each superior and his direct subordinates and
those between members which have the same direct sub-
ordinate. However, it is desirable to have formed addi-
tional relations other than their relations in advance in
case they need communication with other departments in
the organization. In companies, the relations with other
departments are built by meetings, group training, in-
ternal projects, and so on. Personal relations exceeding
departments are also considered to be useful for the com-
munication of information in the organization.

The linking pin type organization structure can be ex-
pressed as a structure where every pair of siblings which
are nodes which have the same parent in a rooted tree is
adjacent, if we let nodes and edges in the structure corre-
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spond to members and relations between members in the
organization respectively. Then the linking pin type orga-
nization structure is characterized by the number of sub-
ordinates of each member (that is, the number of children
of each node) and the number of levels in the organization
(that is, the height of the rooted tree), and so on [4, 5].
Moreover, the path between a pair of nodes in the struc-
ture is equivalent to the route of communication of infor-
mation between a pair of members in the organization,
and adding edges to the structure is equivalent to forming
additional relations other than those between each supe-
rior and his direct subordinates and between members
which have the same direct subordinate. The purpose of
our study is to obtain an optimal set of additional rela-
tions to the linking pin type organization such that the
communication of information between every member in
the organization becomes the most efficient. This means
that we obtain a set of additional edges to the structure
minimizing the sum of lengths of shortest paths between
every pair of all nodes.

This paper proposes two models of adding relations to a
linking pin type organization structure which is a com-
plete K-ary linking pin structure of height H (H =
2, 3, · · · ) where every pair of siblings in a complete K-
ary tree of height H is adjacent: (i) a model of adding an
edge between two nodes with the same depth N and (ii)
a model of adding edges between every pair of nodes with
the same depth N . A complete K-ary tree is a rooted tree
in which all leaves have the same depth and all internal
nodes have K (K = 2, 3, · · · ) children [1]. Figure 1 shows
an example of a complete K-ary linking pin structure
(K = 2, H = 5). In Figure 1 the value of N expresses
the depth of each node.

The above model (i) corresponds to the formation of an
additional relation between two members in the same
level of an organization such as a personal communica-
tion. Model (ii) is equivalent to additional relations be-
tween every pair of all members in the same level such as
section chief training.

If li,j(= lj,i) denotes the path length, which is the num-
ber of edges in the shortest path from a node vi to a node
vj (i, j = 1, 2, · · · , (KH+1 − 1)/(K − 1)) in the complete
K-ary linking pin structure of height H, then

∑
i<j li,j

is the total path length. Furthermore, if l′i,j denotes the
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Figure 1: An example of a complete K-ary linking pin
structure (K = 2, H = 5).

path length from vi to vj after adding edges in the above
models, li,j − l′i,j is called the shortening path length be-
tween vi and vj , and

∑
i<j(li,j − l′i,j) is called the total

shortening path length.

In Section 2 and Section 3, for each of the above two
models of adding edges respectively, we formulate the to-
tal shortening path length and obtain an optimal adding
depth N∗ which maximizes the total shortening path
length.

2 Adding an edge between two nodes
with the same depth

This section obtains an optimal depth N∗ by maxi-
mizing the total shortening path length, when a new
edge between two nodes with the same depth N (N =
2, 3, · · · ,H ) is added to a complete K-ary linking pin
structure of height H.

2.1 Formulation of total shortening path
length

We can add a new edge between two nodes with the
same depth N in a complete K-ary linking pin struc-
ture in N − 1 ways that lead to non-isomorphic graphs.
Let RH(N, L) denote the total shortening path length by
adding the new edge, where L (L = 0, 1, 2, · · · , N − 2 )
is the depth of the deepest common ancestor of the two
nodes on which the new edge is incident. For the case
of L = 0, the total shortening path length is denoted by
S1,H(N). Since addition of the new edge shortens path
lengths only between pairs of descendants of the deepest
common ancestor of the two nodes on which the new edge
is incident, we obtain

RH(N,L) = S1,H−L(N − L) . (1)

We formulate S1,H(N) in the following.

Let vX
0 and vY

0 denote the two nodes on which the adding
edge is incident and assume that L = 0. Let vX

k and vY
k

denote ancestors of vX
0 and vY

0 , respectively, with depth
N − k for k = 1, 2, · · · , N − 1. The sets of descendants
of vX

0 and vY
0 are denoted by V X

0 and V Y
0 respectively.

(Note that every node is a descendant of itself [1].) Let
V X

k denote the set obtained by removing vX
k and the de-

scendants of vX
k−1 from the set of descendants of vX

k and
let V Y

k denote the set obtained by removing vY
k and the

descendants of vY
k−1 from the set of descendants of vY

k ,
where k = 1, 2, · · · , N − 1.

Since addition of the new edge doesn’t shorten path
lengths between pairs of nodes other than between pairs
of vX

k (k = 1, 2, · · · , N − 1 ) or nodes in V X
k (k =

0, 1, 2, · · · , N − 1 ) and vY
k (k = 1, 2, · · · , N − 1 ) or nodes

in V Y
k (k = 0, 1, 2, · · · , N − 1 ), the total shortening path

length can be formulated by adding up the following six
sums of shortening path lengths: (i) the sum of shorten-
ing path lengths between every pair of nodes in V X

0 and
nodes in V Y

0 , (ii) the sum of shortening path lengths be-
tween every pair of vX

k (k = 1, 2, · · · , N − 1 ) and nodes
in V Y

0 and between every pair of vY
k (k = 1, 2, · · · , N −1 )

and nodes in V X
0 , (iii) the sum of shortening path

lengths between every pair of nodes in V X
0 and nodes

in V Y
k (k = 1, 2, · · · , N − 1 ) and between every pair of

nodes in V Y
0 and nodes in V X

k (k = 1, 2, · · · , N − 1 ), (iv)
the sum of shortening path lengths between every pair of
vX

k (k = 1, 2, · · · , N−1 ) and vY
k (k = 1, 2, · · · , N−1 ), (v)

the sum of shortening path lengths between every pair of
nodes in V X

k (k = 1, 2, · · · , N − 1 ) and nodes in V Y
k (k =

1, 2, · · · , N − 1 ) and (vi) the sum of shortening path
lengths between every pair of vX

k (k = 1, 2, · · · , N − 1 )
and nodes in V Y

k (k = 1, 2, · · · , N − 1 ) and between
every pair of vY

k (k = 1, 2, · · · , N − 1 ) and nodes in
V X

k (k = 1, 2, · · · , N − 1 ).

The sum of shortening path lengths between every pair
of nodes in V X

0 and nodes in V Y
0 is given by

A1,H(N) =
{
M(H −N)

}2(2N − 2) , (2)

where M(h) denotes the number of nodes of a complete
K-ary tree of height h (h = 0, 1, 2, · · · ). The sum of
shortening path lengths between every pair of vX

k (k =
1, 2, · · · , N − 1 ) and nodes in V Y

0 and between every pair
of vY

k (k = 1, 2, · · · , N − 1 ) and nodes in V X
0 is given by

B1,H(N) = 2M(H −N)
N−2∑

i=1

2i , (3)

and the sum of shortening path lengths between every
pair of nodes in V X

0 and nodes in V Y
k (k = 1, 2, · · · , N−1 )

and between every pair of nodes in V Y
0 and nodes in

V X
k (k = 1, 2, · · · , N − 1 ) is given by

C1,H(N)

= 2M(H −N)
N−1∑

i=1

(K − 1)M(H − i− 1)(2i− 1) .

(4)
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Furthermore, the sum of shortening path lengths be-
tween every pair of vX

k (k = 1, 2, · · · , N − 1 ) and vY
k (k =

1, 2, · · · , N − 1 ) is given by

D1,H(N) =
N−3∑

i=1

i∑

j=1

2j , (5)

and the sum of shortening path lengths between every
pair of nodes in V X

k (k = 1, 2, · · · , N − 1 ) and nodes in
V Y

k (k = 1, 2, · · · , N − 1 ) is given by

E1,H(N)

=
N−2∑

i=1

(K − 1)M(H − i− 2)

×
i∑

j=1

(K − 1)M(H −N + i− j) 2j , (6)

and the sum of shortening path lengths between every
pair of vX

k (k = 1, 2, · · · , N − 1 ) and nodes in V Y
k (k =

1, 2, · · · , N − 1 ) and between every pair of vY
k (k =

1, 2, · · · , N − 1 ) and nodes in V X
k (k = 1, 2, · · · , N − 1 ) is

given by

F1,H(N)

= 2
N−2∑

i=1

(K − 1)M(H − i− 2)
i∑

j=1

(2j − 1) . (7)

In Equations (3), (5), (6) and (7) we define

−1∑

i=1

· = 0 , (8)

0∑

i=1

· = 0 . (9)

From the above equations, the total shortening path
length S1,H(N) is given by

S1,H(N)
= A1,H(N) + B1,H(N) + C1,H(N) + D1,H(N)

+ E1,H(N) + F1,H(N)

=
{
M(H −N)

}2(2N − 2) + 2M(H −N)
N−2∑

i=1

2i

+ 2M(H −N)
N−1∑

i=1

(K − 1)M(H − i− 1)(2i− 1)

+
N−3∑

i=1

i∑

j=1

2j +
N−2∑

i=1

(K − 1)M(H − i− 2)

×
i∑

j=1

(K − 1)M(H −N + i− j) 2j

+ 2
N−2∑

i=1

(K − 1)M(H − i− 2)
i∑

j=1

(2j − 1) . (10)

From Equations (1) and (10), we have the following the-
orem.

Theorem 1. L∗ = 0 maximizes RH(N, L) for each N .

Proof . For N = 2, L∗ = 0 trivially. For N =
3, 4, · · · ,H, let

∆RH(N, L) ≡ RH(N, L + 1)−RH(N, L) . (11)

We then have

∆RH(N, L)
= S1,H−(L+1)(N − (L + 1))− S1,H−L(N − L)

= − 2
{
M(H −N)

}2 − 4M(H −N)(N − L− 2)

− 2M(H −N)
N−L−2∑

i=1

(K − 1)(2i− 1)

× {
M(H − L− i− 1)−M(H − L− i− 2)

}

− 2(K − 1)
{
M(H −N)

}2(2N − 2L− 3)

−
N−L−3∑

j=1

2j −
N−L−3∑

i=1

(K − 1)

× {
M(H − L− i− 2)−M(H − L− i− 3)

}

×
i∑

j=1

(K − 1)M(H −N + i− j) 2j

− (K − 1)M(H −N)

×
N−L−2∑

j=1

(K − 1)M(H − L− j − 2) 2j

− 2
N−L−3∑

i=1

(K − 1)
{
M(H − L− i− 2)

−M(H − L− i− 3)
} i∑

j=1

(2j − 1)

− 2(K − 1)M(H −N)
N−L−2∑

j=1

(2j − 1) , (12)

for L = 0, 1, 2, · · · , N − 3. Since M(h) increases with h,
we obtain

∆RH(N,L) < 0 . (13)

Therefore, RH(N,L) takes its maximum at L∗ = 0 for
each N . 2

We next discuss the optimal adding depth N = N∗ which
maximizes S1,H(N) = RH(N, 0). Since the number of
nodes of a complete K-ary tree of height h is

M(h) =
Kh+1 − 1

K − 1
, (14)

S1,H(N) of Equation (10) becomes

S1,H(N)
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=
2

(K − 1)3
{

(N − 1)(K − 1)K2H−N+1

+ 2KH−N+2 − 2KH+1 + K(N − 1)(K − 1)
}

.

(15)

2.2 An optimal adding depth

In this subsection, we seek N = N∗ which maximizes
S1,H(N) in Equation (15).

Let ∆S1,H(N) ≡ S1,H(N +1)−S1,H(N), so that we have

∆S1,H(N) =
2

(K − 1)2
{

(K −NK + N)K2H−N

− 2KH−N+1 + K
}

, (16)

for N = 2, 3, · · · ,H − 1. Let us define a continuous vari-
able x which depends on H as

x = KH , (17)

then ∆S1,H(N) becomes

T1,N (x) =
2

(K − 1)2
{

(K −NK + N)K−Nx2

− 2K−N+1x + K
}

, (18)

which is a quadratic function of x.

From the coefficient of x2 in Equation (18), the following
two cases can be discussed:
(i) When K = 2 and N = 2, then 2(K − NK +
N)K−N/(K − 1)2 = 0 which indicates that T1,N (x) is
a linear function.
(ii) When K = 2 and N = 3, 4, · · · ,H−1 or K = 3, 4, · · ·,
then 2(K − NK + N)K−N/(K − 1)2 < 0 which means
that T1,N (x) is convex upward.

In the case of (i), T1,N (x) becomes

T1,N (x) = −2x + 4 . (19)

Since the coefficient of x in Equation (19) is negative and

T1,N (23) = −12 < 0 , (20)

we have T1,N (x) < 0 for x ≥ 23. Therefore, when K = 2
and N = 2, then we have ∆S1,H(N) < 0 for H = 3, 4, · · ·.
In the case of (ii), by differentiating T1,N (x) in Equa-
tion (18) with respect to x, we obtain

T ′1,N (x)

=
4

(K − 1)2
{

(K −NK + N)K−Nx−K−N+1
}

.

(21)

Since

T1,N (KN+1) =
2

(K − 1)2
{

(K −NK + N)KN+2

−K(2K − 1)
}

< 0 (22)

and

T ′1,N (KN+1) =
4

(K − 1)2
{

(K −NK + N)K

−K−N+1
}

< 0 , (23)

we have T1,N (x) < 0 for x ≥ KN+1. Therefore, we have
∆S1,H(N) < 0 for H ≥ N+1 ; that is, N = 3, 4, · · · ,H−1
when K = 2 and N = 2, 3, · · · ,H − 1 when K = 3, 4, · · ·.
From the above results, the optimal adding depth N∗ can
be obtained and is given in Theorem 2.

Theorem 2. The optimal adding depth is N∗ = 2.

Proof . If H = 2, then N∗ = 2 trivially. If H = 3, 4, · · ·,
then N∗ = 2 from ∆S1,H(N) < 0, for N = 2, 3, · · · ,H−1.
2

3 Adding edges between every pair of
nodes with the same depth

This section obtains an optimal depth N∗ by maximizing
the total shortening path length, when new edges be-
tween every pair of nodes with the same depth N (N =
2, 3, · · · ,H ) are added to a complete K-ary linking pin
structure of height H.

3.1 Formulation of total shortening path
length

Let S2,H(N) denote the total shortening path length,
when we add edges between every pair of nodes with a
depth of N .

The total shortening path length S2,H(N) can be formu-
lated by adding up the following three sums of shortening
path lengths: (i) the sum of shortening path lengths be-
tween every pair of nodes whose depths are equal to or
more than N , (ii) the sum of shortening path lengths be-
tween every pair of nodes whose depths are less than N
and those whose depths are equal to or more than N and
(iii) the sum of shortening path lengths between every
pair of nodes whose depths are less than N .

The sum of shortening path lengths between every pair
of nodes whose depths are equal to or more than N is
given by

A2,H(N) =
{
M(H −N)

}2
KN (K − 1)

N−1∑

i=1

iKi , (24)

where M(h) is as before. The sum of shortening path
lengths between every pair of nodes whose depths are
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less than N and those whose depths are equal to or more
than N is given by

B2,H(N) = 2M(H −N)KN (K − 1)
N−2∑

i=1

i∑

j=1

jKj ,

(25)

and the sum of shortening path lengths between every
pair of nodes whose depths are less than N is given by

C2,H(N) = KN (K − 1)
N−3∑

i=1

i∑

j=1

j (i− j + 1) Kj ,

(26)

where Equations (8) and (9) apply.

From these equations, the total shortening path length
S2,H(N) is given by

S2,H(N) = A2,H(N) + B2,H(N) + C2,H(N)

=
{
M(H −N)

}2
KN (K − 1)

N−1∑

i=1

iKi

+ 2M(H −N)KN (K − 1)
N−2∑

i=1

i∑

j=1

jKj

+ KN (K − 1)
N−3∑

i=1

i∑

j=1

j (i− j + 1) Kj .

(27)

From Equations (14) and (27), we have that

S2,H(N)

=
1

2(K − 1)3
{

2K2H−N+3

+ 2(NK −K −N)K2H+2 − 4KH+N+2

+ 4(NK −N + 1)KH+2

+ N(N − 1)(K − 1)2KN+1
}

. (28)

3.2 An optimal adding depth

In this subsection, we seek N = N∗ which maximizes
S2,H(N) in Equation (28).

Let ∆S2,H(N) ≡ S2,H(N +1)−S2,H(N), so that we have

∆S2,H(N)

=
1

2(K − 1)2
{(

2K2 − 2K−N+2
)
K2H

+
(−4KN+2 + 4K2

)
KH

+ N(NK + K −N + 1)(K − 1)KN+1
}

,

(29)

for N = 2, 3, · · · ,H − 1. Let us define a continuous vari-
able x which depends on H as in Equation (17), so that
∆S2,H(N) becomes

T2,N (x)

=
1

2(K − 1)2
{(

2K2 − 2K−N+2
)
x2

+
(−4KN+2 + 4K2

)
x

+ N(NK + K −N + 1)(K − 1)KN+1
}

,

(30)

which is a quadratic function of x.

By differentiating T2,N (x) with respect to x, we obtain

T ′2,N (x) =
1

(K − 1)2
{(

2K2 − 2K−N+2
)
x

− 2KN+2 + 2K2
}

. (31)

Since T2,N (x) is convex downward from (K2 −
K−N+2)/(K − 1)2 > 0, and

T2,N (KN+1)

=
1

2(K − 1)2
[
(2K − 4)KN+3(KN − 1)

+ N
{
N(K − 1) + K + 1

}
(K − 1)KN+1

]

> 0 (32)

and

T ′2,N (KN+1) =
2K2(KN − 1)

K − 1
> 0 , (33)

we have T2,N (x) > 0 for x ≥ KN+1. Hence, we have
∆S2,H(N) > 0 for H = N + 1, N + 2, · · · ; that is, N =
2, 3, · · · ,H − 1.

From the above results, the optimal adding depth N∗ can
be obtained and is given in Theorem 3.

Theorem 3. The optimal adding depth is N∗ = H.

Proof . If H = 2, then N∗ = 2 trivially; that is N∗ = H.
If H = 3, 4, · · ·, then N∗ = H since ∆S2,H(N) > 0, for
N = 2, 3, · · · , H − 1. 2

4 Conclusions

This study considered the addition of relations to an or-
ganization structure such that the communication of in-
formation between every member in the organization be-
comes the most efficient. For each of two models of adding
edges between nodes of the same depth N to a complete
K-ary linking pin structure of height H where every pair
of siblings in a complete K-ary tree of height H is ad-
jacent, we obtained an optimal adding depth N∗ which
maximizes the total shortening path length.
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Theorem 1 and Theorem 2 on adding an edge between
two nodes with the same depth in Section 2 show that
the most efficient manner of adding a single relation be-
tween two members in the same level such as a personal
communication is to add the relation between two mem-
bers which doesn’t have common superiors except the top
at the second level, irrespective of the number of subordi-
nates and the number of levels in the organization struc-
ture. Theorem 3 on adding edges between every pair of
nodes with the same depth in Section 3 shows that the
most efficient way to add relations between every pair of
all members at the same level such as section chief train-
ing is to use the lowest level, irrespective of the number of
subordinates. These two results reveal optimal sets of ad-
ditional relations to a linking pin type organization which
is a complete K-ary linking pin structure such that the
communication of information between every member in
the organization becomes the most efficient.
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