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Abstract

In this communication, based upon the deterministic
Gompertz law of cell growth, a stochastic model in
tumour growth is proposed. This model takes ac-
count of both cell �ssion and mortality too. The
corresponding density function of the size of the tu-
mour cells obeys a functional Fokker-Planck equation
which can be solved analytically. It is found that the
density function exhibits an interesting "multi-peak"
structure generated by cell �ssion as time evolves.
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1. Introduction

Since cancer is a major death cause in our soci-
ety, mathematical modelling of tumour growth has
become a fast-growing area of research. Most stud-
ies stem out of mechanistic population growth mod-
els which consist of one or more di�erential equa-
tions, and such models have proved to be appropri-
ate to predict the evolution of numerous biological
phenomena.[1] However, it should be stressed that
quite often discrepancies exist between clinical data
and theoretical predictions, due to more or less in-
tense environmental �uctuations. To take into ac-
count such environmental �uctuations, the tumour
growth process could be described by a stochastic
process.[2] Recently the one-dimensional archetype
functional Fokker-Planck equation (FPE) of the form
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was used by Basse et al. to model the cell growth in
plankton and human tumours under the assumption
that the cells are assumed to be undergoing growth,
�ssion and mortality at given rates.[3,4] The func-
tional FPE is a modi�cation of the conventional FPE
when the “action at a distance” e�ect (i.e. cell �ssion
in this case) is present. Accordingly, � (�� �) denotes
the density function of cells of size � > 0 at time
� > 0, � (�� �) is the dispersion coe�cient, � (�� �) is
the rate of growth, � (�� �) is the rate of death, and

 (�� �) is the rate at which cells divide into 	 equally
sized daughter cells. Here 	 � 1 is regarded as a con-
stant, and the functions � (�� �), � (�� �), � (�� �) and

 (�� �) are all non-negative. The partial di�erential
equation in Eq.(1) is supplemented by the boundary
conditions:
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These conditions ensure the decay conditions on
� (�� �) as � � � for any time � > 0, and that cells
may never have negative size – a “no �ux” condition
on the boundary � = 0.
Beyond question, the “action at a distance” ef-

fect would make the functional FPE much more
challenging to treat (both analytically and numeri-
cally). The special case of constant � 6= 0, � and

 with � = 0 was studied by Wake et al.[5] and
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Kim[6], who examined the steady size distributions
for the number density function. In this commu-
nication we examine a particular class of the func-
tional FPE characterized by the following speci�ca-
tion of the variable coe�cients: �(�� �) = �0 (�)�

2,
� (�� �) = [�0 (�)� �1 (�) ln�]�, 
(�� �) = 
0 (�) and
� (�� �) = �0 (�), and derive the exact analytical so-
lution, which provides us a complete picture of the
time evolution of the number density function. This
special case is based upon the well-known determin-
istic Gompertz law of cell growth, which models the
cell growth by the equation:

��

��
= �1���2� ln� for �2 � 0 � (3)

and appears to be particularly consistent with the
evidence of tumour growth[7-9]. The inclusion of
these variable coe�cients would escalate the complex-
ity of the problem dramatically, and thus the system
are expected to exhibit more interesting properties.
Furthermore, the knowledge of the exact solution in
closed form not only provides a conceptual basis for
understanding the physics behind the FPE but it can
also be useful as a benchmark to test approximate
numerical or analytical procedures.

2. Stochastic Gompertz Model

By a change of variables � = exp (�) we could
rewrite the functional FPE in Eq.(1) as follows:
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for �� � � � �. Then, we de�ne � (�� �) =
exp
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Making use of the identities:
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the solution of Eq.(4) is found to be
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It is straightforward to show that the prescribed
boundary conditions in Eq.(2) are satis�ed by this
solution.

3. Numerical Results

In Figure 1 and Figure 2 we plot the density func-
tion � (�� �) versus � for di�erent time �, provided
� (�� 0) = � (�). In Figure 1 the input model para-
meters are selected as follows: 	 = 2, �0 (�) = 0
01,

0 (�) = 0
1, �0 (�) = 1, �0 (�) = 0
5 and �1 (�) = 0.
It is observed that the density function � (�� �) has a
number of peaks of di�erent heights. As time evolves,
these peaks diminish in height and spread to both
sides rather rapidly. In Figure 2 we suppress the
growth of cells and set �0 (�) equal to zero as well,
while other parameters remain unchanged. This �g-
ure also exhibits a similar multi-peaked density func-
tion � (�� �), but with taller peaks and biased spread-
ing to the left. Moreover, taking a closer look at
the solution, it is not di�cult to see that if the cells
can live forever, i.e. �0 (�) = 0, the density function
� (�� �) in these �gures will experience an overall in-
crease in magnitude. Hence, it can be concluded that
the cell �ssion creates the “multi-peak” structure of
the density function and the mortality rate a�ects its
magnitude. Both the dispersion coe�cient and the
growth rate are responsible for the �ne tuning of the
structure only.
Figure 3 and Figure 4 show the results when the

mean-reverting process speci�ed by �1 (�) is turned
on. It is obvious that Figure 2 and Figure 3 show
great resemblance in shape and that the spreading of
the density function � (�� �) in Figure 3 is severely
clamped by the mean-reverting force. In both �gures
the density function � (�� �) has the main peak lo-
cated at the origin, i.e. � = 0. When we compare
Figure 1 and Figure 4, we observe the same resem-
blance in the shape of the density function � (�� �)
and similar discrepancies in the spreading. In both of

these two �gures the main peak of the density func-
tion � (�� �) stays around � = 0
5.

3. Conclusion

Based upon the deterministic Gompertz law of cell
growth, we have proposed a stochastic model in tu-
mour cell growth, which also takes account of both
cell �ssion and mortality. The corresponding den-
sity function � (�� �) of the size of the tumour cells
obeys a functional Fokker-Planck equation which can
be solved analytically. It is found that the density
function exhibits an interesting “multi-peak” struc-
ture generated by cell �ssion as time evolves.
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Figure 1 :   P(z,t) versus z for t=1, 1.5 and 2. The input model 
parameters are: �=2, D0(t)=0.01, B0(t)=0.1, μ0(t)=1, g0(t)=0.5 and g1(t)=0
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Figure 2 :   P(z,t) versus z for t=1, 1.5 and 2. The input model 
parameters are: �=2, D0(t)=0.01, B0(t)=0.1, μ0(t)=1, g0(t)=0 and g1(t)=0

z
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– · – · t = 1.0
– – – t = 1.5
—— t = 2.0
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Figure 3 :   P(z,t) versus z for t=1, 1.5 and 2. The input model 
parameters are: �=2, D0(t)=0.01, B0(t)=0.1, μ0(t)=1, g0(t)=0 and g1(t)=0.5
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– · – · t = 1.0
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Figure 4 :   P(z,t) versus z for t=1, 1.5 and 2. The input model 
parameters are: �=2, D0(t)=0.01, B0(t)=0.1, μ0(t)=1, g0(t)=0.5 and 
g1(t)=0.5
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