
 
 

 

  
Abstract—Multistage stochastic programs are effective for 

solving long-term planning problems under uncertainty. Such 
programs are usually based on scenario generation model about 
future environment developments. In the present paper, the 
scenario model is developed for the case when enough data paths 
can be generated, but due to solvability of stochastic program the 
scenario tree has to be constructed. The proposed strategy is to 
generate multistage scenario tree from the set of individual 
scenarios by bundling scenarios based on cluster analysis. The 
K-means clustering approach is modified to capture the interstage 
dependencies. Such generation of scenario tree can be useful in 
cases when it is difficult to construct the adequate scenario tree 
from the stochastic differential equations or time-series models, 
and the sampled paths can be obtained by sampling or resampling 
techniques. While generating the initial fan of individual 
scenarios, the copula is employed for modeling the dependence 
between stochastic variables in a multivariate structure. This 
allows to model nonlinear dependencies between non-elliptically 
distributed stochastic variables. While investigating the copula 
effect on the scenario tree structure, we will try to answer the 
question: does the copula features are captured in the 
approximate representation of uncertainty in the form of scenario 
tree. The proposed scenario tree generation method is 
implemented on sampled data of discount bond yields. The 
Gaussian copula and Student’s t-copula are employed while 
generating the set of individual scenarios in the multivariate 
structure. 
 

Index Terms—Copula, K-means clustering, Multistage scenario 
tree construction, Stochastic programming. 
 

I. INTRODUCTION 
The concept of scenarios is usually employed for the 

modeling of randomness in stochastic programming models 
[1], [2], in which data evolve over time and decisions have to be 
made independent upon knowing the actual paths that will 
occur. Such data are usually subject to uncertainty or some kind 
of risk. For instance, the random variables are the return values 
of each asset on an investment in portfolio management 
problems, and the investment decisions must be implemented 
before the asset performance can be observed. Each scenario 
can be viewed as one realization of an underlying multivariate 
stochastic data process. The modeling of randomness 
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employees the set of available past data with the aim of building 
submodels for each individual stochastic parameter. These 
submodels are used to generate a set of scenarios that 
encapsulate the consistent depictions of pathways to possible 
futures based on assumptions about economic and 
technological developments. Thus, the factors driving risky 
events are approximated by a discrete set of scenarios, or 
sequence of events. This process is known as scenario 
generation. Scenarios can be generated using various methods, 
based on different principles: conditional sampling, sampling 
from given marginals and correlations, moment matching, path 
based methods, optimal discretization, as in [3]–[7]. 

A good approximation may involve a very large number of 
scenarios with probabilities. A better accuracy of uncertainties 
is described when scenarios are constructed via a simulated 
data path structure, also known as a scenario fan. But the 
number of scenarios is limited by the available computing 
power, together with a complexity of the decision model. To 
deal with this difficulty, we can reduce the dimension of the 
initial scenario set by constructing the multistage scenario tree 
out of it. The decision on the number of stages, time periods 
and the branching scheme is very important for a good 
representation of the uncertainty in the form of scenario tree, 
which is input in the multistage stochastic program. The 
detailed description of both scenario fan and scenario tree will 
be given in Section II. 

In the present paper, we concentrate on the generation of 
scenario trees when the underlying stochastic parameters have 
been determined and the data paths of their realizations can be 
generated. The scenario tree can be constructed out of sampled 
paths by employing some classifying method, such as 
clustering analysis. While bundling the scenarios to the 
clusters, the interstage dependencies have to be captured. An 
approach similar to our work is introduced in the article [8], but 
without a detailed clustering algorithm. Due to this, the 
K-means clustering method is modified to treat properly the 
interstage dependencies and is implemented while constructing 
the scenario tree from simulated data paths. 

Such generation of scenario tree can be useful in cases when 
it is difficult to construct the adequate scenario tree from the 
stochastic differential equations or time-series models, and the 
sampled paths can be obtained by sampling or resampling 
techniques. The proposed scenario tree construction algorithm 
allows incorporating a copula-based dependence measure [9], 
[10] to describe the dependence between stochastic variables in 
a multivariate structure. Due to assumptions of using the 
Pearson’s correlation coefficient, the usefulness of such 
correlations is restricted. The main advantage of employing 
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copulas is that they allow to model the nonlinear dependencies 
between non-elliptically distributed stochastic variables. To 
our knowledge, the copulas still are not very popular in 
generating the scenario trees. According to this, we propose to 
approximate the multivariate stochastic process by a scenario 
fan with multivariate structure using copulas. Then, the 
scenario tree is constructed out from the sampled paths using 
the modified K-means clustering algorithm. Numerical 
experience is reported for constructing multivariate scenario 
trees of discount bond yields, employing two separate – 
Gaussian and Student’s t – copulas. 

The rest of the paper is organized as follows. The scenario 
generation model is introduced in Section II. The copula is 
incorporated while generating the scenario fan. Section III 
describes how the data paths can be transformed to scenario 
tree using the cluster analysis. The K-means clustering 
algorithm is modified to bundle the time-dependent data. 
Section IV demonstrates the numerical example of scenario 
tree generation based on discount bond yields data. Finally, 
some concluding remarks are given. 

II. COPULA’S PLACE IN SCENARIO GENERATION 
In general, the scenario generation consists of following 

steps [11]:  
1) Choosing the appropriate model to describe the stochastic 

parameters. For instance, Econometric models and Time 
Series (Autoregressive models, Moving Average models, 
Vector Auto Regressive models), Diffusion Processes 
(Wiener Processes). 

2) Calibration of model parameters using historical data. 
3) Generation of data paths from the chosen model. Using 

statistical approximation (Property Matching, Non 
parametric methods) or sampling (Random sampling, 
Bootstrapping), the data paths can be generated 
performing the discretization of the distribution. 

4) Constructing the scenario tree with the desired properties. 
The aim of scenario generation is to create a tree structure 

out of scenarios, which is input in stochastic model. In this 
Section we will consider the 1)–3) steps of scenario generation. 

In multistage stochastic programs the underlying 
multivariate stochastic data process has to be discrete in time, 
i.e. { }T,,0 K=T . The points in time T∈t  are called as stage 

index. The process { }T
tt 0== ξξ  is defined on some probability 

space ( )PF,,Ω  with tξ  taking values in some dR . For 
instance, these data may correspond to the observed return of 
d  financial assets at different time moments t . In the 
stochastic programming model the observations and decisions 
are given as a sequence ( ) ( ) ( )TT xxxx ,,,,,,, 121100 −ξξξ K , where 

{ }T
ttxx 0==  is a decision process, measurable function of ξ . 

The constraints on a decision at each stage involve past 
observations and decisions. It means that decision tx  at t  is 
measurable with respect to FF ⊆−1t . Following [8], the 
decision process is said to be nonanticipative. It means that the 
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Fig. 1. Dependence structures 

decision ( )11, −−= tttt xxx ξ  taken at any 1>t  does not depend 
on future realizations of stochastic parameters or on future 
decisions. 

The d-dimensional probability distribution function of 

( )′= d
ttt ξξξ ,,1 K  at point ( )′= dyyy ,,1 K  is denoted by ( )yf , 

the d-dimensional cumulative distribution function is denoted 
by ( )yF . The joint distribution F  provides a complete 
information concerning the behavior of tξ . The marginal 
probability distribution function and cumulative distribution 
function of each element i

tξ  at point iy , di ,,1K=  is denoted 
by ( )ii yf  and ( )ii yF , respectively. The primary aim of 
scenario generation is to represent the distribution f  in a 
reasonable way. In stochastic programming the underlying 
probability distribution f  is replaced by a discrete distribution 

P  carried by a finite number of atoms ( )s
T

sss ξξξξ ,,, 10 K= , 

( )′= ds
t

s
t

s
t

,1, ,, ξξξ K , Ss ,,1K=  with probabilities 

( )s
s Pp ξ= , 0≥sp  and 1

1
=∑ =

S

s sp . The atoms sξ , 

Ss ,,1K=  of the distribution P  are called as scenarios. 
Naturally, the historical data in conjunction with an assumed 
background model are used to generate the scenarios, applying 
suitable estimation, simulation and sampling procedures. 

In this paper we concentrate on generation of scenarios 
representing the realizations of multivariate stochastic process 
whose components are correlated. We define such scenarios as 
intercorrelated scenarios, meaning that they correlate through 
the components of multivariate structure. Usually the modeling 
of dependent variables is performed employing the Pearson’s 
correlation matrix to describe the multivariate structure. Many 
applications show that relationships among stochastic variables 
may be very complex, and linear dependence can’t reflect these 
relationships adequately. The reason is that the Pearson’s 
correlation coefficient does not capture any non-linear 
dependencies, and it is used in application assuming the 
elliptical shape of normal distribution. We include Fig. 1 as 
motivation for the ideas of this paper. It shows 1000 bivariate 
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realizations in three different cases of ( )YX , . In all pictures, 
variables X  and Y  have standard normal marginal 
distributions: case (a) and case (b) depict bivariate structure of 
X  and Y  with linear correlation coefficient 7.0=ρ ; case (c) 

displays the circular plot whereas there are no associations 
between random variables. However, in case (a) and in case (b) 
the dependence structure between X  and Y  is qualitatively 
quite different. It relates that in case (b) extreme values have a 
tendency to occur together. This example shows that the 
dependence between random variables cannot be distinguished 
on the grounds of correlation alone. 

Due to the restrictions of using Pearson’s correlation 
coefficient, we choose to consider the dependence relations of a 
monotonic nature: it indicates the tendency of two random 
variables to increase/decrease concomitantly (positive 
dependence) or contrariwise (negative dependence). If one 
believes that the dependence relationships among a pair of 
variables (or their suitable transformation) fulfill the definition 
of monotone dependence, then the modeling of dependence 
with Spearman’s rank or Kendall’s tau correlations is a 
reasonable way. During the discretization process of 
d-dimensional distribution function F , one can strengthen the 
dependence in different parts of distribution through the choice 
of copula. Let’s define the copula itself. 

Let F  be the d-dimensional distribution function with 
margins dFFF ,,, 21 K . The d-dimensional copula is a 

d-dimensional distribution function restricted to [ ]d1,0  with 
uniform ( )1,0  marginals. For a given copula C  and marginals 

dFFF ,,, 21 K , the d-dimensional distribution function F  can 
be written in such way: 

 
( ) ( ) ( )( ).,,,, 111 ddd yFyFCyyF KK =  (1) 
 
It means that C  couples the marginals dFFF ,,, 21 K  to the 

joint distribution function F . Conversely, for a given joint 
distribution function F  with margins dFFF ,,, 21 K  there is 
always a copula C  satisfying (1). It follows that 

 
( ) ( ) ( )( )ddd uFuFFuuC 1

1
1

11 ,,,, −−= KK , [ ]1,0∈iu . 
 
Copulas are thus multivariate uniform distributions which 

describe the dependence structure of random variables. From a 
practical point of view, the copula-based approach allows to 
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Fig. 2. Scenario fan 

select the appropriate marginal distributions for the 
components of a multivariate system freely, and then link 
through a suitable copula. That is, the dependence structure 
between stochastic variables can be modeled independently of 
marginal distributions. The estimation of copula from historical 
data can be found in article [10]. In Section IV the simulation 
algorithm for Gaussian and Student’s t-copulas is given. 

While approximating the multivariate stochastic distribution 
F  employing copulas, the set of d-dimensional intercorrelated 

scenarios ( )s
T

sss ξξξξ ,,, 10 K= , ( )′= ds
t

s
t

s
t

,1, ,, ξξξ K , Ss ,,1K=  
is generated. Assuming that all scenarios coincide at 0=t , i.e. 

S
0

1
0 ξξ ==K , the initial root node is formed, and thus the 

simulated data paths are called as a scenario fan (Fig. 2). The 
structure of simulated data paths can be divided into two stages. 
The first stage is usually represented by a single root node, and 
the values of random parameters during the first stage are 
known with certainty. Moving to the second stage, the structure 
branches into individual scenarios at time 1=t , as shown in the 
Fig. 2. If such scenario fan is used as input in multistage 
stochastic program, the model is of 2-stage problem, as all 
σ -fields tF , Tt ,,1K=  coincide. The 2-stage multiperiod 
stochastic program has the following properties, as in [8]: 
1) Decisions at all time instances Tt ,,1,0 K=  are made at 

once and no further information is expected. 
2) Except for the first stage no nonanticipativity constraints 

appear. 
Depending on the considered problem, such properties can 

be regarded as disadvantages. Our aim is to create a multistage 
scenario tree which can be used for multistage models. 
Multistage formulation is characterized by its robustness, 
stability of solutions: similar subscenarios result in similar 
decisions. The multistage tree reflects the interstage 
dependency and decreases the number of nodes while 
comparing to the scenario fan. The structure of multistage tree 
at 0=t  is also described by a sole root node and by branching 
into a finite number of scenarios as it was in previous case. The 
nodes further down represent the events of the world which are 
conditional at second stage. The arcs linking nodes represent 
various realizations of random variables. This branching 
continues for Tt < , resulting the multistage tree (Fig. 3). 

The distinction between stages, which correspond to the 
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Fig. 3. Multistage scenario tree 
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decision moments, and time periods is essential, because in 
practical application it is important that the number of time 
periods would be greater than the corresponding nodes. 

The algorithm of transforming the scenario fan to multistage 
scenario tree is described in the next section. 

III. K-MEANS CLUSTERING: PATH TO TREE 
While constructing the multistage scenario tree from the 

scenario fan, the fan of individual scenarios is modified by 
bundling scenarios based on the cluster analysis. It is assumed 
that a set of individual scenarios for the entire time horizon is 
already generated. The idea of bundling the scenarios to the 
clusters is depicted in the Fig. 4. The scenario fan of 11 
scenarios is schematically illustrated. At time 0=t  all these 
scenarios (which are the same) form the root of the tree. Next, 
two clusters are formed by the first iteration of some clustering 
algorithm. It results that we have six and five scenarios in each 
cluster. The centers of each cluster are computed, which 
represent the one-level nodes at time 1=t . Two black points 
denote the nodes corresponding to the conditional decisions. 
The formed clusters are then divided into subclusters in the 
next time period 2=t . We have four, two, three and two paths 
in each cluster, representing two-level nodes, since the centers 
are calculated. These nodes are denoted by four black points in 
the scenario tree. Such strategy of bundling scenarios to the 
clusters continues till the end of time horizon is reached. 
Joining the black points by line, the scenario tree structure is 
obtained. 

The discussed technique allows to produce the tree with such 
characteristics: 
1) The projection of random variable nearer the time horizon 

is less critical than those for the near future, because 
number of scenarios S  grows smaller down the tree and 
the centers that represent the scenario cluster are calculated 
from a smaller sample size. 

2) It allows to model extreme events because at every stage 
the simulated scenarios in all of the clusters are not 
discarded, and at the next stage all simulated scenarios in 
all of the clusters are used to calculate the centre of cluster. 

In the first step of clustering scenarios we need to delineate 
the initial structure of scenario tree: the number of stages and 
the branching scheme. Some criteria for bundling the scenarios 
is chosen. The scenario fan usually consists of large number of  
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Fig. 4. Illustration of 3-stage tree construction 

scenarios, that’s why the hierarchical methods can fail. We 
don’t also require the method that in finding the clusters would 
be optimal by some measures. In the literature, the cluster 
methods usually are used for stable data. We should make some 
modifications in order to cluster the time dependent data. Let 
assume that K  branches are desired from each scenario tree 
node. It means that K  clusters will need to be formed. After 
such consideration, the K-means clustering algorithm [12] is 
chosen to construct the scenario tree from the set of simulated 
paths. Clustering consists in partitioning of a data set into 
subsets, so that the data in each cluster share the common 
attribute. This similarity is often defined by some distance 
measure. After a discussion of the kind of requirements we are 
using, we describe the modified K-means clustering algorithm. 

Given a fan of individual scenarios ( ),,,, 10
s

T
sss ξξξξ K=  

Ss ,,1K=  and the number K  of desired clusters KCC ~,,~1 K , 

it is needed to find the cluster centers kξ , Kk ,,1K=  such 
that the sum of the 2-norm distance squared between each 
scenario sξ  and its nearest cluster center kξ  is minimized:  

 

.min
1 ~

2

2
→−∑ ∑

= ∈

K

k C

ks

ksξ

ξξ  

 
The modified K-means clustering algorithm is given as 

follows. At the beginning, the decision moments are set, 
corresponding to the stage index ( )T,t ,1K∈ . Then iterate: 

Step 1:  Setting initial centers. Let kξ , Kk ,,1K=  be the 
cluster centers, which might be chosen to be the first K  
scenarios, since the scenarios are independently generated. 

Step 2:  Cluster assignment. For each scenario sξ , assign sξ  

to the cluster kC~ , such that center kξ  is nearest to sξ  in the 
2-norm, which is modified to exploit the whole sequence of 
simulated data path: 

 
( ) .,

20∑ =
−=

T

i
k

i
s
i

ksd ξξξξ  

 
Step 3:  Cluster update. Compute kξ  as the mean of all 

scenarios assigned to the cluster kC~ : 
 

{ } ks C
sk ~

∈= ξξξ E . 
 
This formula can be replaced by other estimate, such as 
median, mode or else. 

Step 4:  Repeat. Go to Step 2 until convergence, i.e. no scenario 
move group. 

Step 5:  Calculation of probabilities. Probability of kξ  is 

equal the sum of probabilities of the individual scenarios sξ , 

belonging to the relevant cluster kC~ . 
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Step 6:  Modification. Modify ( )s
T

sss ξξξξ ,,, 10 K=  by 

replacing s
tξ  with kξ  if ks

t C~∈ξ . 
Step 7:  Repeat. Go to Step 1 if next stage index exists. The 

clustering procedure starts over using each of clusters 
formed in current iteration. 

This produces a separation of scenarios into groups. The given 
algorithm lets to treat properly the interstage dependencies, 
exploiting the whole sequence of simulated scenario path. At 
the end, the scenario tree is constructed, consisting of nodes 

kξ  with their probabilities and the branching scheme. 

IV. COMPUTATIONAL EXPERIMENT 
The scenario tree generation approach is applied to construct 

scenario trees out of sampled scenarios provided by Hibbert, 
Mowbray and Turnbull (HMT) stochastic asset model [13]. We 
use this model to generate the data, which consist of a finite 
number of scenarios, representing realizations of discount 
(zero-coupon) bond yields. 

In HMT model presented here, the underlying movements in 
inflation and real interest rates generate the process for nominal 
interest rates. The model produces the term structure that has 
closed-form solutions for bond prices so that the entire term 
structure for any future projection date can be quickly 
generated. A cascading structure is a characteristic of scenario 
generator: real interest and inflation rates are simulated, which 
then, depending on the relationship structure assumed, 
influence the realization of discount bond yields (Fig. 5). More 
details about the HMT model can be found in work [13]. In 
scenario generator the financial variables have to be projected 
in such way as to reflect the appropriate interdependencies 
between them. It is reasonable to consider the case when 
interest rates and inflation rates move together. 
Interdependencies between these variables are identified 
through the copula-based dependency measure, discussed in 
Section II.  

In the present paper, two different dependence structures – 
Gaussian copula and Student’s t-copula – are employed to 
model dependencies between real interest rate and inflation 
rate. The Gaussian copula is given by 

 
( ) ( )( )d

d
Cor

Ga
Cor uuuC 1

1
1 ,,)(~ −− ΦΦΦ= K , 

 
where d

CorΦ  denotes the joint distribution function of the 
d -variate standard normal distribution function with matrix 
 

 
Real interest rate Inflation rate

Yield on nominal discount bonds 

Term structure of real 
interest rate 

Inflation expectations of 
investors 

  correlated 

 
Fig. 5. A cascade structure of HMT model 

Cor  of linear correlation coefficient, ( )u1−Φ  denotes the 
inverse of univariate standard normal distribution function. The 
main property of such dependence structure is that Gaussian 
copula does not have neither upper nor lower tail dependence. 
The Student‘s t-copula allows for joint fat tails and increases 
the probability of joint extreme events, comparing it with the 
above-described Gaussian copula. Student’s t-copula can be 
written as 
 

( ) ( )( )dvv
d

vCor
t

vCor ututtuC 1
1

1
,, ,,)(~ −−= K , 

 

where vCor,  are the parameters of t-copula, d
vCort ,  denotes the 

joint distribution function of the d -variate Student’s 
t-distribution with v  degrees of freedom, 1−

vt  is the inverse of 
univariate Student’s t-distribution with v  degrees of freedom. 
Student’s t-copula has the additional parameter v  comparing 
with Gaussian copula. Increasing the value of v  decreases the 
tendency to discover extreme co-movements. 

At this moment, let assume that a matrix [ ]ττ

ijcorCor = , 

11 ≤≤− τ
ijcor , dji ,1, =  of Kendall’s tau correlations has 

already been assessed, which denotes rank-order correlations 
between two random variables. In HMT model, Kendall’s tau 
correlation coefficient is set equal to 0.25 between short-term 
real interest rate and short-term inflation rate, equal to 0.25 
between long-term real interest rate and long-term inflation 
rate. While simulating the dependent variables in HMT model, 
the copula function is employed when 4=d : there are two 
stochastic variables that are described by two-factor model. 
Simulation procedure for Gaussian copula and Student’s 
t-copula is performed as follows: (a) convert Kendall’s tau 

τ
ijcor  to linear correlation coefficient ijcor using formula 

( )2/sin τπ ijij corcor =  and construct the lower triangular matrix 

[ ]ija=Α  that holds AACor ′= , (b) generate independent 

standard normal variables iε , di ,1=  and form a column 

vector ε , (c) generate a random variate 2~ vχξ , (d) construct 
joint probability density function, taking matrix product 

εε A=~ , (e) calculate ξεε ~~~ v= , (f) set ( )iiu ε~~ Φ=  and 

( )ivi tu ε
~~~~ = , (g) set ( )ii ux ~~ 1−Φ=  and ( )ii ux

~~~~ 1−Φ= . At the result, 

ix~  are correlated variables based on Gaussian copula, and ix
~~  

are correlated variables based on Student’s t-copula. 
HMT model is used to simulate 1, 3, 5, 7, 10 year coupon 

bond yields over a horizon of 20 years with time increments of 
one month. The initial parameters are set with the reference to 
the Hibbert’s et al. work. The conditions about the environment 
are assumed as follows: inflation level is 2.5%, long-term 
inflation level is 2.83%, current 3-month T-bill norm is 5% and 
current 10-year T-bond yield 5.58%. The lower bounds on the 
levels of inflation and real interest rates are placed to ensure 
that negative rates don’t appear. At the output of this scenario  
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Table I: Dimension of scenario fan  

 Nodes Time periods Scenarios 
Scenario fan of 
discount bond yields 240000 240 1000 
 
Table II: Dimension of scenario trees 

 K=2 K=3 
 Nodes Scenarios Nodes Scenarios 

3-stage tree 7 4 13 9 
5-stage tree 31 16 121 81 

generator the data consisted of a finite number of scenarios 
( 1000=S ), representing the realizations of discount bond 
yields. The dimension of the scenario fan is given in Table I. 
Such scenario fan is aimed to transform to the scenario trees 
with different number of stages and with different branching 
factor, employing the clustering algorithm discussed in 
Section III. The number of stages depends on the number of 
decision moments. The branching scheme of scenario tree 
depends on the number of clusters. For instance, we choose the 
number of scenarios equal to 2=K  and 3=K  which is 
generated per scenario tree node. Two types of scenario trees 
are generated for the analysis: 3-stage scenario tree with 
decisions at 20,10=t  and 5-stage scenario tree with decisions 
at 20,15,10,5=t . Table II shows the dimension of scenario 
trees for the cases 2=K  and 3=K . Table I and Table II 
show that the dimension of scenario fan is notably reduced 
while transforming the scenario fan to scenario tree.  

In the analysis, we aim to investigate how dependence 
structure affects the values of target variables and the structure 
of scenario tree. For instance, we consider 1-year and 10-year 
coupon bond yields. Some of statistical characteristics, the 
mean value and the dispersion, of discount bond returns are 
calculated for the evaluation of generated scenario trees. 
Table III – Table VI provide the obtained numerical results. 

Table VII – Table VIII display the mean value and the 
dispersion calculated from the scenario fan at defined time 
moments. It turns out that for a larger branching factor K , the 
data of discount bond returns become more diverse, but the 
mean value remains the same. It holds for both Gaussian copula 
and Student’s t-copula based dependence structures. The more 
stage number is set, the bigger dispersion is obtained. 

Table III: Characteristics of scenario trees when 2=K   

Decision moments, in Years Gaussian  
Dependence t=5 t=10 t=15 t=20 

Mean – 7.380 – 8.880
2-stage tree 

Dispersion – 0.041 – 0.078
Mean 6.116 7.380 8.313 8.880

1Y
 c

ou
po

n 
 

bo
nd

 re
tu

rn
, %

 

5-stage tree 
Dispersion 0.007 0.050 0.096 0.104

Mean – 7.892 – 8.999
2-stage tree 

Dispersion – 0.036 – 0.057
Mean 6.877 7.892 8.601 8.999

10
Y

 c
ou

po
n 

bo
nd

 re
tu

rn
, %

 

5-stage tree 
Dispersion 0.008 0.045 0.074 0.078

Table IV: Characteristics of scenario trees when 3=K  

Decision moments, in Years Gaussian  
dependence t=5 t=10 t=15 t=20 

Mean – 7.380 – 8.880 
2-stage tree

Dispersion – 0.047 – 0.094 
Mean 6.116 7.380 8.313 8.880 

1Y
 c

ou
po

n 
bo

nd
 

re
tu

rn
, %

 

5-stage tree
Dispersion 0.008 0.065 0.103 0.117 

Mean – 7.892 – 8.999 
2-stage tree

Dispersion – 0.041 – 0.073 
Mean 6.877 7.892 8.601 8.999 

10
Y

 c
ou

po
n 

bo
nd

 
re

tu
rn

, %
 

5-stage tree
Dispersion 0.009 0.054 0.080 0.091 

 

Table V: Characteristics of scenario trees when 2=K  

Decision moments, in Years Student’s 
t-dependence t=5 t=10 t=15 t=20 

Mean – 7.178 – 8.695 
2-stage tree

Dispersion – 0.052 – 0.084 
Mean 6.184 7.178 8.063 8.655 

1Y
 c

ou
po

n 
   

bo
nd

 re
tu

rn
, %

 
5-stage tree

Dispersion 0.011 0.069 0.108 0.113 
Mean – 7.677 – 8.858 

2-stage tree
Dispersion – 0.040 – 0.059 

Mean 6.879 7.677 8.334 8.858 

10
Y

 c
ou

po
n 

bo
nd

re
tu

rn
, %

 

5-stage tree
Dispersion 0.011 0.048 0.081 0.080 

 

Table VI: Characteristics of scenario trees when 3=K  

Decision moments, in Years Student’s  
t-dependence t=5 t=10 t=15 t=20 

Mean – 7.178 – 8.695 
2-stage tree

Dispersion – 0.064 – 0.105 
Mean 6.184 7.178 8.063 8.655 

1Y
 c

ou
po

n 
   

bo
nd

 re
tu

rn
, %

 

5-stage tree
Dispersion 0.015 0.081 0.119 0.134 

Mean – 7.677 – 8.858 
2-stage tree

Dispersion – 0.049 – 0.074 
Mean 6.879 7.677 8.334 8.858 

10
Y

 c
ou

po
n 

bo
nd

 
re

tu
rn

, %
 

5-stage tree
Dispersion 0.015 0.061 0.087 0.095 

 

Table VII: Characteristics of scenario fan 

Decision moments, in Years Gaussian  
dependence t=5 t=10 t=15 t=20 

Mean 6.116 7.380 8.313 8.880 Scenario fan of 
1Y coupon  

bond return, % Dispersion 0.044 0.087 0.118 0.139 
Mean 6.878 7.892 8.601 8.999 Scenario fan of 

10Y coupon  
bond return, % Dispersion 0.042 0.072 0.093 0.109 
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Table VIII: Characteristics of scenario fan 

Decision moments, in Years Student’s  
t dependence t=5 t=10 t=15 t=20 

Mean 6.184 7.178 8.063 8.695 Scenario fan of 
1Y coupon  

bond return, % Dispersion 0.060 0.106 0.135 0.159 
Mean 6.879 7.678 8.334 8.858 Scenario fan of 

10Y coupon  
bond return, % Dispersion 0.051 0.081 0.101 0.115 

The initial fan of individual scenarios and the constructed 
scenario trees show that the data obtained under Student’s 
t-dependence are more diverse, showing the higher risk, and 
have smaller mean value than data obtained under Gaussian 
dependence.  

The scenario fan is illustrated using the “funnel of doubt” 
plot, resulting from uncertainty in the future values. In Fig. 6, 
the “funnel of doubts” graph displays the 1st, 5th, 25th, 50th, 75th, 
95th, 99th percentile values and the mean sample value (light 
dashed line). The spread around its median expands as the time 
increases, carrying a certain risk of uncertainty that increases 
with time, but tends to stabilize at the end of time horizon, 
which is the effect of mean reversion value. The assumption of 
avoiding negative values of nominal interest rate determines 
that the expected value of discount bond yields drifts up over 
time. VaR (Value-at-Risk) type conclusion is that in 

( )p−1100 % of the cases the yield is higher or equal to VaRp 
value (vertical axis), where 10 << p  is a percentile value. The 
spread of 10-year discount bond yields is less than the spread of 
1-year discount bond yields, because of the effect of mean 
reversion. More visual representations on sampled data paths 
can be found in the work [14]. Let’s analyze the scenario trees 
generated from scenario fan of discount bond yields 
(Fig. 7–Fig. 10). 

1Y Coupon bond yields 

 Years 

10Y Coupon bond yields 

Years
a) Gaussian dependence structure  

1Y Coupon bond yields 

 Years 

10Y Coupon bond yields 

Years
b) Student’s t-dependence structure 

Fig. 6. Scenario fan of 1Y and 10Y Coupon bond yields 
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Fig. 7. 3-stage scenario trees of 1Y Coupon bond yields with decisions at 
t={10,20} years 
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10Y Coupon bond yields when K=3
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Fig. 8. 3-stage scenario trees of 10Y Coupon bond yields with decisions at 
t={10,20} years 
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 1Y Coupon bond yields when K=3
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Fig. 9. 5-stage scenario trees of 1Y Coupon bond yields with decisions at 
t={5,10,15,20} years 
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10Y Coupon bond yields when K=2 
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10Y Coupon bond yields when K=2 

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

0 5 10 15 20  Years    

10Y Coupon bond yields when K=3

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

0 5 10 15 20

Years
b) Student’s t-dependence structure 

Fig. 10. 5-stage scenario trees of 10Y Coupon bond yields with decisions at 
t={5,10,15,20} years 

Scenario tree with a higher branching factor lets to model 
more extreme scenarios. Using of Student’s t-copula as 
dependence measure between real interest rate and inflation 
rate has effect to obtain more diverse values of discount bond 
yields comparing with the case when the Gaussian copula is 
used. 

V. CONCLUDING REMARKS 
In the present paper, we described the procedure based on 

both simulation and clustering to generate the scenario trees out 
of data paths. The computational experiment showed that the 
size of generated scenario trees is much smaller than the 
dimension of scenario fan, and nevertheless, they are good 
approximations with respect to the Euclidean distance used to 
measure the time-dependent data paths. Answering to our 
question, does the copula features are captured in the 
approximate representation of uncertainty in the form of 
scenario tree, we conclude that different dependence structures 
with the same correlation coefficient between stochastic 
variables affect the structure of multistage scenario tree. The 
graphic representation of scenario trees shows that scenario 
trees generated from dependent data based on Student’s 
t-copula are more chaotic than generated from dependent data 
employing Gaussian copula. The effect of using Student’s 
t-copula as dependence measure between real interest rate and 
inflation rate is to decrease value of discount bond yields. It 
results from the feature that using Gaussian copula the extreme 
events are independent, so we don’t get really extreme 
scenarios. In the future, the constructed scenario trees will be 
used as an input to the multistage stochastic program. 
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