
 
 

 

  
Abstract— This paper focuses on the derivation of implicit 2-point 
block method based on Backward Differentiation Formulae (BDF) of 
variable step size for solving first order stiff initial value problems 
(IVPs) for Ordinary Differential Equations (ODEs). In a 2-point Block 
Backward Differentiation Formula (BBDF), two solution values are 
produced simultaneously. Plots of their regions of absolute stability 
for the method are also presented. The efficiency of the 2-point BBDF 
is compared with variable step variable order non block BDF (NBDF) 
method. Numerical results indicate that the resulting 2-point BBDF 
method outperform the NBDF method in both execution time and 
accuracy. 
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I. INTRODUCTION 

 
Many fields of application, notably in science and 

engineering, yield initial value problems involving systems  of 
Ordinary Differential Equations (ODEs) and many of these 
problems are known as stiff ODEs.  There have been various 
definitions of stiffness given in the literature with respect to the 
linear systems of first order equations, 

         ( ),y Ay xφ′ = + %% %   ( )y a η= %% ,  a x b≤ ≤             (1.1) 

where ( )1 2, ,...,T
sy y y y=%   and  ( )1 2, ,....,T

sη η η η=%   
For simplicity, we choose the definition of stiffness given by 
Lambert [7], which is as follows. 
 
Definition: The linear systems (1.1) is said to be stiff if 

(i)     ( )Re 0,iλ <   1,...,i s=  and  

(ii)    ( ) ( )max   Re     min   Re  i i
ii

λ λ>>  where iλ  are  the 

eigenvalues of A, and the  ratio  
( )
( )

max Re

min Re

i
i

i
i

λ

λ
 is called the 

stiffness ratio or stiffness index. 
 

 
 

II. BLOCK METHOD FOR SOLVING ODES 

Among the earliest research on block methods was 
proposed by Shampine and Watts [10,13] with block implicit 
one-step methods, Chu and Hamilton [3] with multi-block 
methods, Voss and Abbas [12] with block predictor-corrector 
schemes.  Other block methods are discussed by several 
researchers such as Houwen and Sommeijer [5] with block 
Runge-Kutta methods, Omar [9] and Majid [8] with  block  
method based on Adams type formulas for solving nonstiff 
ODEs  

Motivated by the fact that there are very few work been 
done in solving stiff ODEs using block method, we develop a 
variable step size block methods based on Backward 
Differentiation Formulas which will be called BBDF. In a 
2-point BBDF, two solution i.e. 1ny +  and 2ny +  values are 
computed simultaneously. Hence, given the points 2 1,n ny y− −  
and ny  as backvalues, we derive a formula which defines the 
next block of approximations 1ny +  and 2ny +  simultaneously. 

III. FORMULATION OF 2-POINT BBDF METHOD 

 
In this section, we consider 2-point block methods for the 

numerical solution of ODEs  
        ( ),y f x y′ = ,   ( ) 0y a y= ,   a x b≤ ≤ .                     (3.1) 
 
The step size of the computed block is 2h and the step size of 
the previous block is  2rh  where  r is the step size ratio (Refer 
Figure 3.1). In this case, the values considered were r = 1, r = 2 
and r = 5/8 which corresponds respectively with constant step 
size, half the step size and increment of the step size by a factor 
of  1.6. We do not consider doubling the step size (r = 0.5) due 
to zero instability. 
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Figure 3.1: 2-point BBDF of variable step size 

 
Consider the polynomial ( )kP x  of  degree k which 
interpolates the values  1 1, ,...,n n n ky y y− − +  of a function f at 
the interpolating points 1 1, ,...,n n n kx x x− − +  in terms of 
Lagrange polynomial defined as follows: 

        ( ) ( ) ( ), 1
0

k
k k j n j

j
P x L x f x + −

=
= ∑                             (3.2) 

where 

             ( ) ( )
( )

1
,

0 1 1

k n i
k j

i n j n i
i j

x x
L x

x x
+ −

= + − + −
≠

−
= ∏

−
for each 0,1,..., .j k=  

Define 1nx xs
h

+−
=  and replace ( ),f x y  in (3.1) by 

polynomial  (3.2).  Differentiating the resulting polynomial 
once with respect to s at the point 1nx x +=  and evaluating 
at 0s =  gives the following  

( ) ( )1nP x P x +′ ′= = 1nhf + =
( )( )

2

2
1 2 3

4 1 2 n
r r y
r r +

+ +
+ +

     

( )( ) 1
2 3

1 1 2 n
r y

r r +
+

+
+ +

2

2
1 2 3

4 n
r r y
r

− − −
+

( )( ) 12
1 2

1 2 n
r y

r r r −
+

+
+ +

( ) 22 2
1

4 1 3 2
n

r y
r r r

−
− −

+
+ +

                                               (3.3) 

Similarly, differentiating the resulting polynomial once 
with respect to s at the point 2nx x +=  and substituting 

1s =  yields  

( ) ( )2nP x P x +′ ′= = 2nhf + =
( )( )

2

2
20 6 24
4 1 2 n

r r y
r r +

+ +
+ +

( )( )
2

1
8 4 12
1 1 2 n

r r y
r r +

+ +
−

+ +

2

2
4 2 6

4 n
r r y
r

+ +
+

( )( ) 12
4 4

1 2 n
r y

r r r −
− −

+
+ +

( ) 22 2
4 2

4 1 3 2
n

r y
r r r

−
+

+
+ +

                                             (3.4)     

 
On substituting ,1=r  2 , and r = 5/8 into (3.3) and (3.4) 
gives the coefficients for the first and second point of the 
BBDF method. These values of  r are considered to 
ensure zero stability and computational efficiency.  

(i) for 1r =       

        
2 1 1 2 1

2 1 1 2 2

1 3 9 3 6
10 5 5 10 5

3 16 36 48 12
25 25 25 25 25

n n n n n n

n n n n n n

y y y y y hf

y y y y y hf

− − + + +

− − + + +

− + − + + =

− + − + =
  

 
 

(ii)     for 2r =  

        
2 1 1 2 1

2 1 1 2 2

3 25 225 75 15
128 128 128 128 8
2 3 18 192 12

115 23 23 115 23

n n n n n n

n n n n n n

y y y y y hf

y y y y y hf

− − + + +

− − + + +

− + − + + =

− + − + =
    

   
(iii)   for 5/8r =  

        
2 1 1 2 1

2 1 1 2 2

208 6912 13689 351 117
775 5425 6200 1736 124

12544 53248 74529 2548 546
29875 29875 29875 1195 1195

n n n n n n

n n n n n n

y y y y y hf

y y y y y hf

− − + + +

− − + + +

− + − + + =

− + − + =
  

 
Note that the above formula is in the similar form of a standard 
BDF. This allows us to store the coefficients of the y values and 
thus avoiding calculating the differentiation coefficients at each 
step but robust enough to allow for step size variation.  

IV. STABILITY OF THE BBDF METHODS 
 

In this section, the stability properties of the proposed 
methods are analyzed to demonstrate their relevance in solving 
stiff problems. For the method to be of practical importance in 
solving stiff problems, it must posses at least almost  A-stable 
property. 

Definition: A numerical method is called A-stable if the whole 
of the left half plane, ( ){ }: Re 0z z ≤  is contained in the region 

( ){ }: 1z R z ≤  where ( )R z  is called the stability polynomial of 

the method. 

The linear stability properties of the methods are determined 
through application of the standard linear test problem  

 
                             ,y yλ′ =  0λ < , λ complex.                            (4.1) 
 

The boundary of the stability region is given by the set of points 
determined by it e θ= , 0 2θ π≤ ≤ . for which 1t < . Below we 
present the stability region R which corresponds to the 2- point 
BBDF method drawn in the hλ plane 
 

                                   
             r = 1                                               r = 2                                         
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                                   r = 5/8 
 
The stability region which corresponds to the 2-point BBDF 
method lies outside the close region. From the plot, the BBDF 
method when  r = 2 is A-stable, r = 1 and r = 5/8 is almost 
A-stable. Hence, the method derived is suitable for solving stiff 
ODEs 

V. IMPLEMENTATION OF 2-POINT BBDF METHOD 

In this section, the application of a Newton-type scheme 
for obtaining the calculation of 1ny + , 2ny +  to some stiff 
equations are described. The 2-point BBDF method can be 
written in general form as 

  1 1 2 1 1 1

2 2 1 2 2 2

n n n

n n n

y y hf
y y hf

θ α ψ
θ α ψ

+ + +

+ + +

= + + ⎫
⎬= + + ⎭

                              (5.1) 

with 1ψ  and 2ψ  are the backvalues.  

Equation (5.1) in matrix-vector form is equivalent to  

                  ( ) 1, 2 1, 2 1, 2n n n n n nI A Y hBF ξ+ + + + + +− = +   

with   
1 0
0 1

I
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 1
1, 2

2

n
n n

n

y
Y

y
+

+ +
+

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
, 1

2

0
0

A
θ

θ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 1

2

0
0

B
α

α
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,  

1
1, 2

2

n
n n

n

f
F

f
+

+ +
+

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 and 1

1, 2
2

n n
ψ

ξ
ψ+ +

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
. 

Let     

( )1, 2 1, 2 1, 2 1, 2
ˆ 0n n n n n n n nF I A Y hBF ξ+ + + + + + + += − − − =      (5.2) 

To approximate this solution, select ( )
1, 2

i
n nY + +  and generate 

( )1
1, 2

i
n nY +

+ +  by applying Newton’s Iteration to the system (5.2) to 

obtain 

( ) ( )

( ) ( ) ( ) ( ) ( )

1
1, 2 1, 2

1

1, 21, 2 1, 2 1, 2

i i
n n n n

i i i
n nn n n n n n

Y Y

FI A hB Y I A Y hBF Y
Y

ξ

+
+ + + +

−

+ ++ + + + + +

− =

⎡ ⎤∂ ⎛ ⎞ ⎛ ⎞
− − − − − −⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠⎣ ⎦

where ( )
1, 2 1, 2

i
n n n n

FJ Y
Y+ + + +

⎛ ⎞∂ ⎛ ⎞= ⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠
 is the Jacobian matrix of  

F  with respect to Y . 

 

Choosing the step size  

Step size adjustment for  2-Point BBDF is as been stated earlier. 
On any given step, the user will provide an error tolerance limit, 
TOL. In the BBDF code, the values of 1 2,n nx x+ +  and 

1 2,n ny y+ +  are accepted if the local truncation error, LTE is 
less than tolerance limit. The  LTE is obtained by taking 

           LTE = ( ) ( )1
2 2

p p
n ny y+

+ +−  

where ( )1
2

p
ny +

+  is the (p+1)th order method and ( )
2

p
ny +  is the pth 

order method. If the error estimate is greater than the accepted 
tolerance limit, the value of 1 2,n ny y+ +  are rejected, then the 
step is repeated with halving the current step size. In this case, 
the step ratio r is 2 . After a successful step, the step size 
increment is given by 

              

1
TOL
LTE

p
new oldh c h ⎛ ⎞= × ×⎜ ⎟

⎝ ⎠
    and     if           

1.6new oldh h> ×   then    1.6new oldh h= ×  
 
where c is the safety factor, p is the order of the method  and 

oldh  is the step size from previous block. In our case, c is 0.8. 
 

VI. RESULTS   

We tested the performance of the 2-point BBDF method on 
a set of stiff problems. The problems were solved with 
tolerances 2 410 ,10− −  and 610− . We will compare the 
numerical results obtained using 2-point BBDF method with 
the  variable step variable order BDF method which is referred 
as NBDF. See Suleiman [11] for the details of the algorithm. 
Below are four of the problems tested. 
 
Problem 1:  ( ) ( ) 1y x y xλ′ = − + , 0 10x≤ ≤ ,  ( )0 1y =   

               with solution ( ) xy x e xλ= + ,      
               Eigenvalues: 20, 30, 100λ = − − − , 
               Source: Gear, [4]. 
 

Problem 2: 1000 3000 2000 xy e−− + − , 0 20x≤ ≤ , ( )0 0y =   

               with solution 10003 0.998 2.002x xe e− −− − . 

 

Problem 3: 1 1 2

2 1 2

998 1998
999 1999

y y y
y y y
′ = +
′ = − −

,
( )
( )

1

2

0 1

0 0

y

y

=

=
, 0 20x≤ ≤   

             with solution 
( )
( )

1000
1

1000
2

2 x x

x x

y x e e

y x e e

− −

− −

= −

= − +
.          

                    Eigenvalues: 1 21, 1000λ λ= − = −  
                    Source: Gear, [4]. 

unstable

stable 

stable 
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Problem 4: 
( )

2
1 1 2

2 1 2 2

1002 1000
1

y y y
y y y y

′ = − +

′ = − +
, 

( )
( )

1

2

0 1

0 1

y

y

=

=
,  0 20x≤ ≤  

              with solution  ( ) ( )2
1 2,x xy x e y x e− −= =  

             Source: Kaps, [6]. 
 
The notations used in the tables take the following meaning: 

 STPS : the total number of steps 

TOL : the upper bound for the local error estimate

FA : the total number of rejected steps (due to 
convergence failure or local error control) 

IST : the total number of accepted steps 

MAXE : maximum error 

NBDF : implementation of nonblock variable step 
variable order BDF 

BBDF : implementation of variable step 2-point 
BBDF method 

TIME : the execution time in microseconds 
 
 

Table 6.1(a): Numerical result for Problem 1 for 30λ = −  
 

TOL MTD FA IST STPS MAXE TIME

210−  NBD
F 
BBDF 

7 
0 

32 
25 

39 
25 

4.7188e-02
1.2017e-04

16075
8287

410−  NBD
F 
BBDF 

11 
0 

53 
39 

64 
39 

9.0525e-04
2.0600e-06

25919
9275

610−  NBD
F 
BBDF 

16 
0 

89 
74 

105 
74 

1.3568e-05
2.5285e-08

28715
11655

 
 

Table 6.1(b): Numerical result for Problem 1 for 50λ = −  
 

TOL MTD FA IST STPS MAXE TIME

210−  NBD
F  
BBDF 

6 
0 

30 
26 

36 
26 

5.4862e-0
2 

2.3300e-0
4 

23214
8571 

410−  NBD
F 
 BDF 

10 
0 

53 
39 

63 
39 

6.1625e-0
4 

2.8412e-0
6 

25435
9311 

610−  NBD
F 
 BDF 

14 
0 

88 
75 

102 
75 

7.9504e-0
6 

1.9296e-0
8 

27589
11749

 
 

Table 6.1(c): Numerical result for Problem 1 for 100λ = −  
 

TOL MTD FA IST STPS MAXE TIME

210− NBD
F 
BBDF

6 
0 

30
26

36 
26 

2.4478e-02
1.7978e-04

23815
8561

410− NBD
F 
BBDF

11
0 

54
40

65 
40 

5.0758e-04
2.4197e-06

25834
9425

610− NBD
F  
BBDF

16
0 

88
76

104 
76 

5.0793e-06
2.4604e-08

28827
11863

 
 

Table 6.2: Numerical result for Problem 2 
 

TOL MTD FA IST STPS MAXE TIME

210− NBD
F 
BBDF

5 
0 

36
30

41 
30 

5.38298e-03
1.98645e-04

16643
9695

410− NBD
F 
BBDF

8 
0 

74
51

82 
51 

1.97582e-04
2.64614e-06

21167
11168

610− NBD
F 
BBDF

12
0 

130
109

142 
109 

5.42660e-06
1.00448e-06

25460
15459

 
 

Table 6.3: Numerical result for Problem 3 
 

TOL MTD FA IST STPS MAXE TIME

210− NBD
F  
BBDF

13
0 

58
31

71 
31 

3.5277e-01 
2.5644e-04 

17475
12567

410− NBD
F  
BBDF

18
0 

101
53

119 
53 

1.1269e-03 
2.5308e-06 

22692
16326

610− NBD
F 
 BDF 

22
0 

165
122

660 
122 

6.8001e-06 
2.9400e-08 

30318
24694

 
 

Table 6.4: Numerical result for Problem 4 
 

TOL MTD FA IST STPS MAXE TIME

210− NBD
F 
BBDF

8 
0 

48
27

56 
27 

1.3084e-01 
1.0739e-04 

23062
11547

410− NBD
F 
BBDF

17
0 

84
47

101 
47 

1.1900e-03 
5.4820e-06 

26540
14243

610− NBD
F 
BBDF

20
0 

123 
104 

143 
104 

6.5959e-06 
2.2494e-07 

30981
20902
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VII. CONCLUSION   
 

For all the problems tested, numerical results shows that the 
BBDF methods gives better accuracy with reduction of total 
steps and lesser computational time.  
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