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Abstract—The problem of active shielding of some
domains from the effect of the sources distributed in
other domains is considered. The problem can be
formulated either in a bounded domain or in an un-
bounded domain. The active shielding is realized via
the implementation of additional sources in such a
way that the total contribution of all sources leads
to the desirable effect. Mathematically the prob-
lem is reduced to seeking the source terms satisfying
some a priori described requirements to the solution
and belongs to the class of inverse source problems.
From the application standpoint, this problem can be
closely related to the active shielding of noise, active
vibration control and active scattering. It is impor-
tant to note that along with undesirable field (noise)
to be shielded the presence of a desirable component
is accepted in the analysis. The solution of the prob-
lem requires only the knowledge of the total field on
the perimeter of the shielded domain. The exam-
ples of acoustic and Maxwell equations are consid-
ered. This is the first publication where the solution
of the problem is proved in a quite general nonsta-
tionary formulation.

Keywords: inverse problem, active noise shielding, ac-

tive sound control, nonstationary problem, distribution

1 Introduction

The active shielding (AS) of some domains from the effect
of the field (noise) generated in other domains is realized
via the implementation of additional sources in such a
way that the total contribution of all sources leads to the
desirable effect. Mathematically the problem is reduced
to seeking the source terms satisfying some a priori de-
scribed requirements to the solution of an appropriate
boundary value problem (BVP). Thus, it belongs to the
class of inverse source problems [1]. From the applica-
tion standpoint, this problem can be closely related to
the active noise shielding and active vibration control.
The comprehensive reviews of the theoretical and exper-
imental methods related to these subjects can be found
in books [2], [3], [4] and review [5]. Most theoretical ap-
proaches assume some quite detailed information about
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the undesirable sources and the properties of the medium.
The JMC method [6], [7], [5], based on the Huygens’ cos-
ntruction, requires only the information on the undesir-
able field on the perimeter of the shielded domain. Yet
this method is not used in the case if a desirable field
(“friendly sound”), generated in the shielded domain, has
to be taken into account. In addition, the JMC method
was only used to tackle the problems formulated in un-
bounded domains.

A principally new solution can be reached via the ap-
plication of the Difference Potential Method (DPM) [8],
[9]. The solution obtained in a finite–difference formula-
tion requires only the knowledge of the total field (both
desirable and undesirable) at the grid boundary of the
shielded domain. Any other information on the sources
and medium is not required. It is possible to say that the
solution demands, in some sense, minimal information
which is a priori available. A comprehensive study of the
general solution [9] in the application to the Helmholtz
equation including its optimization can be found in [10],
[11], [12], [13]. In [16] the problem of AS in composite
domains is formulated for the first time and its general
finite–difference solution is provided. The DPM–based
solution was extended to arbitrary hyperbolic systems of
equations including acoustic Euler equations with con-
stant and variable coefficients in our paper [14]. In [15]
it is shown that the control sources are capable not to
disturb even the echo of the “friendly” sound component
if the AS problem is considered in bounded domains. For
the acoustic Euler equations in continuous spaces, the
AS solution was first obtained in our paper [17] for time–
harmonic waves under quite general assumptions. It is
shown the equivalence between the DPM–based discrete
solution and the obtained solution if the space step van-
ishes. In the current paper, for the first time the approach
[17] is extended to substantionally nonstationary prob-
lems (non time–harmonic waves). The solution is strictly
proved in the appropriate Sobolev spaces. The examples
of the acoustic and Maxwell equations are considered.

2 General formulation of the AS problem

The AS problem can be formulated as follows. Let us
assume that some field (sound) U is described by the
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following correct BVP in a domain D ⊆ Rm:

LU = f, (1)

U ∈ Ξ(D). (2)

Here, the operator L is a linear differential operator, Ξ(D)
is some functional space specified further. In particular,
the operator L can correspond to the acoustic Euler equa-
tions.

We assume that f ∈ F (D), where F (D) ⊂ Lloc
2 (D) is a

linear space of functions f for which the solution of BVP
(1), (2) exists and unique.

Consider some bounded domain D+: D+ ⊂ D. It is
worth noting that the domain D+ can be composite. It
is assumed that the domain D+ has a smooth boundary
Γ. The sources on the right–hand side can be distributed
both on D+ and outside D+:

f = f+ + f−, (3)

supp f+ ⊂ D+,

supp f− ⊂ D− def
= D�D+.

Here, f+ ∈ F (D) is the source of a ”friendly” field
(sound), while f− is the source of an ”adverse” field
(noise).

Suppose that we know the trace of the function U on
the boundary Γ of the domain D+. It is to be noted
that only this information is assumed to be available. In
particular, the distribution of the sources f on the right-
hand side is unknown. The AS problem is reduced to
seeking additional sources G in D− such that the solution
of the following BVP

LU ′ = f + G, (4)

supp G ⊂ D−,

U ′ ∈ Ξ(D)

coincides on the domain D+ with the solution of BVP
(1), (2) if f− ≡ 0:

LU+ = f+, (5)

U+ ∈ Ξ(D).

Thus, we seek a source term G such that on the domain
D+ the functions U and U ′ coincide with each other:

U ′
D+ = U+

D+ . (6)

It is important to emphasize that an ”obvious” solution
f = −f− is not appropriate here because the function
f− is unknown.

3 Solution of the stationary AS problem

First let us consider the stationary formulation of BVP
(1), (2). Assume that the operator L is as follows:

L
def
=

m
∑

1

Ai ∂

∂xi
, (7)

where
{

xi
}

(i = 1, ...,m) is a Cartesian coordinate sys-
tem, Ai(x) ∈ C∞(D) (i = 1, ...,m). We also suppose
that some stationary linear boundary conditions are set
on the boundary of D:

l∂DU = 0. (8)

Here l∂D is some differential operator.

Thus, BVP (1), (2) reduces to the following:

∑m
1 Ai ∂U

∂xi = f, (9)

l∂DU = 0.,

f = f− + f+,

supp f+ ⊂ D+, supp f− ⊂ D−,

where U and f are vector–functions with the dimension
of m.

Let us consider the solution of BVP (9) in the generalized
sense [18], [19]. For this purpose we introduce the space
of basic functions Φ ∈ C∞

0 (D). Equality (1) is then con-
sidered in the weak sense: < LU,Φ >=< f,Φ > for any
Φ ∈ C∞

0 (D) where < f,Φ > means a linear distribution
determined on the space of the basic functions C∞

0 (D).

We define the functional space Ξ(D) in such a way that
the weak solution of BVP (9) coincides almost everywhere
with the classical solution of this problem. Thus, we re-
quire that the functions from Ξ(D) are piece–wise smooth
and satisfy the boundary condition (8). Hence, we sup-
pose that Ξ(D) ⊂ Hs(D), where Hs(D) is the Sobolev
space of functions, determined on D, with s > 1 + m/2.
We also assume the boundary conditions are such that
if W ∈ Ξ(D), then W (∂D) ∈ Hs−1/2(∂D). These es-
timates immediately follow from the Sobolev embedding
theorems [19].

Then, the solution of the AS problem is given by the
following theorem.

Theorem 1 A solution of the AS problem (1), (2), (4),
(9) is given by the following one–layer distribution:

G = G0
def
= AnUΓδ(Γ), (10)

where UΓ
def
= U(Γ), An

def
=

∑m
1 niA

i, ni are the coordi-

nates of the unit vector of the external normal n to the

boundary ∂D, δ is the Dirac delta–function.
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Proof. Thus, it is required to prove that the solution of
problem (4) coincides with the solution of BVP (5) in D+:
U ′ = U+ if x ∈ D+. For this purpose, let us consider the
following four additional BVPs.

BVP 10:

LU+ = f+, (11)

l∂DU+ = 0.

It is clear that the solution of this BVP exists and unique
since f+ ∈ F (D).

BVP 20:

LU− = f−, (12)

l∂DU− = 0.

Similar, the solution of this BVP also exists and unique.

BVP 30:

LU = AnUΓδ(Γ), (13)

l∂DU = 0.

The solution of this problem exists, unique and is the
following:

U(x) =

{

−U−, if x ∈ D+

U+ if x ∈ D−
(14)

Indeed,

< LU,Φ >= −
∑m

1 < U,∇i(A
iΦ) >= (15)

−
∑m

1

∫

D
(U,∇i(A

iΦ))dx =

−
∑m

1

∫

D−
(U,∇i(A

iΦ))dx −
∑m

1

∫

D+(U,∇i(A
iΦ))dx =<

{

LU
}

,Φ > +
∫

Γ
An

[

U
]

Γ
Φdx =<

{

LU
}

,Φ > +

< AnUΓδ(Γ),Φ >=< AnUΓδ(Γ),Φ >

Here, (a, b) denotes the scalar product of vectors a and
b,

{

LU
}

is the regular part of LU on D, [.]Γ means a
discontinuity across the boundary Γ. Thus,

[V ]Γ
def
= lim

x→Γ∩x∈D−

V (x) − lim
x→Γ∩x∈D+

V (x)

BVP 40:

LU
+

= f + AnUΓδ(Γ), (16)

l∂DU
+

= 0.

The solution of this BVP exists and unique because of
the linearity of the problem.

Thus, from BVPs 10 − 30 it follows that:

U(x) =

{

U+, if x ∈ D+

U + U+ if x ∈ D−
(17)

�

It is to be noted that UΓ /∈ KerAn. Otherwise the so-
lution of the BVP (1), (2) would not be unique since
the homogeneous BVP with f ≡ 0 had the solution (14)
apart from the trivial solution U ≡ 0.

It is worth noting that AS solution (10) provided by the
Theorem does not explicitly depend on the boundary con-
ditions. Although the boundary conditions are not ex-
plicitly specified, we are able to obtain the AS source
term if the solution of the considered BVP is correct.

4 Nonstationary AS problem

AS solution (10) is applicable to a nonstationary AS prob-
lem in Rm+1 under some additional requirements. Then,
the proof of this statement mostly repeats the stationary
case.

Suppose that field U is described by a correct initial–
boundary value problem (IBVP) in the cylinder K∞ =
D × (0,∞):

LU
def
= ∂U

∂t +
∑m

1 Ai ∂U
∂xi = f, (18)

l∂DU = 0, (19)

U(x, 0) = U0(x), (20)

f = f− + f+,

supp f+ ⊂ D+, supp f− ⊂ D−,

where U0(x) ∈ Hs(D). As in the previous section we
consider a generalized solution of BVP (18), (19), (20).
In distinguish to the stationary case, distribibutions such
as < f,Φ > are considered in the following sense:

< f,Φ >=

∫ ∞

0

∫

D

(f,Φ)dxdt. (21)

First, it is necessary to note that without the violation
of generality we can suppose that the initial data are
homogeneous: U0(x) = 0. Otherwise we can represent
the solution of IBVP (18), (19), (20) as the following
sum: U = Uf + Ut, where Uf is the solution of IBVP
problem with the homogeneous initial data while Ut is
the solution of IBVP with the homogeneous right–hand
side. It is clear that the function Uf has nothing to do
with the unwanted component of the total solution U .

Now, we consider four auxiliary problems similar to the
stationary case. In contrast to the stationary case, the
appropriate IBVPs are to be considered. All IBVPs are
set with the homogeneous initial data. The right–hand
side f is obviously a nonstationary function now. Then,
the proof mostly repeats the stationary case with the only
distinguish that the generalized solution of equation (18)
is considered as follows:

∫ ∞

0

∫

D

(LU − f,Φ)dxdt = 0 (22)
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for any Φ ∈ C∞
0 (D).

Then, we obtain that the AS solution is represented by
(10) where UΓ = UΓ(t) now depends on time.

It is important to note that in this solution we do not
take into account the influence of the AS source term on
the value of UΓ(t).

5 Examples

Let us now consider a few examples of AS sources terms
for stationary and nonstationary problems.

10. Charges on the boundary of a metallic body :

Consider a metallic bounded body in an external electric
field Eout. It is well known that if the problem is static,
then the field in the body must equal zero. Charges in the
body are redistributed on its surface in such a way that
the internal electric field equals zero. Thus, the contribu-
tion of the surface charges is similar to shielding the body
from the external field Eout, where Eout is the external
field on the perimeter of the body. From the Maxwell
equations it follows that

divE = 4πρ + g0, (23)

curlE = 0, (24)

where E is the electric field, ρ is the density of charges,
g0 is the AS source term.

Assume that f− = 4πρ. Then, let us write the AS source
terms in the following form: g0 = 4πσρδ(Γ). From (10)
we obtain that

g0 = Eout · nδ(Γ), (25)

n × Eout = 0. (26)

Hence,

σρ =
1

4π
Eout (27)

It fully coincides with the classical result from electro-
static on an electric field in a metallic sphere (see, e.g.,
[20]). It is clear that this result is valid for an arbitrary
bounded metallic body having a smooth boundary.

20. Bound current on the boundary of a superconductor :

Let us now consider a magnetic field around a supercon-
ductor. It is well known that the magnetic field inside a
superconductor equals zero. The magnetic external field
induces a bound current with a density j which plays the
shielding role.

Consider the Maxwell equations for a static magnetic
field:

curlH =
4π

c
σE + g0, (28)

where H is the magnetic field, σ is the conductivity. Sup-
pose that g0 = 4π

c jbδ(Γ). On the other hand, from (10)
it follows that g0 = n × Hδ(Γ). Hence,

4π

c
jb = n × H (29)

This result coincides with the well known result on the
bound current [20] on the surface of a superconductor.

The next two examples are related to active noise shield-
ing in acoustics. The solutions of these AS problems have
been earlier obtained in the linear formulation.

30. Helmholtz equation:

The Helmholtz equation describes the propagation of a
monochromatic wave

∆φ + k2φ = s. (30)

We can rewrite it as the system of first-order equations:

∇a + k2φ = s, (31)

∇φ − a = 0.

In R3, we have:

U = (a1, a2, a3, φ)T , (32)

where ai (i = 1, 2, 3) are the coordinates of the vector a.
Hence,

An =









n1 n2 n3 0
0 0 0 n1

0 0 0 n2

0 0 0 n3









, (33)

and

G0(Γ) = (an, φn1, φn2, φn3)
T δ(Γ), (34)

where an = a · n.

Having turned back to the Helmholtz equation for the
variable φ, we obtain

∆φ + k2φ = s + g0, (35)

where the shielding function g0 is as follows:

g0 = δ(Γ) ∂φ
∂n

+ ∇(δ(Γ)φn) (36)

or

g0 = δ(Γ) ∂φ
∂n

+ ∂δ(Γ)φ
∂n

. (37)

The AS term is represented via the sum of the single–
layer and double–layer additional source terms. This so-
lution fully coincides with the solution obtained in [10].
As mentioned above, the solution is applicable to the lin-
ear analogue of the Helmholtz equation with variable co-
efficients.
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40. Acoustic equations:

Next, let us consider the acoustic equations:

pt + ρc2ux = f (p) + ρc2qvol, (38)

ρut + ∇p = f (u) + fvol,

where qvol is the volume velocity per a unit volume and
fvol is the force per a unit volume [2]. In this case, we
have

U = (u1, u2, u3, p)T , (39)

where uj (j = 1, 2, 3) are the components of the velocity
u.

Then, the matrix An appears to coincide with the appro-
priate matrix (33) of the Helmholtz equation describing
only time–harmonic waves.

As the result, we obtain the following AS source terms in
the form of a simple layer:

qvol = u · n|Γδ(Γ), (40)

fvol = p|Γnδ(Γ).

Thus, the AS solution depends on the normal component
of the particle velocity and the sound pressure on the
boundary of the shielded domain. These values are to be
taken from measurements and based on the contribution
of both desirable and undesirable sources without their
factorization. This AS solution was obtained in [17] for
the continuous space and in [14] for the finite–difference
formulation. It also corresponds to AS sources derived
in [21] via the modified JMC method in one-dimensional
case under the assumption of f+ ≡ 0 and formally ex-
tended to the three-dimensional formulation.

6 Conclusion

The solution of the AS problem has been obtained in the
form of a simple–layer source term in the general non-
stationary formulation. The solution only requires the
knowledge of the total field (desirable and undesirable)
on the perimeter of the shielded domain. It does not use
any additional information on either the characteristics
of the undesirable sources or the surrounding medium.
The knowledge of the Green’s function of the problem is
not required either. The application of the general AS
solution to the Maxwell equations, Helmholtz equation
and acoustic Euler equations give us the appropriate AS
source terms.
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