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Abstract—A new method for minimization problem over 

simplex, as a generalization of a well-known in one-
dimensional optimization bisection method is proposed. The 
convergence of the method for class of strictly unimodal 
functions including class of strictly convex functions is proved. 
The computational results are presented for a set of test 
problems. 
 

Index Terms— convex set, n-dimensional simplex, strictly 
unimodal function, direct search methods, nonlinear 
programming, nonlinear optimization. 

 

I. INTRODUCTION 

The problem considered is 
( ) min,f x x S→ ∈ ,                        (1) 

where S - a n-dimensional simplex in nR , and  f – a 
continuous function.  

For the case 1n =  one of well-known methods for 
solving problem (1) is the bisection method which 
convergence is proved for the case when f  is continuous 
function with the single point of a local minimum (which 
solves the problem (1)) over set S. In this paper we 
generalize a bisection method for case n>1 and demonstrate 
convergence of our algorithm for the class of strictly 
unimodal functions. 

Definition. Let D be a bounded closed convex set in nR . 
Function RDf →:  is strictly unimodal over set D iff for 

any segment D⊂Δ ( ){ } 1min# =Δ∈xxfArg  where we 
write « # A» for the cardinality of a set A. 

Notice that a function is strictly unimodal iff for any 
closed convex subset DD ⊂'  ( ){ } 1'min# =∈DxxfArg . 
Notice that the class of strictly unimodal functions contains 
the class of strictly convex functions (over set D).  

In point 2 we describe some properties of strictly 
unimodal functions, and also the general structure of the 
decomposition method. In point 3 we describe the basic 
algorithm and prove a convergence of this algorithm for the 
case when  f  is a continuous strictly unimodal function. In 
point 4 we illustrate the algorithm by the well-known 
example of Dennis-Wood test function. 

 

II. PRELIMINARITIES 

Let D  be  a  closed  bounded  set  in  nR   with  nonempty  
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interior,   f   be a continuous function on D,  e  be  some  unit 
vector. Consider for each real t  the hyperplane 

{ }| ,n
t x R e x tγ = ∈ = .                   (2)        

The family { }|t tγ −∞ < < ∞  covers nR  and whereas D is   

a closed bounded set then there are such values mint  and 

maxt  that for each min max[ , ]t t t∈  we have t tD D γ= ∩ ≠ ∅ , 
and for each min max[ , ]t t t∉  - tD = ∅  . Thus 

[ ]min max,
t

t t t

D D
∈

= U .                             (3)    

The set tD  is a section of the set D by hyperplane tγ .  
Whereas the set tD  lies in tγ , it is possible to consider tD  
as a set in the space of dimensionality 1n − . Consider the 
function 

( ) ( ){ }min | tF t f x x D= ∈ .              (4)    

Let  
( ) ( ) ( ){ }δδω <−∈−= yxDyxyfxff ,,:sup  

be the uniform modulus of continuity of the function  f  over 
set D, 

( ) ( ) ( ) [ ]{ }δδω <−∈−= stttstsFtFF ,,,:sup maxmin . 
Proposition 1.  
1. ( )F t  is a continuous function on the segment 

min max[ , ]t t . 
2.  We have the equality 

( ){ } ( ){ }min maxmin | min | [ , ]f x x D F t t t t∈ = ∈      (5) 

3. For any positive  δ  ( ) ( )δωδω fF ≤ . 
Preposition 2.  
1.   If  f  is a convex function on D  then the function F is 

convex on the segment min max[ , ]t t . 
2.   If  f  is a strictly convex function on D then the 

function F is strictly convex on the segment 
min max[ , ]t t . 

3.   If f  is a strictly unimodal function on D then the 
function F is strictly unimodal on the segment 

min max[ , ]t t . 
The main idea of our algorithm  is motivated by the 

possibility of using the recursive procedure for the 
realization of the one-dimensional bisection algorithm. 

 The one-dimensional bisection algorithm solves the 
problem 

( ) [ ]baxxf ,min, ∈→ ,              (6)  
where f  is a strictly unimodal function over segment [ ]ba, . 

Let ( ), , ,bis f a b ε  denote the recursive one-dimensional 
bisection procedure. The inputs for this procedure are: the  
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procedure for calculation values of  f, the segment  [ ],a b  

and the accuracy ε. The outputs are the estimations mx  for 
the minimizer x* and mf  for the value of the minimum of 

the function  f  over  the segment  [ ],a b . 
The iteration of the recursive procedure includes the 

following steps. 
Step 0. If ε≥− ab , go to step 1, otherwise stop. 
Step 1.  

2
a bc +

= '
2

a ca +
= , '

2
b cb +

= , ( )f c , ( ')f a , ( ')f b . 

Step 2.  
If ( ') ( ) ( ')f a f c f b≤ ≤ , set 'b b= . 
If ( ') ( ) ( ')f a f c f b≥ ≥ , set 'a a= . 

If { }( ) min ( '), ( ')f c f a f b≤ , set ', 'a a b b= = . 

Step 3. Execute ( ), , ,bis f a b ε  with new inputs.  
 

III. THE ALGORITHM 

Let S be a n-dimensional simplex. Let fix the vertex 
0

V  
and denote by 1,..., nV V  the opposite  vertices. Set for each 

[0,1]t∈   

{ }0 1 0 0 0( ),..., ( )n
tS conv V t V V V t V V= + − + − .        (7)    

The set tS  is the 1n − -dimensional simplex for 0 1t< ≤ .  

Set ( ){ }arg min |t tx f x x S≡ ∈ . Each simplex tS  for 

0 1t< <  part the initial simplex S in two sets: { }0 , tconv V S  

and { }1, tconv S S . Fig. 1 illustrate an example of the 
partition of the simplex S  for the case 3=n . 

 V1 

V2 

S1/2 

S1 V3 

St 

V0 

 
Fig. 1. The partition of the simplex S. 

Let 1 2( , , , , )bissimpl f SS SS d ε  denote the recursive 
procedure in case 1n > . The inputs for this procedure are: 
the procedure for calculation values of f, boundary simplices 

1SS  and 2SS , the current dimension d and the accuracy ε. 
The outputs are the estimations mx  for the minimizer x*  and 

mf  for the value of the minimum of the function  f over  the 

set { }1 2,conv SS SS . Originally d is equal n, then this 
parameter varies depending on the dimension of the simplex 
where the point of a minimum is searched. Actually this 
parameter at first decreases to value 1, and then increases to 
value d=n. Three circles of such calculations we consider as 
the iteration with number k. Denote by fk the estimation of a 
minimum of the function f  and by xk the estimation of the 
point x*. The parameter d and the outputs must be declared 
as global variables and its initial values must be defined 

before starting procedure 1 2( , , , , )bissimpl f SS SS d ε . More 
concretely the preliminary step includes the following 
destinations: 

0
1 0SS S V= = , { }1

2 1 , nSS S conv V V= = K    according to 

(7), d=n; 
1010 ,,, ffxx  we define in a such way that the condition  

{ } ε<−− −− 11 ,max kkkk xxff             (8) 

be failed. 
Step 1. 
If (8) is hold, stop. Otherwise set 11 SS=σ , 22 SS=σ  and 

go to step 2. 
Step 2.  
If d=1, execute ( ), , ,bis f a b ε  with a= 1SS , b= 2SS  

Otherwise, go to  step 3. 
Step 3.  
Two cases are possible. 
1) 1SS  and 2SS  are d-dimensional simplices. Let 

1 1 1

0 1, ,..., d
SS SS SSV V V  and 

2 2 2

0 1, ,..., d
SS SS SSV V V be vertices of simplices  

1SS  and 2SS  accordingly. Then we define 1
2

S 1
4

S 3
4

S  by 

( ) ( ){
( )}

1 2 1 1 2 1

1 2 1

0 0 0 1 1 1, ,

..., .

t SS SS SS SS SS SS

d d d
SS SS SS

S conv V t V V V t V V

V t V V

= + − + −

+ −
  (9) 

2) One of the sets 1SS , 2SS  is a vertex, another is d-
dimensional simplex. In this case 1

2

S 1
4

S 3
4

S  are defined by 

(7).  Set 1d d= − . 
Step 4.  

For each of  simplices 1
2

S 1
4

S 3
4

S  the following actions must 

be done: 
1) Fix a vertex 

0

V  in the simplex tS  and let 1,..., nV V  
be an opposite vertices.  
2) Execute 1 2( , , , , )bissimpl f SS SS d ε  with new values 

0
1SS V=  and { }1

2 ,..., nSS conv V V= . 

Step 5.  
Let 1

mx 2
mx , 3

mx  and 1
mf

2
mf , 3

mf  be results of the previous 
step (for 1

2

S 1
4

S 3
4

S  accordingly). 

If 2 1 3
m m mf f f≤ ≤ , set 1 1SS σ= 2 3

4

SS S= . 

If 2 1 3
m m mf f f≥ ≥ , set 1 1

4

SS S= 2 2SS σ= . 

If { }1 2 3min ,m m mf f f≤ , set 1 1 2 3
4 4

,SS S S S S= = . 

Set 1d d= + . 
Step 6. Execute 1 2( , , , , )bissimpl f SS SS d ε  with current 

inputs. 
Theorem. Let ( )εx  be the final estimation of the 

minimizer x* for the function f where f  is a continuous 
strictly unimodal function over n-dimensional simplex S 
then ( ) *

0
lim xx =
→

ε
ε

.  
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Sketch of proof. Let { } 0↓kε  is chosen arbitrary, 
( ) ,...2,1, =≡ kxx kk ε  Set { }kf  corresponding sequence of 

estimations of  the minimum  f over S. The condition 
{ } kkkkk xxff ε<−− −− 11 ,max  

imply the existence of the limits 'lim,'lim ffxx kkkk
==

∞→∞→
. 

One can show that  
** ',' ffxx == .                              (10) 

We shall use the induction on ( )dimn S= . For 1n =  our 
algorithm coincides with the well-known one-dimensional 
bisection method. So the assertion of the theorem is valid.       

We shall assume the assertion of the theorem is valid for 
the dimensionalities 1−≤ n  and show that it is valid for the 
dimensionality n.  

Assume that the relations (10) are failed. According to the 
induction assumption the points 'x  and *x  must belong to 
different simplices, i.e. '' tSx∈ , *

*
tSx ∈ , *' tt ≠ . For the 

definiteness let *' tt < . From the strictly unimodality of  f  
follows the relation { } { }0' , SSconvx tk ⊂  that contradicts to 
the inequalities of  step 5 of the algorithm (see previous 
point). So, the equations (10) and the theorem are valid.  

Remark. If  the function  f  satisfies the Lipschitz  
condition with exponent 0>α  and with constant C  that is  

( ) ( ) αyxCyfxf −≤−                        (11) 
for all Syx ∈, , one can change the stopping rule (8) by the 
condition 

 ( )Cxx kk ,~1 αε≤− − .                           (12)    

In this case it is not difficult to see that the number of 
iterations ( )ε~nN  needed to hold (12) is about ( )( )nN ε~1 . So, 
the working time of the algorithm increases exponentially 
with the dimensionality of the problem (1). 
 

IV. THE EXAMPLE 
Consider the following variant of Dennis-Wood function 

[1]: 

{ }2
2

2
1 ,max

2
1)( cxcxxf −−= ,            (13) 

where ( )1,11 −=c 12 cc −= . This function is continuous and 
strictly convex, but its gradient is discontinuous everywhere 
on the line 21 xx = .  

In fact, numerical tests show [2] that compass search 
applied to (13) frequently converge to a point of the form 
( )aa, , with 0≠a . This sort of failure was observed in [3] 
for the multidirectional  search algorithm. Besides in [1] it is 
shown that a modification of  the Nelder-Mead algorithm [4] 
can fail to converge to the minimizer of the function (13). 

The level sets of this function are shown in fig. 2 (a). The 
sequence of the points kx generated by our algorithm 
converge to the point ( )0,0*x  is marked. The simplex 

( ) ( ) ( ){ }1,1 , 0, 1 , 1,0S conv= − −  was chosen as an initial 

simplex. The accuracy 610ε −=  was achieved after 23 
iterations (fig. 2 (b)).  
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Fig. 2. (a) The level sets of the function (13), the initial 
simplex  and the sequence { }kx ; (b) the sequence { }kf . 
 

V. CONCLUSION  
We have exposed our algorithm for the class of strictly 

unimodal functions only. However one can show that the 
algorithm can be applied for a wider class of functions, 
namely, we consider the class of functions SΦ , where S - 
the n-dimensional simplex, defined as follows: Sf Φ∈  iff 
for any segment S⊆Δ  each local minimum of  f over this 
segment is also a global minimum of the function f over this 
segment. The class SΦ  contains a subclass of strictly 
unimodal functions over set S. 

Notice also this algorithm can serve as a basis element  
for solving the unconstrained minimization problem for the 
function nRf Φ∈ . 

We realized our algorithm in MatLab. The program was 
tested for different examples of minimization of nonsmooth 
functions, some of them can be found in [5]. 
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