

Abstract—Partial Differential Equations (PDEs) play an

essential role in modeling real world problems. The broad field
of modeling such systems has drawn the researchers’ attention
for designing efficient algorithms for solving PDEs. Multigrid
solvers have been shown to be the fastest due to its high
convergence rate which is independent of the problem size.
Many attempts have been made to exploit the inherent
parallelism of these solvers. Yet, most efforts fail in this respect
due to many factors (time, resources) governed by software
implementations. In this paper, we present a hardware
implementation of the V-cycle Multigrid method for finding
the solution of a 2D-Poisson equation. We use Handel-C to
implement our hardware design, which we map onto available
Field Programmable Gate Arrays (FPGAs). We analyze the
implementation performance using the FPGA vendor’s tools.
We compare our findings with a C++ version of the algorithm.
The obtained results show better performance when compared
to existing software versions.

Index Terms—Hardware Design, High Performance
Computing, Iterative Methods, Parallelization.

I. INTRODUCTION
A huge number of physical, chemical, and biological

phenomena are described by means of Partial Differential
Equations (PDEs). Examples of such phenomena are the
motion of fluids [1], energy dissipation, Belousov-
Zhabotinsky reactions, and DNA matching. In addition,
different applications in finance and economics [2],
computer vision [3],[4], computer graphics [5], image
processing [6-7], weather simulation [8], statistical physics
[9], and computational physics [10] can be modeled using
PDEs. Understanding, analyzing and solving these
equations, efficiently, allows us to find the answers to the
modeled systems or applications [11]. For this reason, a
number of algorithms have been devised for solving PDEs
with increasing precision.
 Research has proved that the most powerful solver is the
Multigrid algorithm [12-13]; which combines classical
iterative algorithms, such as Gauss-Seidel, with subgrid
refinement steps to give a method superior -in terms of

Manuscript received March , 2007.
Safaa J. Kasbah is with the Division of Computer Science and

Mathematics, Lebanese American University, Beirut, Lebanon (phone:
961-3-788402; email: safaa.kasbah@lau.edu.lb).

Issam W. Damaj is with the Department of Electrical and Computer
Engineer, Dhofar University, Salalah, Sultanate of Oman (e-mail:
i_damaj@du.edu.om).

storage and computation-to classical iterative techniques.
However, the computation of MG becomes complex and
time consuming [7] as the complexity of the system or
phenomena, to be modeled, increases.
 Many attempts for exploiting the inherent parallelism of
Multigrid have been made to achieve the desired efficiency
and scalability of the method [14-15]. Yet, most efforts fail
in this respect due to many factors (time and resources)
governed by software implementations.

 In the last decade, a new computing paradigm,
Reconfigurable Computing (RC), has emerged. RC-systems
overcome the limitations of the two well known computing
paradigms: 1) General Purpose Processors (GPPs) in the
form of software and 2) Application Specific Integrated
Circuits (ASICs) in the form of hardware. RC-systems
combine the flexibility offered by software and the
performance offered by hardware [16-18]. It requires a
reconfigurable hardware, such as an FPGA, and a software
design environment that aids in the creation of
configurations for the reconfigurable hardware [16]. RC-
systems have successfully accelerated a wide variety of
applications. Most of these applications have been reported
in the fields of: signal processing (e.g. weather forecasting,
seismic data processing, Magnetic Resonance Imaging
(MRI), adaptive filters), cryptography and DNA matching.

 In this paper, we present a hardware implementation of
the V-cycle MG algorithm for the solution of a 2D-Poisson
equation using different classes of FPGAs: Xilinx Virtex II
Pro, Altera Stratix and Spartan3L which is embedded on
the RC10 board from Celoxica. We use Handel-C, a higher-
level design tool, to code our design which is analyzed,
synthesized, and placed and routed using the FPGAs
proprietary software (DK Design Suite, Xilinx ISE 8.1i and
Quartus II 5.1). We compare our implementation results
with existing software version of the algorithm, since there
are no hardware implementations of MG in the literature.
 A general overview of Multigrid solvers in general, and
the V-cycle MG solver in particular is presented in Section
2. In Section 3, we describe our proposed hardware
implementation of the V-cycle MG for the solution of 2D-
Poisson equation. Then, the implementation results are
presented in Section 4. Our results are compared with
available software version results, written in C++ and
running on a general purpose processor. Section 5
concludes the work and presents possible future directions.

High-Performance Multigrid Solvers in
Reconfigurable Hardware

Safaa J. Kasbah and Issam W. Damaj

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

II. MULTIGRID SOLVERS: AN OVERVIEW
Multigrid methods are fast linear iterative solvers used

for finding the optimal solution of a particular class of
partial deferential equations. Similar to classical iterative
methods (Jacobi, Successive Over Relaxation (SOR) and
Gauss Seidel), an MG method starts with an approximate
solution to the differential equation; and in each iteration,
the difference between the approximate solution and the
exact solution is made smaller [19].

In general, the error resulting from the exact and
approximate solution will have components of different
wavelengths: high-frequency components and low-
frequency components [22]. Classical iterative methods
reduce high-frequency/oscillatory components of error
rapidly, but reduce low-frequency/smooth components of
error much more slowly [21].

The Multigrid strategy overcomes the weakness of
classical iterative solvers by observing that components that
appear smooth on fine grid may appear oscillatory when
sampled on coarser grid [22]. The high-frequency
components of the error are reduced by applying any of the
classical iterative methods. The low-frequency components
of error are reduced by a coarse-grid correction procedure
[19-20].

A typical Multigrid cycle starts by applying any
classical iterative method (Jacobi, Gauss Seidel or
Successive Over Relaxation) to find an approximate
solution for the system. The Residual operator is then
applied to find the difference between the actual solution
and the approximate solution. The result of this operator
measures the goodness of the approximation. Since it is
easier to solve a problem with less number of unknowns
[13],[21]; a special operator-Restriction- for mapping the
residual to a coarser grid (less number of unknowns) - is
applied for several iterations until the scheme reaches the
bottom of the grid hierarchy. Then, the coarse grid solver
operator is applied to find the error on the coarsest grid.
Afterwards, the interpolation operator is applied to map the
coarse grid correction to the next finer grid in an attempt to
improve the approximate solution. This procedure is applied
until the top grid level is reached giving a solution with
residual zero. Finishing with several iterations back to the
finest grid gives a so-called- V-cycle Multigrid [12]. The
MG algorithm is summarized in Fig. 1; the Multigrid basic
operators are depicted in Fig. 2.

Fig. 1: Multigrid Algorithm

Fig. 2: V-cycle Multigrid

 In this work, the V-cycle MG method is used to find the
solution to a 2D-Poisson equation in the form:

yxfyxu
y

yxu
x ,2

2

2

2

),(),(=
∂
∂

+
∂
∂ (1)

III. HARDWARE IMPLEMENTATION OF V-CYCLE
MULTIGRID

 All available Multigrid solvers are realized as software
running on general purpose processors [20-21]. Available
software packages have been implemented in C, Fortran-77,
Java and other languages, where parallelized versions of
these packages require inter-processor communication
standards such as Message Passing Interface (MPI) [18].
Each of these packages attempt to achieve an efficient and a
scalable version of the algorithm by compromising between
the accuracy of the solution and the speed of realizing the
solution.
 The V-cycle Multigrid algorithm has been designed and
implemented using Handel-C, a higher-level hardware
design tool. Our choice was based on the language’s
features for rapid and efficient prototyping; since Handel-C
syntax is similar to the ANSI-C with additional extensions
for expressing parallelism. The Handel-C compiler comes
packaged with the Celoxica DK Design Suite [25].
 Our design has been tested using the Handel-C simulator;
afterwards, we have targeted a Xilinx Virtex II Pro FPGA,
an Altera Stratix FPGA, and an RC10 board from Celoxica.
The tools provided by the device’s vendors were used to
synthesize and place & route the design[25-27]
 The Multigrid method can be parallelized by
parallelizing each of its components; i.e., smoother, coarse
grid solver, restriction and prolongation. Each of these
components is parallelized by using the Handel-C construct
‘par’. This is used whenever it was possible to execute
more than one instruction in parallel without affecting the
logic of the source code. The results obtained show a
substantial improvement in the MG performance when
compared to a traditional way of executing instructions on a
GPP, as depicted in the following Fig. 3 and Fig. 4 for the
two MG operators Restrict Residual and Correct.
 Finding the solution to PDEs using MG requires floating
point arithmetic operations which are 1) far more complex,
and 2) consume more area than fixed point operations. For
this reason, Handel-C does not support floating point type.
Yet, floating point arithmetic can be performed using the
Pipelined Floating Point Library provided in the Platform
Developer’s Kit.
 Unfortunately, a failure in the Handel-C simulator
persists whenever the number of floating point arithmetic
operations exceeds four. We were notified that a fixed

1. Perform few pre-smoothing Gauss-Seidel (or any
iterative method) iterations to reduce the short
wavelength errors in the solution.

2. Compute Residual
3. Restrict Residual (fine coarse)
4. Solve residual equation
5 Interpolate solution(coarse fine)
6. Update the solution
7. Perform few post-smoothing Gauss-Seidel (or any

iterative method) iterations and return the
improved solution to the next finer grid.

S: Smooth
R: Restrict
P: Prolongate

Solve on coarsest grid

PR

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

version of the DK simulator will be available in a future
release of DK. The only possible way to avoid the
simulator’s failure, in the current version, was to
convert/Unpack the floating point numbers to integers and
perform integer arithmetic on the obtained unpacked
numbers, as shown in Fig. 3, 4 and 5. Though it costs more
logic to be generated, the integer operations on the
unpacked floating point numbers have a minor effect on the
total number of the design’s clock cycles.

 Originally, the Multigrid method depends on recursion,
which cannot be supported by Handel-C. An iterative
version of the algorithm is designed and shown in Fig. 6.
Only a snapshot of the parallel version of (Smoother, Find
Residual, Prolongate) MG components is shown in the
figure. Their implementation style is very similar to what is
shown in Fig. (3d) and Fig. (5a). Details about Restriction
and Correct operators are shown in Fig. 3, Fig. 4, and Fig. 5.

Fig. 3: Correct operator, illustrating the effect of using par construct: (3a), (3b), (3c) and (3d) shows sequential code, flow charts,
parallel code and combined flow chart/concurrent process model, respectively. The dots represent replicated instances in d).

macro proc Correct()
 {
 for (int i =1; i<=L;i++)
 for (int j =1; j<=L; j++)
 {
 a[i][j] = FloatUnpackFromInt32(FloatPackInInt32(a[i][j])+FloatPackInInt(v[i][j])
 }
}

macro proc Correct()
 {
 i = 1 ;
 par (i=1;i <=L;i++)
 {
 j = 1;
 do

 {
 a[i][j]=FloatUnpackFromInt32(FloatPackInInt32(a[i][j])+
 FloatPackInInt32(v[i][j]));
 j++;

 } while(j<=L);
 }
}

Y

N tim
e

parallel tasks

parallel tasks

a[i][j]+=v[i][j]

j++

i = 1 i = L

j=1

j<=L
Y

N

a[i][j]+=v[i][j]

j++

j=1

j<=L

parallel tasks

(3d)

(3a)

(3c)

a[i][j]+=v[i][j]

Y

N

Y

N

j<=L

i = 1

j++

i++

j=1

i<=L

(3b)

macro proc Restrict_Residual()
 {
 for (I=1;I <= L2;I++)
 {
 i = 2 * I - 1;
 addCycles = FloatPipeAddCycles;

 for (J=1;J<=L2;J++)
 {
 addCycles = FloatPipeAddCycles;

 j = 2 * J - 1;

 op1 = FloatUnpackFromInt32(FloatPackInInt32(r[i][j])
 + FloatPackInInt32(r[i+1][j]));

 op2 = FloatUnpackFromInt32(FloatPackInInt32(r[i][j+1])
 +FloatPackInInt32(r[i+1][j+1]));

 opResult = FloatUnpackFromInt32(FloatPackInInt32(op1)
 + FloatPackInInt32(op2));

I<=L2

I = 1

i = 2 * I - 1

addCycles=FPipeAddCycl

J=1

j<=L2

N

I++

Y

addCycles=FPipeAdd

i = 2 * J-1

op1=r[i][j]+r[i+1][j]

op2=r[i][j+1]+r[i+1][j+1]

opResult = op1 + op2

R[i][j]=fFactor*opREsult

J++

(4b) (4a)

Fig. 4:Restrict Residual operator sequential version: (4a), (4b) shows sequential code and the flow chart.

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

Fig. 5: Restrict Residual operator, illustrating the effect of using par construct: (5a) and (5b) shows parallel code and combined
flow chart/concurrent process model, respectively. The dots represent replicated instances

Fig. 6:V-cycle MG, iterative version version each component parallelization. The dots in each of the component’
combined flowchart/concurrent process model represent replicated instances.

START

N

I=1 I=L

N

Y

J=2*J-1

v[i][j]=V[I][J]

v[i+1][j]=V[I][J]

v[i][j+1]=V[I][J]

v[i+1][j+1]=V[I][J]

J++

J<=L2 N

Y

J=2*J-1

v[i][j]=V[I][J]

v[i+1][j]=V[I][J]

v[i][j+1]=V[I][J]

v[i+1][j+1]=V[I][J]

J++

J<=L2 N

Y

I=1i=2*I-1

I=2

J<=L

v[I][J]={0,0,0} J++

I=0 I=2 I=L2

Y

J<=L

v[I][J]={0,0,0} J++

N

I=1i=2*I-1

...

...

...

...

Y

N

Y

N

i=1 i=2 i=L

j=1 j=L

j<=L

op2=psiNew[i][j-1]
+

psiNew[i][j+1]

op1=psiNew[i-1][j]
+

psiNew[i+1][j]

addCycles=
FloatPipeAddCyclessq_h=my_h*my_hopResult=op1+op2

temp1=sq_h*rho[i][j]

addCycles!=0

addCycles--

psiNew[i][j]=tmp2*fFactor

tmp2=opResult+tmp2

j++

Y

N

Y

Nj<=L

op2=psiNew[i][j-1]
+

psiNew[i][j+1]

op2=psiNew[i-1][j]
+

psiNew[i+1][j]

addCycles=
FloatPipeAddCyclessq_h=my_h*my_hopResult=op1+op2

temp1=sq_h*rho[i][j]

addCycles!=0

addCycles--

psiNew[i][j]=tmp2*fFactor

tmp2=opResult+tmp2

j++

i=1 j=1

...

... V1>0

Gauss_S
eidel

Y

N

Initialize

Solve on Coarse Grid

Pre-Smoothing

Correct

Post-Smoothing

Prolongate

Finest level?

Find Residual

Restrict Residual

STOP

Y

Y

N

Y

N

Y

N N

i=0 i=2 i=L

op1 = {0,0,0} op2 = {0,0,0} op3 = {0,0,0} opResult={0,0,0} fResult = {0,0,0}

j=0

j++

r[i][j]=rho[i]j]

j<=L

Y

j=0

j++

r[i][j]=rho[i]j]

j<=L

I=1

j=1

I=2 I=L

op1=psiNew[i+1][j]
+

 psiNew[i-1][j]

op2=psiNew[i][j+1]
+

 psiNew[i][j-1]

addCycles=
FloatPipeAddCyclessq_h=my_h*my_h tmp1=psiNew[i][j]*4op3 = op1+op2

addCycles!=0

addCycles--temp2=sq_h+sq_h

opResult=op3-tmp2

r[i][j]=r[i][j]+opResult

j++

j<=L

...

...

...

Coarsestlevel?

Fig. 4,5

Fig. 3

macro proc Restrict_Residual()
 {
 par (I=1;I <= L2;I++)
 {
 par{
 i = 2 * I - 1;
 addCycles = FloatPipeAddCycles;
 J = 1;
 }
 do
 {
 par {
 addCycles = FloatPipeAddCycles;
 j = 2 * J - 1;
 }
 par {
 op1=FloatUnpackFromInt32(FloatPackInInt32(r[i][j])+FloatPackInInt32(r[i+1][j]));
 op2=FloatUnpackFromInt32(FloatPackIn32(r[i][j+1])+FloatPackInt32(r[i+1][j+1]));
 opResult = FloatUnpackFromInt32(FloatPackInInt32(op1)+FloatPackInInt32(op2));
 R[I][J]=FloatUnpackFromInt32(FloatPackInt32(fFactor)*FloatPackInt32(opResult));

 J++;
 }

} while (J<=L2);

Y

J++

R[i][j]=fFactor*opREsult

opResult = op1 + op2

op2=r[i][j+1]+r[i+1][j+1]op1=r[i][j]+r[i+1][j]

i = 2 * J-1addCycles=FPipeAdd

I = 1

addCycles=FPipeAdd J=1

j<=L2

I =2

i = 2 * I - 1

I =L

(5a) (5b)

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

IV. EXPERIMENTAL RESULTS

The Handel-C simulators along with the FPGA vendor’s
tools were used to obtain the results. We draw a comparison
of the execution time between our results and a software
version written in C++, compiled using Microsoft Visual
Studio .Net (2003) [21], and running on a Pentium (M)
processor 2.0 GHz, 1.99 GB of RAM. The obtained results
are based on the following criteria:
• Speed of convergence: the time it takes the

Multigrid method to find the solution to the PDE
in hand. The speed of convergence is measured
using the clock cycles of the design –using the
simulator-divided by the frequency at which the
design operates at-using the generated timing
analysis report.

• Accuracy of the solution: The convergence of the
Multigrid algorithm is greatly dependent on the
accuracy of the solution. The increase in the
accuracy results in the increase in both the
computation and the logic utilization. In this work,
the required solution is realized as soon as an
adequate degree of accuracy is obtained [21].

• Chip-area: this performance criterion measures
the number of occupied slices on the FPGA on
which the design is implemented. The number of
occupied slices is generated using the FPGA
vendor’s place and route tool.

The following selections were used for all tests.
• Restriction: Full Weighting
• Interpolation: Bilinear
• Number of smoothing steps: 221 == vv

(ingPostsmoothvesmoothingv aa 2,Pr1)
• Smoother used: Gauss-Seidel
• Accuracy: 0.001 for all Handel-C test cases and

C++ test cases up to problem size 64x64.
The timing results for Virtex II Pro FPGA (2vp7ff672-7)
are shown in Table 1. We report the execution time for
different problem sizes, along with the maximum frequency
at which each design operates at. Execution time is
calculated using: No. of clock cycles/Max. Frequency.

Table 1:Execution Time + Max frequency for different
problem sizes

Mesh Size Execution Time(ms) Fmax(MHz)
8x8 0.000063 159.74

16x16 0.00026 153.52
32x32 0.00118 136.15
64x64 0.00555 115.97

128x128 0.031 83.91
256x256 0.188 54.60
512x512 1.308 31.45

1024x1024 9.3 17.60
2048x2048 70.97 9.28

Fig.s 6 and 7 show the results of comparing the execution
time when running a C++ version of the V-cycle Multigrid

algorithm and our proposed Handel-C version. The
superiority of the hardware implementation over the
software implementation is clear in both figures. However,
for a problem size greater than (64x64), it becomes difficult
to measure the execution time of the software (C++)
version with the same accuracy of 0.001. At that time, our
concern was to force the C++ version of MG to converge at
any price. This was only possible by sacrificing with the
accuracy of the solution; where we had to gradually
increase this factor until we reached an accuracy of 2.0 for a
problem size of 2048x2048, in contrast to an accuracy of
0.001 for a problem size of 8x8. On the other hand, Handel-
C results were independent from the accuracy of the
solution. The accuracy was constant all the way from a
problem size of 8x8 to 2048x2048. Obviously, this explains
the degeneration of the speedup indicated in Fig. 7.

0.0005

0.0505

0.1005

0.1505

0.2005

0.2505

0.3005

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

8x8 16x16 32x32 64x64

M esh size

Handel-C
C++

Fig. 7:Execution time of Handel-C implementation vs.
C++ implementation lower side results.

0
10
20
30
40
50
60
70
80
90

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

12
8x

12
8

25
6x

25
6

51
2x

51
2

10
24

x1
02

4

20
48

x2
04

8

Mesh size

Handel-C
C++

Fig. 8: Execution time of Handel-C implementation vs.
C++ implementation upper side results.

In Table 2 we draw a comparison between the accuracy of
the solution for each of the C++ and Handel-C test cases.
The speedup of the design is calculated as the ratio of
Execution Time (C++) / Execution Time (Handel-C).
Tables 3, 4 and 5 show, respectively, the Virtex II Pro
(2vp7ff672-7), Spartan3L (3s1500lfg320-4) and Altera
Stratix(EP1S10F484C5) FPGA synthesis results for
different problem sizes. When targeting Xilinx Virtex II Pro
FPGA, the largest possible problem size that we could
achieve was 2048x2048, where 99% of the slices were
utilized. Meanwhile, the largest possible problem size was
512x512 when targeting the Spartan3L FPGA.

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

Table 2: Required accuracy of the solution for C++ and
Handel-C test cases, and the design speedup

Table 3:Virtex II Pro Synthesis results using Xilinx ISE

Mesh Size Number of
Occupied Slices

Total equivalent
gate count

8x8 264(5%) 5,990
16x16 295(5%) 6,497
32x32 415(8%) 9,321
64x64 536(8%) 12,376

128x128 789(16%) 18,107
256x256 1,247(25%) 29,244
512x512 2,125(43%) 51,115

1024x1024 3,875(43%) 94,484
2048x2048 4,926(99%) 180,879

Table 4:Spartan3L Synthesis Results using Xilinx ISE

Mesh Size Number of
Occupied Slices

Total equivalent
gate count

8x8 687(20%) 355,687

16x16 717(21.5%) 356,163

32x32 769(23%) 357,224

64x64 832(25%) 358,921

128x128 1049(32%) 361,956

256x256 1507(45.3%) 367,673

512x512 3187(96%) 375,293

Table 5:Altera Stratix synthesis results using Quartus II

Mesh Size

Total
Logic

Elements

Logic element
Usage by

Number of
LUT Inputs

Total
Registers

8x8 725 402 228
16x16 818 554 265
32x32 925 625 301
64x64 1068 709 360

128x128 1307 841 467
256x256 1739 1,070 670
512x512 2653 1,357 816

1024x1024 3491 1,809 1002
2048x2048 4501 2,201 1482

The above experimental results demonstrate that
implementing the MG algorithm on hardware outperforms a
software version of the algorithm.

V. CONCLUSION AND FUTURE WORK
In this paper, we have presented a hardware

implementation of the V-cycle Multigrid method for solving
the Poisson equation in two dimensions. Handel-C
hardware compiler is used to code and implement our
design and map them onto high-performance FPGAs, such
as, Virtex II Pro, Altera Stratix, and Spartan3L which is
embedded in the RC10 FPGA-based system from Celoxica.
The implementation performance is analyzed using the
FPGAs vendors’ proprietary software. Moreover, we
compare our implementation results with available software
version results running on General Purpose Processors and
written in C++. The obtained results have demonstrated
that MG on hardware outperforms MG on GPP. A speedup
of 142.86 was achieved for a problem size of 8x8, whereas
a speedup of 1.14 was achieved for 2048x2048. This
degeneration of the speedup is due to the increase of the
value of the required accuracy of the solution.

Possible future directions include realizing a pipelined

version of the algorithm, moving to a lower-level HDL such
as VHDL, mapping the algorithm into a coarse grain
reconfigurable systems (e.g., MorphoSys) [28], and
benefiting from the advantages of formal modeling [29].
We can also extend the benefit of MG in solving nonlinear
partial differential equations by implementing the Algebraic
Multigrid algorithm.

VI. REFERENCES

[1] N. Foster and R. Fedkiw, “Practical animation of liquids,” in

Proceedings of the 28th annual conference on Computer graphics and
interactive techniques, 2001, pp. 23-30

[2] B. Aruoba and J. Fernandez-Villaverde, J. “Comparing Linear and
Nonlinear Solution Methods for Dynamic Equilibrium Economies,”
Computing in Economics and Finance, Society for Computational
Economics. http://www.depts.washington.edu/sce2003/Papers/133.pdf.2003.

[3] M. Nielsen, P. Johansen, O. F. Olsen, and J. Weickert,editors, Scale
Space Theories in Computer Vision, in Lecture Notes in Computer
Science, v. 1682, 1999, Springer-Verlag, Berlin.

[4] R. P. Fedkiw, G. Sapiro and C.W. Shu, “Shock Capturing, Level Sets
and PDE Based Methods in Computer Vision and Image processing:
a review on Osher’s Contribution,” Journal of Computational Physics,
vol. 185, no. 2, pp.309-341, 2003.

[5] R. Whitaker and D.T Chen, “Embedded active surface for volume
visualization,” SPIE Medical Imaging VIII, 2167, February 1994, pp.
340-352.

[6] L. Gorelick, M Galun, E. Sharon, R. Basri, and A. Brandt, “Shape
representation and classification using the poisson equation,” IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
Washington, DC, USA . vol. 3, pp. 61–67, 2004

[7] M. Arigovindan, M. Sühling, P. Hunziker, and M. Unser, “ Multigrid
image reconstruction from arbitrarily spaced samples,” International
Conference on Image Processing, vol. 3, pp. 381-384, 2002.

[8] G. Longo, “ Computer Modelling and Natural Phenomena,” In ACM
SIGSOFT Software Engineering Notes. ACM Press, vol. 28, no. 5.
pp. 1-5, 2003.

[9] D. Kandel, E. Domany, and A. Brandt, “Simulations without critical
slowing down: Ising and three-state Potts model,” Physical Review B.
vol. 40, no. 1, 1989.

Mesh Size Accuracy Speedup
C++ Handel-C

8x8 0.001 0.001 142.86
16x16 0.001 0.001 185.59
32x32 0.001 0.001 119.23
64x64 0.001 0.001 58.56

128x128 0.2 0.001 20.77
256x256 1 0.001 5.25
512x512 1.1 0.001 2.92

1024x1024 1.3 0.001 1.58
2048x2048 2 0.001 1.14

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

[10] R. Brower, “Non-Abelian Projective Multigrid for Lattice Gauge
Theory,” Physical Review Letters,vol. 66, no. 10, 1991.

[11] B. Diskin and V. Harik, “On Efficient Multigrid Methods for
Materials Processing Flows with Small Particles”. NASA NIA
report, 2004.
http://www.nianet.org/technicalreports/pdfs/2004/2004-01.pdf.

[12] W. L. Briggs, V.E. Henson and S.F. Mccormick,. A Multigrid
tutorial, SIAM, Philadelphia, PA, second ed. 2000.

[13] A. Brandt, “Multi-Level Adaptive Solutions to Boundary Value
Problems,” Math. Comp, vol. l., no. 31, pp. 333-390, 1997.

[14] K. Nakajima, “Parallel Multilevel Iterative Linear Solvers for
Large-Scale Computations,” ACES 2nd Workshop Proceedings of
Second ACES Workshop, 2000, pp. 525-529.

[15] E. Chow, R. Falgout, J. Hu, S. Tuminaro, and U. Yang, “A Survey
of Parallelization Techniques for Multigrid Solvers” Technical
Report UCRL-BOOK-205864, LLNL, 2004.

[16] K. Compton and S. Hauck. "Reconfigurable Computing: A
Survey of Systems and Software". In ACM Computing Surveys,
vol. 34, no. 2, pp. 171-210, June 2002.

[17] Li, Y., Callahan, T., Darnell, E., Harr, R., Kurkure, U., and
I. Stockwood, J, “Hardware-Software Co-Design of Embedded

Reconfigurable Architectures,” In 37th Design Automation
Conference, Los Angeles, CA, pp. 507-512, 2000.

[18] R. Enzler, “The Current Status of Reconfigurable Computing,”
Technical Report, Electronics Lab., Swiss Federal Institute of
Technology (ETH) Zurich, 1999.

[19] A. Borzi, “Introduction to Multigrid Methods,” Institut
furMthematik und Wissenschaftliches Rechnen, 1999.
http://www.kfunigraz.ac.at/imawww/borzi/mgintro.pdf

[20] P. Wesseling, An Introduction to Multigrid Methods, John Wiley
& Sons, New York, 1992.

[21] MGNet Homepage: http://www.mgnet.org/
[22] J. Bramble, “Multigrid methods,” Pitman Research Notes in

Mathematics Series, vol. 294. Longman Scientific, 1997.
[23] T. Torsti, M. Heiskanen, M. Puska, and R. Nieminen, “ MIKA:

Multigrid-based program package for electronic structure
calculations, ” International Journal of Quantum Chemistry, vol.
91, no. 2, pp. 171-176, 2003.

[24] C. Douglas, “MadPack: A Family of Abstract Multigrid or
Multilevel Solvers,” Computation and Applied Mathematics, vol.
14, pp. 3-20, 1995.

[25] Celoxica http://www.celoxica.com
[26] Xilinx http://www.xilinx.com
[27] Altera http://www.altera.com
[28] I. Damaj, I. and H. Diab, “Performance Evaluation of Linear

Algebraic Functions Using Reconfigurable Computing,” The
International Journal of Super Computing, Kluwe, vol. 24, no. 1,
pp 91-107, 2003.

[29] I. Damaj, J. Hawkins and A. Abdallah, “Mapping High-Level
Algorithms onto Massively Parallel Reconfigurable Hardware,”
IEEE International Conference of Computer Systems and
Applications. pp 14-22, 2003.

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

