
 
Abstract—Partial Differential Equations (PDEs) play an 

essential role in modeling real world problems. The broad field 
of modeling such systems has drawn the researchers’ attention 
for designing efficient algorithms for solving PDEs. Multigrid 
solvers have been shown to be the fastest due to its high 
convergence rate which is independent of the problem size. 
Many attempts have been made to exploit the inherent 
parallelism of these solvers. Yet, most efforts fail in this respect 
due to many factors (time, resources) governed by software 
implementations. In this paper, we present a hardware 
implementation of the V-cycle Multigrid method for finding 
the solution of a 2D-Poisson equation. We use Handel-C to 
implement our hardware design, which we map onto available 
Field Programmable Gate Arrays (FPGAs). We analyze the 
implementation performance using the FPGA vendor’s tools. 
We compare our findings with a C++ version of the algorithm. 
The obtained results show better performance when compared 
to existing software versions. 
 

Index Terms—Hardware Design, High Performance 
Computing, Iterative Methods, Parallelization. 
 

I. INTRODUCTION 
A huge number of physical, chemical, and biological 

phenomena are described by means of Partial Differential 
Equations (PDEs). Examples of such phenomena are the 
motion of fluids [1], energy dissipation, Belousov-
Zhabotinsky reactions, and DNA matching. In addition, 
different applications in finance and economics [2], 
computer vision [3],[4], computer graphics [5], image 
processing [6-7], weather simulation [8], statistical physics 
[9], and computational physics [10] can be modeled using 
PDEs. Understanding, analyzing and solving these 
equations, efficiently, allows us to find the answers to the 
modeled systems or applications [11]. For this reason, a 
number of algorithms have been devised for solving PDEs 
with increasing precision.  
    Research has proved that the most powerful solver is the 
Multigrid algorithm [12-13]; which combines classical 
iterative algorithms, such as Gauss-Seidel, with subgrid 
refinement steps to give a method superior -in terms of  
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storage and computation-to classical iterative techniques. 
However, the computation of MG becomes complex and 
time consuming [7] as the complexity of the system or 
phenomena, to be modeled, increases.  
    Many attempts for exploiting the inherent parallelism of 
Multigrid have been made to achieve the desired efficiency 
and scalability of the method [14-15]. Yet, most efforts fail 
in this respect due to many factors (time and resources) 
governed by software implementations.  
     
  In the last decade, a new computing paradigm, 
Reconfigurable Computing (RC), has emerged. RC-systems 
overcome the limitations of the two well known computing 
paradigms: 1) General Purpose Processors (GPPs) in the 
form of software and 2) Application Specific Integrated 
Circuits (ASICs) in the form of hardware. RC-systems 
combine the flexibility offered by software and the 
performance offered by hardware [16-18]. It requires a 
reconfigurable hardware, such as an FPGA, and a software 
design environment that aids in the creation of 
configurations for the reconfigurable hardware [16]. RC-
systems have successfully accelerated a wide variety of 
applications. Most of these applications have been reported 
in the fields of: signal processing (e.g. weather forecasting, 
seismic data processing, Magnetic Resonance Imaging 
(MRI), adaptive filters), cryptography and DNA matching. 
 
    In this paper, we present a hardware implementation of 
the V-cycle MG algorithm for the solution of a 2D-Poisson 
equation using different classes of FPGAs: Xilinx Virtex II 
Pro, Altera Stratix and Spartan3L which is embedded on 
the RC10 board from Celoxica. We use Handel-C, a higher-
level design tool, to code our design which is analyzed, 
synthesized, and placed and routed using the FPGAs 
proprietary software (DK Design Suite, Xilinx ISE 8.1i and 
Quartus II 5.1). We compare our implementation results 
with existing software version of the algorithm, since there 
are no hardware implementations of MG in the literature.  
     A general overview of Multigrid solvers in general, and 
the V-cycle MG solver in particular is presented in Section 
2. In Section 3, we describe our proposed hardware 
implementation of the V-cycle MG for the solution of 2D-
Poisson equation. Then, the implementation results are 
presented in Section 4. Our results are compared with 
available software version results, written in C++ and 
running on a general purpose processor. Section 5 
concludes the work and presents possible future directions. 
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II. MULTIGRID SOLVERS: AN OVERVIEW 
Multigrid methods are fast linear iterative solvers used 

for finding the optimal solution of a particular class of 
partial deferential equations. Similar to classical iterative 
methods (Jacobi, Successive Over Relaxation (SOR) and 
Gauss Seidel), an MG method starts with an approximate 
solution to the differential equation; and in each iteration, 
the difference between the approximate solution and the 
exact solution is made smaller [19].  

In general, the error resulting from the exact and 
approximate solution will have components of different 
wavelengths: high-frequency components and low-
frequency components [22]. Classical iterative methods 
reduce high-frequency/oscillatory components of error 
rapidly, but reduce low-frequency/smooth components of 
error much more slowly [21].  

The Multigrid strategy overcomes the weakness of 
classical iterative solvers by observing that components that 
appear smooth on fine grid may appear oscillatory when 
sampled on coarser grid [22]. The high-frequency 
components of the error are reduced by applying any of the 
classical iterative methods. The low-frequency components 
of error are reduced by a coarse-grid correction procedure 
[19-20].  

A typical Multigrid cycle starts by applying any 
classical iterative method (Jacobi, Gauss Seidel or 
Successive Over Relaxation) to find an approximate 
solution for the system. The Residual operator is then 
applied to find the difference between the actual solution 
and the approximate solution. The result of this operator 
measures the goodness of the approximation. Since it is 
easier to solve a problem with less number of unknowns 
[13],[21]; a special operator-Restriction- for mapping the 
residual to a coarser grid (less number of unknowns) - is 
applied for several iterations until the scheme reaches the 
bottom of the grid hierarchy. Then, the coarse grid solver 
operator is applied to find the error on the coarsest grid. 
Afterwards, the interpolation operator is applied to map the 
coarse grid correction to the next finer grid in an attempt to 
improve the approximate solution. This procedure is applied 
until the top grid level is reached giving a solution with 
residual zero. Finishing with several iterations back to the 
finest grid gives a so-called- V-cycle Multigrid [12]. The 
MG algorithm is summarized in Fig. 1; the Multigrid basic 
operators are depicted in Fig. 2. 
 

 
Fig. 1: Multigrid Algorithm 

 
 
Fig. 2: V-cycle Multigrid 

 
    In this work, the V-cycle MG method is used to find the 
solution to a 2D-Poisson equation in the form: 
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III.  HARDWARE IMPLEMENTATION OF V-CYCLE 
MULTIGRID 

     All available Multigrid solvers are realized as software 
running on general purpose processors [20-21]. Available 
software packages have been implemented in C, Fortran-77, 
Java and other languages, where parallelized versions of 
these packages require inter-processor communication 
standards such as Message Passing Interface (MPI) [18]. 
Each of these packages attempt to achieve an efficient and a 
scalable version of the algorithm by compromising between 
the accuracy of the solution and the speed of realizing the 
solution. 
    The V-cycle Multigrid algorithm has been designed and 
implemented using Handel-C, a higher-level hardware 
design tool. Our choice was based on the language’s 
features for rapid and efficient prototyping; since Handel-C 
syntax is similar to the ANSI-C with additional extensions 
for expressing parallelism. The Handel-C compiler comes 
packaged with the Celoxica DK Design Suite [25]. 
     Our design has been tested using the Handel-C simulator; 
afterwards, we have targeted a Xilinx Virtex II Pro FPGA, 
an Altera Stratix FPGA, and an RC10 board from Celoxica. 
The tools provided by the device’s vendors were used to 
synthesize and place & route the design[25-27] 
     The Multigrid method can be parallelized by 
parallelizing each of its components; i.e., smoother, coarse 
grid solver, restriction and prolongation. Each of these 
components is parallelized by using the Handel-C construct 
‘par’. This is used whenever it was possible to execute 
more than one instruction in parallel without affecting the 
logic of the source code. The results obtained show a 
substantial improvement in the MG performance when 
compared to a traditional way of executing instructions on a 
GPP, as depicted in the following Fig. 3 and Fig. 4 for the 
two MG operators Restrict Residual and Correct. 
     Finding the solution to PDEs using MG requires floating 
point arithmetic operations which are 1) far more complex, 
and 2) consume more area than fixed point operations.  For 
this reason, Handel-C does not support floating point type. 
Yet, floating point arithmetic can be performed using the 
Pipelined Floating Point Library provided in the Platform 
Developer’s Kit.  
    Unfortunately, a failure in the Handel-C simulator 
persists whenever the number of floating point arithmetic 
operations exceeds four. We were notified that a fixed 

1. Perform few pre-smoothing Gauss-Seidel (or any 
iterative method) iterations to reduce the short 
wavelength errors in the solution. 

2. Compute Residual 
3. Restrict Residual (fine   coarse) 
4. Solve residual equation 
5 Interpolate solution(coarse  fine) 
6. Update the solution 
7. Perform few post-smoothing Gauss-Seidel (or any 

iterative method) iterations and return the 
improved solution to the next finer grid. 

S: Smooth 
R: Restrict 
P: Prolongate

Solve on coarsest grid 
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version of the DK simulator will be available in a future 
release of DK. The only possible way to avoid the 
simulator’s failure, in the current version, was to 
convert/Unpack the floating point numbers to integers and 
perform integer arithmetic on the obtained unpacked 
numbers, as shown in Fig. 3, 4 and 5. Though it costs more 
logic to be generated, the integer operations on the 
unpacked floating point numbers have a minor effect on the 
total number of the design’s clock cycles. 

     Originally, the Multigrid method depends on recursion, 
which cannot be supported by Handel-C. An iterative 
version of the algorithm is designed and shown in Fig. 6. 
Only a snapshot of the parallel version of (Smoother, Find 
Residual, Prolongate) MG components is shown in the 
figure. Their implementation style is very similar to what is 
shown in Fig. (3d) and Fig. (5a). Details about Restriction 
and Correct operators are shown in Fig. 3, Fig. 4, and Fig. 5.

 

 
Fig. 3: Correct operator, illustrating the effect of using par construct: (3a), (3b), (3c) and (3d) shows sequential code, flow charts, 
parallel code and combined flow chart/concurrent process model, respectively. The dots represent replicated instances in d). 

                      
         

macro proc Correct() 
  { 
      for ( int i =1; i<=L;i++) 
        for ( int j =1; j<=L; j++) 
         {    
          a[i][j] =  FloatUnpackFromInt32(FloatPackInInt32(a[i][j])+FloatPackInInt(v[i][j])  
         }    
} 
    

macro proc Correct() 
  { 
       i = 1 ;  
       par (i=1;i <=L;i++) 
             { 
  j = 1; 
 do  

    {           
                          a[i][j]=FloatUnpackFromInt32(FloatPackInInt32(a[i][j])+  
                                     FloatPackInInt32(v[i][j])); 
           j++; 
         
                     } while(j<=L); 
             }     
} 
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macro proc Restrict_Residual() 
 { 
     for (I=1;I <= L2;I++)      
       { 
             i = 2 * I - 1; 
             addCycles = FloatPipeAddCycles; 
             
              for ( J=1;J<=L2;J++) 
 {      
                       addCycles = FloatPipeAddCycles; 
              

     j = 2 * J - 1; 
        

     op1 =  FloatUnpackFromInt32(FloatPackInInt32(r[i][j])  
                + FloatPackInInt32(r[i+1][j])); 

                  
     op2 =  FloatUnpackFromInt32(FloatPackInInt32(r[i][j+1]) 
               +FloatPackInInt32(r[i+1][j+1])); 

                  
     opResult =  FloatUnpackFromInt32(FloatPackInInt32(op1)  
                        + FloatPackInInt32(op2)); 

                  

I<=L2

I = 1

i = 2 * I - 1

addCycles=FPipeAddCycl

J=1

j<=L2 

N 

I++

Y 

addCycles=FPipeAdd

i  = 2 * J-1

op1=r[i][j]+r[i+1][j]

op2=r[i][j+1]+r[i+1][j+1]

opResult = op1 + op2

R[i][j]=fFactor*opREsult

J++ 

(4b) (4a) 

Fig. 4:Restrict Residual operator sequential version: (4a), (4b) shows sequential code and the flow chart.
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Fig. 5: Restrict Residual operator, illustrating the effect of using par construct: (5a) and (5b) shows parallel code and combined 
flow chart/concurrent process model, respectively. The dots represent replicated instances 

 

   
Fig. 6:V-cycle MG, iterative version version each component parallelization. The dots in each of the component’ 
combined flowchart/concurrent process model represent replicated instances. 
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Fig. 3

macro proc Restrict_Residual() 
 { 
     par (I=1;I <= L2;I++)      
         {  
            par{  
                     i = 2 * I - 1; 
                    addCycles = FloatPipeAddCycles; 
                     J = 1; 
                  } 
                do  
                    {   
                        par {  
                        addCycles = FloatPipeAddCycles; 
                  j = 2 * J - 1; 
             } 
         par {  
                         op1=FloatUnpackFromInt32(FloatPackInInt32(r[i][j])+FloatPackInInt32(r[i+1][j])); 
                                 op2=FloatUnpackFromInt32(FloatPackIn32(r[i][j+1])+FloatPackInt32(r[i+1][j+1])); 
                  opResult = FloatUnpackFromInt32(FloatPackInInt32(op1)+FloatPackInInt32(op2)); 
                                 R[I][J]=FloatUnpackFromInt32(FloatPackInt32(fFactor)*FloatPackInt32(opResult)); 
    
             J++; 
      } 

} while (J<=L2);
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IV. EXPERIMENTAL RESULTS 
 
The Handel-C simulators along with the FPGA vendor’s 
tools were used to obtain the results. We draw a comparison 
of the execution time between our results and a software 
version written in C++, compiled using Microsoft Visual 
Studio .Net (2003) [21], and running on a Pentium (M) 
processor 2.0 GHz,  1.99 GB of RAM.  The obtained results 
are based on the following criteria: 
• Speed of convergence: the time it takes the 

Multigrid method to find the solution to the PDE 
in hand. The speed of convergence is measured 
using the clock cycles of the design –using the 
simulator-divided by the frequency at which the 
design operates at-using the generated timing 
analysis report. 

• Accuracy of the solution: The convergence of the 
Multigrid algorithm is greatly dependent on the 
accuracy of the solution. The increase in the 
accuracy results in the increase in both the 
computation and the logic utilization.  In this work, 
the required solution is realized as soon as an 
adequate degree of accuracy is obtained [21].    

• Chip-area: this performance criterion measures 
the number of occupied slices on the FPGA on 
which the design is implemented. The number of 
occupied slices is generated using the FPGA 
vendor’s place and route tool. 

The following selections were used for all tests.  
• Restriction: Full Weighting 
• Interpolation: Bilinear 
• Number of smoothing steps: 221 == vv  

( ingPostsmoothvesmoothingv aa 2,Pr1 ) 
• Smoother used: Gauss-Seidel 
• Accuracy: 0.001 for all Handel-C test cases and 

C++ test cases up to problem size 64x64. 
The timing results for Virtex II Pro FPGA (2vp7ff672-7) 
are shown in Table 1. We report the execution time for 
different problem sizes, along with the maximum frequency 
at which each design operates at. Execution time is 
calculated using: No. of clock cycles/Max. Frequency. 
 
Table 1:Execution Time + Max frequency for different 
problem sizes 

Mesh Size Execution Time(ms) Fmax(MHz)
8x8 0.000063 159.74 

16x16 0.00026 153.52 
32x32 0.00118 136.15 
64x64 0.00555 115.97 

128x128 0.031 83.91 
256x256 0.188 54.60 
512x512 1.308 31.45 

1024x1024 9.3 17.60 
2048x2048 70.97 9.28 

 
Fig.s 6 and 7 show the results of comparing the execution 
time when running a C++ version of the V-cycle Multigrid 

algorithm and our proposed Handel-C version. The 
superiority of the hardware implementation over the 
software implementation is clear in both figures. However, 
for a problem size greater than (64x64), it becomes difficult 
to measure the execution time of the software (C++) 
version with the same accuracy of 0.001. At that time, our 
concern was to force the C++ version of MG to converge at 
any price. This was only possible by sacrificing with the 
accuracy of the solution; where we had to gradually 
increase this factor until we reached an accuracy of 2.0 for a 
problem size of 2048x2048, in contrast to an accuracy of 
0.001 for a problem size of 8x8. On the other hand, Handel-
C results were independent from the accuracy of the 
solution. The accuracy was constant all the way from a 
problem size of 8x8 to 2048x2048. Obviously, this explains 
the degeneration of the speedup indicated in Fig. 7.  
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Fig. 7:Execution time of Handel-C implementation vs. 
C++ implementation lower side results. 
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Fig. 8: Execution time of Handel-C implementation vs. 
C++ implementation upper side results. 
  
In Table 2 we draw a comparison between the accuracy of 
the solution for each of the C++ and Handel-C test cases.  
The speedup of the design is calculated as the ratio of 
Execution Time (C++) / Execution Time (Handel-C). 
Tables 3, 4 and 5 show, respectively, the Virtex II Pro 
(2vp7ff672-7), Spartan3L (3s1500lfg320-4) and Altera 
Stratix(EP1S10F484C5) FPGA synthesis results for 
different problem sizes. When targeting Xilinx Virtex II Pro 
FPGA, the largest possible problem size that we could 
achieve was 2048x2048, where 99% of the slices were 
utilized. Meanwhile, the largest possible problem size was 
512x512 when targeting the Spartan3L FPGA.  
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Table 2: Required accuracy of the solution for C++ and 
Handel-C test cases, and the design speedup 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 3:Virtex II Pro Synthesis results using Xilinx ISE 

Mesh Size Number of 
Occupied Slices 

Total equivalent
gate count 

8x8 264(5%) 5,990 
16x16 295(5%) 6,497 
32x32 415(8%) 9,321 
64x64 536(8%) 12,376 

128x128 789(16%) 18,107 
256x256 1,247(25%) 29,244
512x512 2,125(43%) 51,115

1024x1024 3,875(43%) 94,484 
2048x2048 4,926(99%) 180,879 

 
Table 4:Spartan3L Synthesis Results using Xilinx ISE 

Mesh Size Number of 
Occupied Slices 

Total equivalent
gate count 

8x8 687(20%) 355,687 

16x16 717(21.5%) 356,163 

32x32 769(23%) 357,224 

64x64 832(25%) 358,921 

128x128 1049(32%) 361,956 

256x256 1507(45.3%) 367,673 

512x512 3187(96%) 375,293 
 
Table 5:Altera Stratix synthesis results using Quartus II 

 
Mesh Size 

Total 
Logic 

Elements 

Logic element 
Usage by 

Number of 
LUT Inputs 

Total 
Registers

8x8 725 402 228 
16x16 818 554 265 
32x32 925 625 301 
64x64 1068 709 360 

128x128 1307 841 467 
256x256 1739 1,070 670 
512x512 2653 1,357 816 

1024x1024 3491 1,809 1002 
2048x2048 4501 2,201 1482

 

The above experimental results demonstrate that 
implementing the MG algorithm on hardware outperforms a 
software version of the algorithm.      

V. CONCLUSION AND FUTURE WORK 
In this paper, we have presented a hardware 

implementation of the V-cycle Multigrid method for solving 
the Poisson equation in two dimensions. Handel-C 
hardware compiler is used to code and implement our 
design and map them onto high-performance FPGAs, such 
as, Virtex II Pro, Altera Stratix, and Spartan3L which is 
embedded in the RC10 FPGA-based system from Celoxica. 
The implementation performance is analyzed using the 
FPGAs vendors’ proprietary software. Moreover, we 
compare our implementation results with available software 
version results running on General Purpose Processors and 
written in C++. The obtained results have demonstrated 
that MG on hardware outperforms MG on GPP. A speedup 
of 142.86 was achieved for a problem size of 8x8, whereas 
a speedup of 1.14 was achieved for 2048x2048. This 
degeneration of the speedup is due to the increase of the 
value of the required accuracy of the solution.  

 
Possible future directions include realizing a pipelined 

version of the algorithm, moving to a lower-level HDL such 
as VHDL, mapping the algorithm into a coarse grain 
reconfigurable systems (e.g., MorphoSys) [28], and 
benefiting from the advantages of formal modeling [29].  
We can also extend the benefit of MG in solving nonlinear 
partial differential equations by implementing the Algebraic 
Multigrid algorithm. 
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