

Abstract—Linear equations provide useful tools for

understanding the behavior of a wide variety of phenomena—
from science and engineering to social sciences. A number of
techniques have arisen to find the solution of these systems;
examples are Jacobi, Gauss-Seidel, Successive Over Relaxation,
and Multigrid. In this paper, we present an accelerated version of
the Jacobi algorithm by implementing it on reconfigurable
hardware devices- Field Programmable Gate Arrays such as
Virtex II Pro, Altera Stratix and Spartan3L. The design presented
is implemented using Handel-C, a hardware compiler. The
implementation results obtained are compared with a software
version results written in C++ and running on a general purpose
processor. Final results illustrate that Jacobi on a reconfigurable
hardware can outperform a software version of the same
algorithm.

Index Terms— FPGA; Hardware Design, Iterative Methods,
Parallelization, PDE.

I. INTRODUCTION
 The problem of finding the solution of Partial Differential
Equations (PDEs) plays a central role in modeling real world
problems varying from physics, chemistry, economics,
computer vision and engineering. The broad field of modeling
real systems has drawn the researchers’ attention for designing
efficient algorithms for solving PDEs [6].Examples of such
algorithms are: Gauss-Seidel, Multigrid, Successive Over
relaxation and Jacobi.

The simplest iterative method for solving a linear system of
equations, bA =Φ , is the Jacobi method. It is relatively easy
to understand and is usually considered as a starting point for
understanding more useful but complicated iterative methods.
The advantage of the Jacobi method over other iterative
methods lies in its computation which can be, trivially, done in
parallel. However, for large system of linear equations, it is
not preferable to use the Jacobi technique since the other
iterative methods have proved to be more powerful and
converge faster than the Jacobi [2]. For this reason, all the
effort has been reserved for implementing and designing
accelerated versions of SOR, Multigrid and Gauss-Seidel,
leaving few versions of Jacobi for solving problems of small
sizes. In an attempt to benefit from the simplest iterative
method (Jacobi) which is primarily used in education; we

Manuscript received March , 2007.
Safaa J. Kasbah is with the Division of Computer Science and

Mathematics, Lebanese American University, Beirut, Lebanon (phone: 961-3-
788402; email: safaa.kasbah@lau.edu.lb).

Issam W. Damaj is with the Department of Electrical and Computer
Engineer, Dhofar University, Salalah, Sultanate of Oman (e-mail:
i_damaj@du.edu.om).

benefit from the technological advanced to accelerate the
method.

The emergence of the new computing paradigm,
Reconfigurable Computing (RC), introduces novel techniques
for accelerating certain classes of applications including signal
processing (e.g., weather forecasting, seismic data processing,
Magnetic Resonance Imaging (MRI), adaptive filters),
cryptography and DNA matching [5]. Besides, the well known
direct PDE solver, fast fourier transform, which is used in a
number of signal and image processing algorithms, has been
successfully accelerated using RC concepts [7]. RC-systems
combine the flexibility offered by software and the
performance offered by hardware [4]. It requires a
reconfigurable hardware, such as an FPGA, and a software
design environment that aids in the creation of configurations
for the reconfigurable hardware [5].

This paper provides the first hardware implementation of
the Jacobi method for computing the solution to a 2D Poisson
equation. We use Handel-C, a hardware compiler, to code our
design which is mapped into Virtex II Pro, Altera Stratix and
Spartan3L Field Programmable Gate Arrays. The design is
analyzed, synthesized and placed and routed using the FPGAs’
propriety software. The results obtained demonstrate that
Jacobi in hardware outperforms Jacobi in software.

The rest of the paper is organized as follows: Section 2
introduces the Jacobi method. Section 3 introduces our
hardware implementation of the method. Section 4 gives the
experimental results. The conclusion and the future work are
drawn in Section 5.

II. DESCRIPTION OF THE ALGORITHM
The simplest iterative method for solving a linear system of

is the Jacobi method. As it is the case with the other iterative
methods (Gauss-Seidel, SOR and Multigrid), the Jacobi
technique starts with an initial estimate for the true solution
and at each step, the current approximate solution is used to
produce a better approximation for the true solution. This
iterates continues until the approximate solution is sufficiently
close to the true solution. Unlike Gauss-Siedel and SOR
strategies where the update of the thi)1(+ element depends on

the update of the thi element, the Jacobi’s strategy is updating
all the elements at the same time [2].

Given the linear system of equations:
bA =Φ

where A can be split into three matrices: the diagonal)(D , an
upper triangular)(U and a lower triangular)(L ; having D

The Jacobi Method in Reconfigurable Hardware

Safaa J. Kasbah and Issam W. Damaj

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

the diagonal part of A , U− the upper part of A , and L− the
lower part of A . A can be written as: ULDA −−=
Therefore:

bULD =Φ−−)(can be rewritten as:
bULD +Φ+=Φ)(and

bDULD 11)(−− +Φ+=Φ

This leads to the iterative Jacobi technique:

bDULD kk 1)1(1)()(−−− +Φ+=Φ where ,...2,1=k

The convergence of the Jacobi technique is guaranteed if
the matrix A is diagonally dominant; i.e., in every row of the
matrix, the magnitude of the diagonal entry in that row is
larger than the sum of the magnitude of all the other entries in
that row [2].

III. IMPLEMENTATION
The Jacobi algorithm was designed and implemented using

a higher level hardware design tool, Handel-C. Our choice of
the tool was based on the language’s features for rapid and
efficient prototyping. Handel-C syntax is similar to ANSI-C
with additional extensions for expressing parallelism, e.g.
‘par’ construct [3]. The Handel-C compiler comes packaged
with Celoxica Design Suite.

We tested our Jacobi design using the Handel-C simulator.

We targeted available high-performance FPGAs: Xilinx Virtex
II Pro, Altera Stratix, and Spartan3L which is hosted on an
RC10 board from Celoxica. We synthesized and placed and
routed the design using the devices’ vendors’ tools [1] [3] [8].

Unlike Gauss-Seidel and SOR, in the Jacobi iteration, all

elements are updated at the same time and the computation
can be done in parallel. In our Handel-C design we used the
‘par’ construct whenever it was possible to execute more than
one instruction in parallel and in the same clock cycle. The
traditional l way of executing instructions on a GPP is shown
in Figure 1, where a sequential version of the Jacobi algorithm
was design to be compared with our hardware design of the
algorithm. Figure 2 shows the combined flowchart/concurrent
process model of our design. Estimating the number of clock
cycles needed for each version, one can easily expect that the
hardware version would outperform the software version.

It is well known that Floating point operations are far more

complex than fixed point operations. They consume more area
on FPGA, for this reason, Handel-C does not support floating
point type. To handle floating point arithmetic operations in
our design, we used the Pipelined Floating Point Library
provided in the Platform Developer’s Kit from Celoxica. The

library contains: the Float type, macro procedures needed to
perform arithmetic operations on floating point numbers, and
macros for converting from integers to floating points and vice
versa.

Fig. 1: Jacobi Flowchart, Sequential Version

Unfortunately, a failure in the current version of the

Handel-C simulator persists whenever the number of floating
point arithmetic operations exceeds four. The only possible
way to avoid the bug in the simulator was to convert/unpack
the floating point numbers to integers and perform integer
arithmetic on the unpacked numbers. Though it costs more
logic to be generated, the integer operations on the unpacked
floating point numbers have a minor effect on the total number
of the design’s clock cycles.

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

Fig. 2: : Jacobi parallel version, showing the combined flowchart/concurrent process model. The dots represent

replicated instances.

 “Magnetization (A ⋅ m−1),” not just “A/m.” Do not label
axes with a ratio of quantities and units. For example, write
“Temperature (K),” not “Temperature/K.”

Multipliers can be especially confusing. Write
“Magnetization (kA/m)” or “Magnetization (103 A/m).” Do
not write “Magnetization (A/m) × 1000” because the reader
would not know whether the top axis label in Fig. 1 meant
16000 A/m or 0.016 A/m. Figure labels should be legible,
approximately 8 to 12 point type.

IV. EXPERIMENTAL RESULTS
The hardware implementation results were obtained using

the Handel-C simulator and the FPGA vendor’s tools (DK
Design Suite, Xilinx ISE 8.1i and Quartus II 5.1). The software
version was written in C++, compiled using Microsoft Visual

Studio .Net and running on a Pentium (M) processor 2.0 GHz,
1.99 GB of RAM.

We targeted Xilinx Virtex II Pro (2vp7ff672-1) FPGA,
simulated our design and calculated the execution time using
clock cycles of the design divided by the frequency at which
the design operates at.

The execution time of Jacobi in hardware (Handel-C) and in
software (C++) is shown in Figure 3 for different problem
sizes. As the Figure shows, a significant improvement in the
execution time of the hardware implementation of the
algorithm over the software implementation. This acceleration
is directly presented in Table 1.

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

0

1

2

3

4

5

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

8x8 16x16 32x32 64x64

Mesh size

Handel-C C++

Fig. 3(a): Jacobi execution time results in both versions
Handel-C and C++

10.00
110.00
210.00
310.00
410.00
510.00
610.00
710.00

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Mesh size

Handel-C C++

Fig. 4(b): Jacobi execution time results in both versions
Handel-C and C++

Table 1: Design Speedup: Execution Time (C++) /
Execution Time (Handel-C)

Mesh Size Speedup
8x8 223.8095
16x16 56.2
32x32 5.676667
64x64 2.89267
128x128 1.409887
256x256 2.287887
512x512 2.386364
1024x1024 0.753898
2024x2024 1.391351

The Handel-C code was synthesized for Xilinx Virtex II Pro

(2vp7ff672-1), Altera Stratix (ep1s10f484C5), and Spartan3L
(3s15001fg320-4) which is embedded on RC10 board from
Celoxica. Tables 2, 3 and 4 report the obtained synthesis
results.

Table 2: Virtex II Pro Synthesis Results
Mesh Size Number of Occupied

Slices
Total equivalent gate

count
8x8 146 3,229

16x16 159 3,397
32x32 299 5,090
64x64 380 7,849

128x128 499 11,897
256x256 839 17,864
512x512 1286 23,649

1024x1024 1890 31,327
2048x2048 3198 35,839

Table 3: RC10 Spartan3L Synthesis Results
Mesh Size Number of

Occupied Slices
Total equivalent gate

count
8x8 416 356,109

16x16 599 357,631
32x32 7326 359,989
64x64 9010 342,768

128x128 1198 389,999
256x256 1665 397,987
512x512 2810 498,030

Table 4: Altera Stratix Synthesis Results

Mesh Size Total Logic
Elements

Logic element
usage by

number of LUT
inputs

Total
Registers

8x8 610 354 189
16x16 709 401 232
32x32 880 556 300
64x64 1001 681 385

128x128 1286 801 390
256x256 1590 950 476
512x512 2589 1,101 560

1024x1024 3342 1,499 689
2048x2048 3927 1,941 819

V. CONCLUSION
In this paper, we presented a hardware implementation of

the Jacobi algorithm using a hardware compiler, Handel-C,
and a reconfigurable hardware, FPGA. The design was
mapped onto high-performance FPGAs: Virtex II Pro, Altera
Stratix and Spartan3L which is embedded in the RC10 board
from Celoxica. The FPGAs vendors’ proprietary software
were used to analyze the performance of our hardware
implementation. Our findings were compared to a software
version written in C++, compiled using Microsoft Visual
Studio .Net and running on a general purpose processor. The
implementation results prove that Jacobi on hardware
outperforms Jacobi on GPP.

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

REFERENCES
[1] Altera Inc., www.altera.com. 2006.
[2] Bertsekas D. P. and Tsitsiklis J. N., "Some aspects of parallel and

distributed iterative algorithms -- a survey," Automatica, vol. 27, no. 1,
pp. 3--21, 1991.

[3] Celoxica, www.celoxica.com. 2006.
[4] Compton K. and Hauck S. "Reconfigurable Computing: A Survey of

Systems and Software". In ACM Computing Surveys, vol. 34, no. 2, pp.
171-210, June 2002.

[5] Li Y., Callahan T., Darnell E., Harr R., Kurkure U., and Stockwood J.,
"Hardware-Software Co-Design of Embedded Reconfigurable
Architectures," In 37th Design Automation Conference, Los Angeles,
CA, pp. 507-512, 2000.

[6] Osher, S. and Fedkiw, R. Level set methods: An overview and some
recent results. Tech. Rep. 00-08, UCLA Center for Applied Mathematics,
Department of Mathematics,University of California, Los Angeles, 2000.

[7] Uzun, I. S., Amira, A. and Bouridane, A. “FPGA implementations of
fast Fourier transforms for real-time signal and image processing”. IEE
Proceedings - Vision, Image, and Signal Processing. vol. 152, no. 3, pp.
283-296, 2005.

[8] Xilinx. www.xilinx.com. 2006.
[9] Young D., "Iterative Methods for Solving Partial Difference Equations

of Elliptic Type", Ph.D. Thesis, Department of Mathematics, Harvard
University, 1950.

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

