
 
 

 

  
Abstract— In many applications of failure time data analysis, 
it is important to perform inferences about the median of the 
distribution function in situations of failure time data modeling 
with skewed distribution. For failure time distributions where 
the median of the distribution function can be analytically 
calculated, its maximum likelihood estimator is easily obtained 
from the invariance properties of the maximum likelihood 
estimators. From the asymptotical normality of the maximum 
likelihood estimators, confidence intervals can be obtained. 
However, these results might not be very accurate for small 
sample sizes and/or with large proportion of censored obser-
vations. Considering the three-parameter Weibull distribution 
for the failure time data, we present and compare the accuracy 
of asymptotical confidence intervals with confidence intervals 
based on bootstrap simulation. The alternative methodology of 
confidence intervals for the median of the three-parameter 
Weibull distribution function is illustrated by using real data 
from engineering field. The nonparametric bootstrap procedure 
was implemented in the SAS® system which incorporated proc 
nlp, proc surveyselect and proc iml in the SAS® macro 
environment. 

Keywords: bootstrap, failure time, three parameter Weibull, 
skewed,  

I. INTRODUCTION 
 

In failure time data analysis, we usually have a skewed 
distribution function. One of the skewed distributions which 
play a central role in the analysis of failure time data is Weibull 
distribution, introduced by Waloddi Weibull, a Swedish 
physicist, who used it to represent the probability distribution 
of the breaking strength materials.   
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Indeed, this distribution is as central to the parametric analysis 
of failure time data as the normal distribution is in linear 
modeling. For the skewed distribution, a more appropriate and 
more tractable summary of the location of the distribution is the 
median failure time [1].   Usually, we have interest in the 
estimation of the median failure time where the central of 
tendency of the distribution function occurs. 

 
Considering the three-parameter Weibull distribution, we 
introduce asymptotical based inferences and bootstrap based 
inferences for the median of the failure time. It is important to 
note that usually, in the literature of failure time data analysis, 
confidence intervals for the median of the failure time are based 
on asymptotic arguments. A recent study about the Weibull 
distribution, related to this work, is presented in [2] 

 
This paper is organized as follows: in Section II we introduce 
some characteristics of the three-parameter Weibull 
distribution; in Section III we introduce the likelihood function 
in the presence of censored observations; in Section IV we have 
comparison between asymptotical based inferences and 
bootstrap simulation based inferences for the median failure 
time; in Section V we give illustrative example with real data 
set and section VI is the conclusion.. 
 
 
II. THE THREE-PARAMETER WEIBULL DISTRIBUTION 
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This function depends on three parameters β, η and γ, which 
are all greater than zero.  In the particular case where β = 1, 
the hazard function takes a constant value η –1, and the 
failure times have an exponential distribution.  For other 
values of β, the hazard function increases or decreases 
monotonically, that is, it does not change direction.  The 
shape of the hazard function depends critically on the value 
of β, and so β is known as the shape parameter, while the 
parameter η is a scale parameter.  Sometimes γ is called a 
“guarantee parameter” because with γ > 0, failure is 
impossible before time γ.  In some physical applications it 
makes sense to constraint γ > 0, but there is no mathematical 
reason to do this.  For this particular choice of hazard 
function, the survivor function according to [3] is given by 
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   The corresponding probability density function is then 
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The general form of this density function for γ = 2 and different 
combination values of β and η is shown in fig. 1.  The 
right-hand tail of this distribution is longer than the left-hand 
one, and so the distribution is positively skewed 
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Fig. 1. Weibull probability density function for γ = 2 and three 
combinations of β and η 

 
The mean, or expected value, of a random variable T (time to 
failure) that has three-parameter Weibull distribution is as 
follows 
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where Γ  (x) is the gamma function defined by 
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However, since the Weibull distribution is skewed, a more 
appropriate and more tractable summary of the location of the 
distribution is the median failure time.  This is the value 50t  

such that S{ 50t  } = 0.5, so that 
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and 
 

( )βηγ
1

50 2log+=t                                                           (6) 
 

Since the Weibull hazard function can take a variety of forms 
depending on the value of the shape parameter β, appropriate 
summary statistics can be easily obtained.  This distribution is  
widely used in the parametric analysis of reliability data. 

 
 

III. THE LIKELIHOOD FUNCTION IN THE PRESENCE OF 
RIGHT CENSORED DATA 

 
Let 00

1 ,..., nTT  be the true failure times of a sample of size n, 
assumed to be independent identically distributed with a 
three-parameter Weibull distribution with hazard function (1). 
Assuming that the observations are subject to arbitrary right 
censoring, the period of follow-up for the ith individual is 
limited to a value ic . Then, the observed failure time of the ith 

individual is given by it = min  ( i
o

i cT , ). 
 

Define δi such that δi = 0 if  0
iT  ≥ ic  (a censored observation) 

and δi = 1 if 0
iT  < ic  (an observed failure of some kind). 

The likelihood function for η, β and γ  is given by 
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The corresponding log-likelihood function is given by 
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This function is unbounded, since for any β < 1, l(η,β,γ | t ) → 
∞ as γ → t(1)–.  Consequently, a solution to the likelihood 
equation η∂∂ /l  = 0, β∂∂ /l  = 0, γ∂∂ /l  = 0, does not 
produce a global maximum for the likelihood.  However, 
situation in which the three-parameter Weibull distribution is 
used typically have β ≥ 1, and we restrict attention to this case 
[3].  With the restriction β ≥ 1, the likelihood function is 
bounded and it may have a local maximum at a point ( )γβη ˆ,ˆ,ˆ , 

with η̂  > 0, β̂  > 1 and γ̂  < t(1), which are obtained by 
differentiating the log-likelihood function with respect to η, β 
and γ, equating the derivative to zero and solve these equations 
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The maximum likelihood estimator for the median failure time 
t50 is obtained from the maximum likelihood estimators η̂ , 

β̂  and γ̂ , that is 
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Asymptotical confidence intervals for  t50 = g(η,β,γ) are 

obtained using the delta method, that is, ( )[ ]505050 var,~ˆ ttNt
a

.  

The asymptotical variance of ( )γβη ˆ,ˆ,ˆ5̂0 gt =  can be obtained 
by using delta method. 
 
 

IV. BOOTSTRAP CONFIDENCE INTERVALS FOR t50 

 
In this section we introduce the steps for the construction of 
bootstrap confidence intervals for t50, the median of the Weibull 
distribution function. The advantage of the bootstrap is that the 
joint distribution of the maximum likelihood estimators is not 
assumed to be normal, unlike in the delta method. 
 
We consider bootstrap method to construct the confidence 
intervals for t50: the p-Bootstrap method suggested by [4], 
based on the percentiles of the bootstrap distribution.  Other 
existing alternatives for the p-Bootstrap, not considered in this 
paper, could also be used to construct confidence intervals. For 
a complete review of available approaches to bootstrap 
confidence intervals, see [5] , [6] and [7]. 
 
Let δ,(tU = ) be the observed data where t = (t1, ..., tn) is the 
vector of failure time data and δ = (δ1, …, δn) is the vector of 
indicators of censored observations 

 
p-Bootstrap 

 
[a]  Random select, with replacement from U, a bootstrap 

sample ( *
1t , *

1δ ), ..., ( *
nt , *

nδ ). 

[b]  From the bootstrap sample in [a], find the maximum 

likelihood estimates of t50, denoted by *
50t̂ . 

[c] Repeat steps [a] and [ b], B times. 

[d] From *
50t̂  = ( ) ( ) ( )( )*

50
*

250
*

150
ˆ...ˆˆ

Bttt ≤≤≤ find a 100×(1 − α)% 

bootstrap confidence interval given by ( ) ( )( )*
50

*
50 21

ˆ,ˆ
qq tt  

where q1 = [(α/2)B] and q2 = B − q1. 

V. AN ILLUSTRATIVE EXAMPLE 
 

As an illustrative example, consider the sample of failure 
times (in number of kilometer of use) of vehicle shock absorber 
(see Table 1), first reported in [8].  Engineer responsible for 
higher-level automobile system reliability would be interested 
in the failure-time distribution for this part [9]   concluded that 
the Weibull distribution appears to provide a better description 
of this data compared to lognormal distribution. 

 
 
             Table 1. Distance to Failure for 38 Vehicle Shock Absorbers 

 
 
In Tables 2 and 3, we have 95% asymptotical and bootstrap 

confidence interval for parameters t50.  The empirical bootstrap 
distributions are presented in Fig. 2 (left).  

 
 

Table 2.  Maximum likelihood estimates and asymptotical confidence intervals. 
 

Parameter MLE SE 95% Confidence Interval 
    
    t50    

 
24721.137 

 
2598.003      

 
(19629.145;29813.128) 

 
 
To check if the normality of the empirical bootstrap 

distributions for t50 is appropriate, we have in Fig. 2 (right), 
their normal quantile-quantile plot.  If we have normality, then 
the points in these plots should lie roughly on a straight line.  
From this plot, we clearly observe that the normality 
assumption is not appropriate, which justifies the use of 
bootstrap methods to construct confidence intervals for the 
parameter.  This positively skewed distribution is also 
supported by the asymmetry index  value which is 1.6367 (see 
Table 4). 

 

Table 3.  Bootstrap estimates, p-Bootstrap confidence intervals. 

 
Parameter MLEa SEa  95% Confidence Interval 

p-Bootstrap 
   
    t50    

 
25082.082 

 
2032.801 

 
(21604.192;29822.508) 

Distance Failure Distance Failure Distance Failure 
  6700 Failure 12870 Censored 20100 Failure 
  6950 Censored 13150 Failure 20100 Censored 
  7820 Censored 13330 Censored 20150 Censored 
  8790 Censored 13470 Censored 20320 Censored 
  9120 Failure 14040 Censored 20900 Failure 
  9660 Censored 14300 Failure 22700 Failure 
  9820 Censored 17520 Failure 23490 Censored 
11310 Censored 17540 Censored 26510 Failure 
11690 Censored 17890 Censored 27410 Censored 
11850 Censored 18450 Censored 27490 Failure 
11880 Censored 18960 Censored 27890 Censored 
12140 Censored 18980 Censored 28100 Censored 
12200 Failure 19410 Censored   
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Fig. 2.  (Left) Distribution of B = 1000 bootstrap replications 
for parameter t50 along with their 95% confidence intervals, 
where (⎯): asymptotic confidence interval and (…): 
p-Bootstrap, (Right) quantile-quantile plots for t50 

 

 

From the obtained results of Table 4, we observed that the 
obtained bootstrap confidence intervals are more accurate than 
the obtained asymptotical intervals. The lengths of interval are 
10183.983 and 8218.316 for asymptotic and bootstrap 
approach, respectively.  Beside that the result also provided 
strong evidence that β > 1 (not presented here), indicating that 
the shock absorber population has a hazard function that 
increases with age.  This is consistent with the suggestion that 
shock absorber tends to wear out 

 
Table 4.  Range (R) and asymmetry index (F) for the 95% confidence 

interval for t50 

 
 t50 

R F 
Asymptotical 10183.983 1.0000 
p-Bootstrap   8218.316 1.6367 

 
 

VI   CONCLUSION 
 

Considering the three-parameter Weibull distribution, we 
presented bootstrap based method to construct confidence 
intervals for the median of failure time.  We have showed with 
numerical example that the nonparametric bootstrap can be 
quite useful.  We observed better inference results considering 
bootstrap based method in comparison to the usual 
asymptotical inference based on the normality of the maximum 
likelihood estimators. As pointed in [2], the difference between 
asymptotic confidence interval and the bootstrap confidence 
interval might be due to the fact that the variance obtained by 
the delta method depends on Taylor series approximation 
where the error terms are ignored. These terms are part of the 
variances computed by bootstrapping. 

 
The bootstrap can also be used to obtain confidence intervals 

for other functions of the parameters. For example, we could 
obtain confidence intervals for the mean time to failure (MTTF) 
of the Weibull distribution. The nonparametric bootstrap 
procedure was implemented using SAS software with macro 
[10].  
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