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Abstract--A non-symmetric matrix splitting 
is presented for the solution of certain 
sparse linear systems. The author reports 
the comparison and the convergence 
performance of the previous and the 
contemporary methods and includes explicit 
comments. It is studied that some recent 
methods may work efficiently with a 
symmetric matrix but show insufficiencies 
like numerical instability and non-scaling 
invariant with non-symmetric matrix. The 
proposed matrix splitting can overcome 
these deficiencies. 
Keywords: Sparse matrix, M-matrices, 
orthogonalization, Krylov Space, Iterative 
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1-Introduction. 

 
Recently some orthogonalization iterative 
methods e.g. GMRES methods or generalized 
minimal residual methods have been used for the 
solution of sparse symmetric linear systems,   
Ax  =  b …………………………………….(1.1) 
Where A is a sparse matrix. In most of the 
studies these methods are matched up to and 
compared in many studies (see, for example [2], 
[3], [15], [16], [17] and [19]). These methods in 
fact minimize rn = b – Axn = nth residual in a 
Krylov Space Kn(A;r0). With an initial 
presumption x0 an inimitable sequence {xn} is 
created with: 
 xn   x0  +  < Ar0,  A2r0, A3r0,  A4r0 ……. ,     
                                        An-1r0 > …………..(1.2) 
 satisfying:                                                                        
  rn     =  minimum,       ……………………(1.3) 
 which is equivalent to the orthogonality 
condition: 
 rn  ⊥  < Ar0,  A2r0,  A3r0,  A4r0 ……. , An-1r0 >     
                                         …………………..(1.4) 
The vigorous execution of (1.2) – (1.4) is 
GMRES iteration method. The execution uses 
Arnoldi Method (see [1]) to create an orthogonal 
basis for the Krylov Space Kn(A;r0) which leads 
to an (n + 1) x n Hessenberg Least-Square 
problem ( see [16]). At each step we have: en = 
pn(A)e0  ,    rn = pn(A)r0 where pn(Z) is a 

polynomial of degree n with  and pn(0)  =  1. 
Convergence will take place if and only if pn 
exists for which ║pn(A)r0║decreases  rapidly, 
and a sufficient condition for this is that 
║pn(A)║ should decrease rapidly. GMRES is in 
fact well suited to normal matrices unfortunately 
nonsymmetric matrices are rarely normal. There 
is always storage requirement problem and to 
keep storage requirement under control, 
GMRES is often restarted after each k- steps 
(see [15]). It is also reported that GMRES 
algorithm is unreliable as there are instances 
where the residual norms produced by the 
algorithm, although non-increasing, do not 
converge to zero (see [16]). As far as the 
GMRES-Like methods, for example BCG 
method and a sufficient condition for this is that 
║pn(A)║ should decrease rapidly. GMRES is in 
fact well suited to normal matrices and 
unfortunately nonsymmetric matrices are rarely 
normal. There is always storage requirement 
problem and to keep storage requirement under 
control, GMRES is often restarted after each k-
steps (see [15]). It is also reported that GMRES 
algorithm is unreliable as there are instances 
where the residual norms produced by the 
algorithm, although non-increasing, do not 
converge to zero (see [16]). As far as the 
GMRES-Like methods, for example BCG 
method and CGS methods, are concerned it is 
reported that they are susceptible to the 
possibility of breakdown-division by zero (see 
[15]). Gutknecht ([9]) has presented a 
BICGStab method for matrices with complex 
spectrum. 
The slightly older methods for the solution of 
(1.1) rely on variants of point block ICCG, 
where the conjugate gradient algorithm is 
preconditioned by a partial factorization of the 
coefficient matrix. However, these highly refined 
and efficient techniques do not extend to the 
more general case of unsymmetric linear systems  
(see [4]). Kershaw [12] generalizes the ICCG 
method to arbitrary non-singular sparse matrices 
arising from the partial differential equations and 
obtains the modified equation:

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007



 

 ) y -  (0)x(A

T Ai - 1A)T(A
 ki 

 1i iα

    (0)x    (k)x

∑
=

=

+=

 

where α is chosen to minimize x   -  x )k( . 

The main problem with this approach is that the 
amount of work per iteration is almost doubled 
because it is necessary to multiply by AT and A 
at each iteration in order to avoid the actual 
production of ATA in the sparse case. It can be 

noted that when A is not symmetric ( )2
1

TAA  
may be a poor approximation to AT or A and, 

therefore, ( )2
1

TAA  cannot be used in place of A.  
In other studies more importance is given to the 
splitting of the coefficient matrix, which draws 
to a close to the storage problem and provides 
reliable methods for the solution of non-
symmetric systems (see [17] and [13]). We 
present the results and findings of one of these 
studies for a general reader. The computer codes 
of the method are published. We also present 
some new theorems which are proved recently.  
The method is designed for the solution of non-
symmetric systems (1.1) but it is capable of 
using all the robust techniques, developed for the 
solution of symmetric linear systems. The 
method is found to be more suitable for the 
iterative solution of (1.1), where A is a sparse 
unsymmetric M-matrix or nearly symmetric 
structured M-matrix. We propose a particular 
class of regular splitting and call this class of 
regular splitting the generalized regular splitting 
or GRS and the corresponding iterative method, 
the generalized regular splitting method or GRSI 
method. A simple technique is designed to 
produce a symmetric and positive definite matrix 
or SPD splitting matrix. This allows for the 
stable efficient incomplete Cholesky 
factorization of the splitting matrix as the 
preliminary steps to an iterative solution. 
Because of the presence of a SPD matrix any 
other efficient technique developed for 
symmetric system can be used. 
 
Definition1.1: 
Given an M-matrix A, the splitting  
A = (S + ∆)  -  (H  +  ∆)………………...…(1.2) 

Is called the generalized regular splitting or 
GRS if  S = [si,j] is a symmetric M-matrix such 
that: 

 
 
 
 

The matrix H = [hi,j] is such that  
hi,j  =  si,j   -  ai,j   ≥ 0   for all i,j.  
The non-negative diagonal matrix Δ = [δi,j] is 
such that: 

 
 
 

 
 
2- Choice of δ. 
If matrix S is not a diagonally dominant matrix, a 
non-negative diagonal matrix Δ = [δi,j] is added 
to make the matrix S a diagonally dominant 
matrix to avoid the breakdown, where δ is small 
and is chosen so that (S + ∆) is a symmetric and 
diagonally dominant M-matrix and (H  +  ∆) ≥ 0. 
A simple choice of δ could be as follows: 

i  j   ,10    iia   -   n
1j  max    7-

n1,....,  i
≠∀+⎟

⎠
⎞⎜

⎝
⎛ ∑ ==

=
ijaδ  

Such matrices (S + ∆) can be easily factorized in 
a stable manner into incomplete Cholesky 
factors (see, for example, [14]). It is noted that 
the smaller the ∆ the faster the convergence of 
the GRSI method. 
3- Description of the algorithm. 
Let us consider the system Ax  =  b, where A = 
[ai,j]  is a sparse nonsymmetric,  N x N, M-
matrix . Let  
A = (S + ∆)  -  (H`  +  ∆)…………………..(3.1) 
be the GRS of A.  
 As (S + ∆) is a symmetric and diagonally 
dominant M-matrix it can be decomposed into 
triangular factors or incomplete Cholesky factors 
i.e. (S + ∆) = LDLT – E is a regular splitting (see 
[14]), where E is computed explicitly.  
It then follows that  A  = LDLT – (H` + E + ∆) is 
a regular splitting. Substituting H for H` + E the 
iterative system can be written: 

,n   k                                             
,x)    (H    b  x )1()(

><∈
Δ++= −kkTLDL

 

where x(0) is arbitrary. Substituting the values of 
x(k-1) in turn we obtain, 

 
x(k)  =  [ I  +  {(LDLT)-1(H + ∆)} +  {(LDLT)-1(H 
+ ∆)}2  + {(LDLT)-1(H + ∆)}3  + ………...   + 
{(LDLT)-1(H + ∆)}(k-1)](LDLT)-1b +{(LDLT)-1(H 
+ ∆)}k x(0) …………………………..………(3.2) 

j,is  = { max{ai,j, aj,I) if i ≠ j 
ai,j if i = j 

j,iδ = {
0 if i ≠ j 
δ if i = j 
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 If    G  =   {(LDLT)-1(H + ∆)} then,  x(k)  =  [ I  +   
G  +  G2  +  G3  +  G4  …… + G(k-1)](LDLT)-1b  
+  + Gkx(0)…….…………………………….(3.3) 
Moreover          x(k)  →   A-1b, 
i.e. the solution of the linear system because the 
spectral radius ρ(G) is less than one, so that   
G(k)  →   0 and as k  →  ∞, 

  .1-G)  -  (I    ]
1-k

0p
pG [ →∑

=
  

A number of authors like [7] and [11] have 
devised similar splittings for the case when A is 
a large sparse singular and irreducible M-matrix. 
They also worked with nearly symmetric 
matrices, which they define as having a 
symmetric, zero structure. The splitting matrix is 
constructed to be symmetric by dropping terms 
from A and, as a result, the direct part of the 
direct iterative method can take advantage of (i) 
symmetric pivoting (ii) a standard symmetric 
ordering scheme and (iii) a static storage scheme 
for the factor L. The author reports that the 
direct-iterative method is faster than 
straightforward iteration with the Gauss-Seidel 
method. The splitting we propose has similar 
advantages but no terms from A are dropped. 
 
4-Convergence 
The GRSI method associated with the GRS 
splitting is given by 

bxHxS kk +Δ+=Δ+ − )1()( )()(  

or 
bS

xHSx kk

1

)1(1)(

)(           
)()(

−

−−

Δ+

+Δ+Δ+=
  or     

     η+= − )1()( kk xGx  
where the iteration matrix is given by 

)()( 1 Δ+Δ+= − HSG and 

bS 1)( −Δ+=η . 
Theorem 4-1: ([18], p.89). 
If A = P – Q is a regular splitting of matrix A 
and A-1 ≥ 0, then 
ρ (P-1Q)= ρ (A-1Q)/(1+ ρ (A-1Q)<1           (4.1) 
i.e. the matrix P-1Q is convergent, and the 
iterative method 

bPxQPx kk 1)1(1)( )( −−− +=  converges for 

any initial value xofx )0( if (4.1) is satisfied. 
Theorem 4-2: 
The spectral radius of the iteration matrix of 
GRSI method is less than 1, and hence the 
method converges for any initial value 

xofx )0(  when the coefficient matrix A is an 
M-matrix. 
Proof: Follows directly from theorem 4-1 since 
GRS is a regular splitting and A-1 ≥ 0.    
Lemma 4-1: 
The iteration matrix G of the GRSI method is a 
non-negative matrix when A is an M-matrix. 
Proof:  A = )()( Δ+−Δ+ HS  

Now  0)( 1 ≥Δ+ −S as 
)( Δ+S is an M-matrix  

And 0)( ≥Δ+H  therefore, 

)()( 1 Δ+Δ+= − HSG .0≥  
Theorem 4-3: ([20], p 125) 
Let A be a monotone matrix and let A = Q1 – R1 
and  A = Q2 – R2 be two regular splittings of A. 
If R2 ≤  R1, then )()( 1

1
12

1
2 RQSRQS −− ≤ . 

Theorem 4-4. The smaller is the δ the faster is 
the convergence of the GRSI method. 
Proof: Obvious from theorem 4-3. 
 
Theorem 4-5. Let A = [ai,j] be an N x N non-
symmetric M-matrix and 0≥x be any non-zero 

vector such that 
⎭
⎬
⎫

⎩
⎨
⎧

= ∑
=

n

j
ijjix xxar

1
, /min . 

If A = )()( Δ+−Δ+ HS is a GRS of A, then 
αβ ≥ , where β is any eigenvalue of 

)( Δ+S and  { }xr
x
x

0
0

sup

≠
≥=α . 

Proof: 
A= )()( Δ+−Δ+ HS ⇒

)()()( 11 Δ+Δ+−=Δ+ −− HSIAS  
           = I – G.  

i.e. ASIG 1)( −Δ+−=  and by Lemma 4-1 
G 0≥ . 
i.e. .00])([ 111 ≥⇒≥Δ+− −−− AAASI  

i.e. 0)( 11 ≥Δ+− −− SA , by definition 1.1 
11 )( −− Δ+≥ SA . 

By theorem 4-3,       .11
αβ

βα
≥⇒≥  

Theorem 4-6. Let G = [gi,j] ≥ 0 be an N x N 
GRSI matrix, and P* be the hyperoctant of 
vectors 0≥x . Then, for any *Px∈ either 
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Proof: Follows the steps of theorem 2.2 of 
(Varga [1962], p.32). 
Each upper and lower bound for the spectral 
radius of the iteration matrix of the GRSI method 
can thus be obtained by simple arithmetic steps. 
5-Comparison with the standard methods. 
  There are economical and 
efficient techniques for the solution of linear 
symmetric systems. Furthermore, the situation 
regarding the availability of software 
implementing iterative schemes for symmetric 
systems is also satisfactory. As mentioned earlier 
these techniques for the solution of symmetric 
systems cannot be extended to the case of 
nonsymmetric linear systems. As far as the 
availability of the software is concerned apart 
from the codes of Paige and Saunders most are 
experimental. The packages like SPARSPAK 
(see Geogge and Liu, 1980) and the Yale 
Sparse Matrix Package (see Duff and Reid, 
1983) are numerically sound if the coefficient 
matrix in a system of linear equations is SPD. If 
it is not, the packages may still be used but may 

be numerically unsound (see [13]). The GRSIM 
subroutine is designed to use the ease and 
comfort of all the efficient methods currently 
solving symmetric systems of linear equations, 
for the solution of nonsymmetric systems. Any 
technique, which can solve a symmetric system 
easily and economically, can be incorporated to 
the GRSI method to form a pristine version of 
the GRSI method e.g. the GRSI Cholesky 
factorization or GRSI-CF version and the GRSI 
Incomplete Cholesky factorization or GRSI-ICF 
version. The method uses a regular splitting. 
Therefore the convergence is guaranteed. For an 
unsymmetric M-matrix it can be easily proved 
numerically that the GRSI method converges 
faster than the Jacobi and Gauss-Seidel methods. 
The GRSI method is not compared with the 
direct solution method of the unsymmetric 
system because of the fact that the direct solution 
method is only about twice as expensive as a 
Cholesky factorization (see [6]). 
 
6-Numerical Testing. 
 
We illustrate the numerical behaviour of the 
GRSI method by the following simple examples. 
In most of the experiments we consider the linear 
elliptic equation:  
au×x  +  cuyy  +  dux  +  euy  +  fu  =  g(x,y)       
                                                ……………...(6.1) 
in the rectangular region R: 0 ≤ x ≤ α, 0 ≤ y  ≤ β, 
with Dirichlet boundary conditions. We suppose, 
for definiteness, that a > 0, b > 0 and f ≤ 0 and 
all are bounded in the region R and on its 
boundary B. Upon employing second-order 
central difference procedures, the finite-
difference approximation for the above equation 
becomes:        β1Ui+1,j  +  β2Ui-1,j  +  β3Ui,j+1  +  
β4Ui,j-1  -  β0Ui,j  = h2gi,j 
where βi are functions of  xi  =  ih,  yi  =  jh, 
given by  β0  = 2(ai,j  +  ci,j  -  ½h2fi,j), β1  = ai,j  +  
½hdi,j, β2  = ai,j  -  ½hdi,j, β3  = ci,j  +  ½hei,j,  β4  
= ci,j  -  ½hei,j. The notation ai,j refer to a(ih, jh), 
evaluated at the point where the computational 
module is centered. The coefficient matrix A, so 
obtained is an irreducible M-matrix. 
 
Example-1. 
 
We now give the approximate number of 
multiplication operations needed for the solution 
of (1.1), obtained by the discretization of (6.1), 
by different iterative methods (see [14]). 
Suppose N denotes the order of the coefficient 
matrix A. The initial work, such as the work 
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necessary for the estimation of the iteration-
parameter for the SOR method and the work for 
the decomposition of the GRSI matrix into 
Incomplete Cholesky factors has been neglected. 
This work will in general be small compared to 
the computational work needed to carry out the 
actual iterations. Accurate determination of the 
SOR parameter may be difficult in some 
circumstances. 
 

TABLE -1 
Approximate Number of Multiplication 

Operation needed for 
 one iteration in the solution of Ax = b  (A is 

an N X N matrix) 
Method No. of 

Operations 
SOR 6N 

Gauss-Seidel 5N 
Jacobi 5N 
GRSI 7N 

      A number of nonsymmetric linear 
systems of equations were obtained by using the 
natural mesh ordering and discretizing (6.1) with 
arbitrary values of the coefficients a, c, d, e, f 
and the mesh size h. A comparison on the basis 
of asymptotic rate of convergence of the GRSI-
CF, the GRSI-ICF, the Jacobi, the Gauss-
Seidel and the SOR methods was made. We 
report a few of these results. The matrix ∆ is 
considered to be a zero matrix and the optimum 
parameter for SOR is used through out. 
Example-2. We considered a BST matrix with 
known sparsity and eigenvalues. The result is 
given in the following table. 

TABLE II 
Number of Iteration Needed for Convergence 

with Tolerance ℑ = 10-7. 
Method Spectral 

Radius S(G) 
η = rate of 

convergence
GRSI-ICF 0.0781830 2.5487025 

SOR 0.01528233 1.8784726 
Gauss-
Seidel 

0.3003972 1.2026496 

Jacobi 0.5433333 0.6100323 
 
Example-3. (cf. [10], p.354) 
This example illustrate that in some cases the 
GRSI method converges even though the RF 
method with Chebyshev acceleration (RF-SI 
method) fails to converge. Consider the partial 
differential equation:                        
uxx  +  uyy  +  βux  =  0…………...…………(6.2) 
Assuming Dirichlet boundary conditions in the 
unit square 0 ≤ x  ≤ 1, 0 ≤ y  ≤ 1, and using the 

standard five-point finite-difference 
discretization we obtain the difference equation: 
h-2{u(x + h, y)  +  u(x-h, y)  +   
u(x, y+h)  +  u(x, y-h) -4u(x,y)}  +  (½)βh-1{u(x 
+ h, y)  -  u(x-h, y)}  =  0. 

Let us apply the RF-SI method and the GCW 

method for the case β = -3 and h  =  
3
1

. There  

are four interior points and the βk for this special 
case are β1 = 0.5, β2 = 1.5, β3 = 1.0, β4 = 1.0, and 
β0 = 4.0.  Since (½)h3|β| ≤ 1, the eigenvalues of 
the RF method are given  
by

2})
2
1 ({1)(cos)(

  )(cos)(

hp 
2
1 

hp 
2
1   ,

β

λ

π

π

h

qp

−

+=

                                                 p,q = 1, ….h-1 – 1. 
The spectral radius of the RF-SI method is 
1.4542307, which clearly shows that the RF-SI 
method fails to converge. The spectral radius of 
the iteration matrix of the GCW method is 
given by: 

0.1767767    

2
hsin24

hcosh
    )G(S

)(
=

π
πβ

=  

The coefficient matrix is an irreducibly 
diagonally dominant M-matrix. 
The asymptotic average rate of convergence of  
the GRSI-ICF, GCW-SI, SOR (with opt. relax. 
fact.), Gauss-Seidel, and Jacobi methods are 
noted respectively as 2.9, 1.7, 1.6, 1.5, 0.76. 
Which shows that GRSIM is four times faster 
than the Jacobi method, two times faster than 
the SOR method and the Gauss-Seidel method. 
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