
 
 

 

  
 
Abstract— A form of Gauss-Quadrature rule over [0,1]  has been 
investigated that involves the derivative of the integrand at the 
pre-assigned left or right end node. This situation arises when the 
underlying polynomials are orthogonal with respect to the weight 
function ( ) : 1x xω = −  over [0,1] . Along the lines of Golub’s work, 
the nodes and weights of the quadrature rule are computed from a 
Jacobi-type matrix with entries related to simple rational 
sequences. The structure of these sequences is based on some 
characteristics of the identity-type polynomials recently 
developed by one of the authors. The devised rule has a slight 
advantage over that subject to the weight function ( ) : 1.xω =  
 

Index Terms— Gauss-Radau quadrature rule, Jacobi-matrix, 
Hypergeometric series, Identity-type polynomials, 3-term 
recurrence relation. 
 

I. INTRODUCTION 
For any function : [0,1]f → ℜ  and a positive weight 

function : [0,1]ω → ℜ , set ffω ω
= . Let kπ  denote the class 

of all polynomials of degree up to k. If 
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which is exact for 2nfω π∈ . It is called the (n+1)-point right 
hand Gauss-Radau formula [4] for the weight function ω . Let 

,np ω  denote the polynomial of degree n orthogonal with 
respect to ω . Then the nodes it  in (1) are known to be the 
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zeros of ,np ω  whereas the weights , 1,2,... 1i i nν = + , can be 

computed by interpolation at all the interior nodes it  and the 
pre-assigned node 1. It is interesting to note that the nodes 
(including 1) and the weights in (1) can be determined by an 
elegant result due to Golub [3] which we state as: 
 
Lemma A: The n + 1 nodes 1 2, ,...,  and 1nt t t  are precisely the 
eigenvalues of a modified Jacobian matrix 
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where ,k kα β  are the coefficients in the 3-term recurrence 
relation 
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satisfied by the monic orthogonal polynomials ,kp ω  and 
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In addition, the weights are given by 2

0 ,1:i iuν β=  with 
1

0 ,1
0

: ( )  and ix dx uβ ω= ∫  as the first components of the 

associated normalized eigenvectors. 
 
 Remark 1: An explicit representation of the recursion 
coefficients ,k kα β  in (3) is given by 
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for 0,1,2,...k =  
 

II. GAUSS-RADAU FORMULA WITH ( ) :1−x xω  

We noticed that the formula (1) is capable of utilizing 
(1)f ′ in its structure if f is differentiable at t = 1 and 

( ) : 1x xω = − . In such cases, an alternative form of the 
quadrature rule (1) is given in 
 
Theorem 1: Let : [0,1]f → ℜ  be differentiable at 1t =  and 
let ( ) : 1x xω = − . Then the quadrature rule in (1) may be 
expressed as 
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where the nodes i and the weights it ν  are subject to the weight 
function ( ) : 1x xω = − . 
 
Formula (6) may be justified by rewriting the left side as 
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and then using (1) for  and ( ) 1f f x xω ω= = −% .   
  
Remark 2. The quadrature formula (6) is also applicable to an 
integral over any finite interval [ , ]a b  subject to the 
differentiability of the integrand at x b= . For this purpose it is 
enough to note that 
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 . In addition, (6) can be 

utilized if the pre-assigned node is 0 instead of 1. In this case, 
we have to consider 

1

0

( ) ( )
b

a

g x dx f t dt=∫ ∫  with ( )( ) : 1 , [0,1]f t g t t= − ∈ .  

 
We are interested in the computational aspects of the 

proposed rule (6). Note that the efficacy of (6) relies on 
appropriate representation of the orthogonal polynomials ,np ω , 

( ) : 1x xω = − , and the corresponding recursion coefficients 
,k kα β  (cf (5)). This feature is discussed in the next sections. 

 

III. IDENTITY-TYPE POLYNOMIALS 
Recently, it has been established in [1] that the identity-type 

function 
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where ( ) ( )0 1 and ( 1)( 2)....( 1)nc c c c c c n= = − − − + ,  

satisfies the second order differential equation  
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Note that the hypergeometric series 2
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is defined for all integral values of c. Here, our interest lies with 
the associated polynomials  
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which indeed provide solution of the 2nd order differential 
equation (8) when c is replaced by n. Some properties of these 
polynomials are listed below [1]: 
(a)  For 1, 2,3,.....n = , ( )n ne t π∗ ∈  and  

 
( ) (1 ) [1 ,1 ;1; ]ne t t F n n t∗ = − + −         (10) 

 
since [ , ; ; ] (1 ) [ , ; ; ]c a bF a b c z z F c a c b c z− −= − − −  ([5], 
p.60). In particular,  
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(b) With the notation  
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where 1( ) (1 )w t t

∗ = − , i.e., the polynomials ( )ne t∗ , 

1,2,....n = , are orthogonal with respect to w∗  over [0,1] . 

(c)  The leading coefficient of ( )ne t∗  in (4), say nκ , is given 
by 
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IV. ORTHOGONALITY OF FACTOR POLYNOMIALS 

[1 ,1 ;1; ]F n n t+ −  

We set (cf (10), (12)) 
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and note that these are monic polynomials of degree 

1, 1, 2,...,n n− = and orthogonal with respect to the weight 
function  
 

( ) : 1w t t= −                     (14) 
 
over the interval [0,1].  The polynomials ( ),ne t 0,1,2,...n =  
indeed satisfy the 3-term recurrence relation  
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Remark 3: The recursion coefficients in (16) may be expressed 
as 
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 A simple manipulation based on (9), (10) and (13) leads to 
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and 
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Based on the relations (15)-(19), we have 
Theorem 2: Let ( ) : 1t tω = −   be the weight function (cf (14)) 
in Lemma A. Then    
 

( )
( )

2

2

2

2
,1 1

2

2 1 1
(1) , 0,1,2,

4 1 1
( 1)(2) , 1, 2,3,

4(2 1)
(1) 3 6 2(3) 1 , 0,1,2, .

(1) 4 6 2

n

n

R n
n n

n

n
n

n
n n n

n
e n n n
e n n

α

β

α β −

+ −
= =

+ −

+
= =

+

+ +
= − = =

+ +

K

K

K

  

 
Remark 4: The sequences { } { } and n nα β  as determined in 
the above theorem provide an explicit representation of the 
Jacobian-type matrix (cf (2)) in terms of n. Thus the nodes and 
weights required in the proposed quadrature formula (6) easily 
obtainable by an application of Lemma A. 
 

V. NUMERICAL EXAMPLES 
We have applied the 6-point quadrature rule (6) subject to 

( ) : 1t tω = −  to different type of functions. The results thus 
obtained are compared with those given in ([2], p.81) for 
ordinary right hand 6-point Gauss-Radau rule as described in (5) 
with ( ) : 1tω = . The outcomes of our simulation results are 
given in the following table: 
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Table 1 
Integrals R6,1 R6,(1– t)  Exact Value
1

0

xdx∫  
 

0.6671 5566 
 

0.6669 1977 
 

 
0.6666 6667

3
2

1

0

x dx∫  
 

0.3999 8857 
 

0.3999 9623 
 

0.4000 0000

1

0 1
dx

x+∫  
 

0.6931 4718 
 

0.6931 4718 
 

0.69314718 

1

4
0 (1 )

dx
x+∫  

 
0.8669 7059 

 
0.8669 7291 

 
0.8669 72987

1

0 1 x

dx
e+∫ . 

 
0.3798 8549 

 
0.3798 8549 

 
0.3798 8549

1

0 1x

xdx
e −∫ . 

 
0.7775 0463 

 
0.7775 0463 

 

 
0.7775 0463

1

0

2
2 sin10

dx
xπ+∫  

 
0.8793 0050 

 
1.1535 1517 

 

 
1.1547 0054

Note: R6,1= ordinary right hand 6-point Gauss-Radau rule with 
( ) : 1tω =  

R6,(1– t) = Right hand 6-point Gauss-Radau rule subject to ( ) : 1t tω = −  

 

VI. CONCLUSION 
We have introduced a form of Gauss-Radau quadrature rule 

(cf (6)) which utilizes the derivative of the integrand at the 
pre-assigned right end node. This rule also preserves the 
exactness and convergence properties like the standard 
Gauss-Radau quadrature rule (cf (1)) [4]. As indicated in Table 
1, it produces slightly better results, when compared with the 
Gauss-Radau quadrature rule subject to weight function 

( ) : 1tω = . In fact, for the last example there is a dramatic 
improvement of accuracy. The proposed rule can be easily used 
as the left hand Gauss-Radau rule by a trivial modification of 
the integrand, and also for any finite interval [ , ]a b  instead of 
[0,1]  (See Remark 2). 
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