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Abstract—The major infrastructure component re-
quired to develop an underground mine is a decline,
which is a system of tunnels used for access and
haulage. In this paper we study the problem of de-
signing a decline of minimum cost where cost is a
combination of development and haulage costs over
the life of the mine. A key design consideration is that
the decline must be navigable to trucks and mining
equipment, hence must satisfy a gradient and turn-
ing circle constraint. The decline is modelled as a
mathematical network that captures the operational
constraints and costs of a real mine, and is optimised
using geometric techniques for constrained path opti-
misation. This procedure to find the optimal decline
has been automated in a new version of a software
tool, Decline Optimisation Tool, DOTTM. A case
study is described comparing this version with the
earlier one.

Keywords: optimisation, underground mining, mine

layout

1 Introduction

The dominant working structure of an underground mine
is a network of interconnected tunnels or mine develop-
ment called drives (horizontal tunnels) and ramps (in-
clined tunnels) and vertical haulage shafts which provide
access to ore-zones and conduits for the transport of ore
to the surface. Typically, deep and long-life mines war-
rant shaft haulage. However truck haulage, while more
expensive per unit material transported to the surface,
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has the advantage of earlier recovery of ore in the life
of a mining project and requires only progressive capital
expenditure matched to material flow.

Most open-pit mine designs are developed in an optimi-
sation framework traceable back to the method launched
by Lerchs and Grossman [3]. However, the complexity
of the underground mine design problem and the unique
mine design solutions sought for each ore body suggest
that there will never be an elegant solution method anal-
ogous to that which exists for open-pit mining.

The major infrastructure component required to develop
an underground mine is a decline (a system of ramps
and drives with path topology) connecting the access and
draw points with the surface portal (exit) or breakout
from existing mine infrastructure. In this paper we study
the problem of designing the decline so as to minimise
associated costs.

More specifically, the aim is to minimise the cost of the
decline for a combination of development and haulage
costs corresponding to a project or life-of-mine cost. The
location of the mineralised zone is determined by geolog-
ical observations and surface drilling. This is followed by
an infill drilling program from underground from which
can be determined the location and boundaries of the ore-
body (i.e., that part of the mineralised zone deemed to be
commercially viable), and the contained tonnages of ore.
When the orebodies are located in space the set of access
points (points which must be accessed for drilling and
blasting operations) and draw points (from which the ore
is drawn) on a sequence of levels can also be determined.

This means that in designing an optimal decline, we can
assume that the access points and draw points are given.
In addition, there are a number of other restrictions on
the decline paths. The decline must, for example, stand
off from the orebody by some specified minimum dis-
tance. Another key design consideration is that the de-
cline must be navigable by trucks and mining equipment;
this limits the gradient and curvature of the decline. We
assume homogeneous ground conditions.

A procedure to find the optimal decline has been auto-
mated by the authors in a software tool, Decline Opti-
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misation Tool, DOTTM. In an earlier paper [1] the first
version of DOTTM (which we will refer to as DOT1) is
described and a case study given. In this paper we model
the problem of designing an underground mine decline as
a constrained path optimisation problem. We then de-
velop a new theory of paths in 3-dimensional space that
are optimal with respect to gradient and curvature con-
straints. This allows us to describe the principles under-
lying a new version of the software tool, DOT2, which
replaces the heuristic methods used by DOT1 with a
method based on an understanding of exact solutions to
this constrained 3-dimensional path problem. DOT2 rep-
resents a significant improvement over the old version in
terms of both the accuracy of the solution and the speed.
A case study comparing the two versions of DOTTM is
described in the final section of the paper.

2 The Network Model of a Decline

The basic form of a decline, ignoring ventilation infras-
tructure and alternative means of egress, is a connected
network forming a path from the deeper level access
points to the surface portal or breakout point. Hence
the decline is modelled as an underground mine network
that captures the operational constraints and costs of
a real mine. In the network model the nodes include
the ore-zone level access points and draw points and the
surface portal of the mine. The links in the model cor-
respond to the centrelines of ramps and drives. In de-
signing the decline, typically there are no-go regions that
must be avoided such as old mine workings or ore bodies
which could be sterilised by infrastructure development.
In this paper we will limit the problem to designing a
decline without barriers. These preliminary strategic de-
signs allow the decline a “free” path from the breakouts
to perimeter access – a best case scenario. Barrier con-
straints can be added later for comparison with such a
best case scenario.

The ramps and drives are expensive to build with costs
typically in the order of AU$4,000 per metre (they have
large cross-sections - at least 4m × 4m). A key navigabil-
ity requirement is that the absolute value of the gradient
of each ramp is constrained to be within a safe climb-
ing limit for trucks, typically in the range 1:9 to 1:6.5.
Hence this decline network is gradient constrained with
a given maximum absolute slope. A minimum turning
radius for curved ramps is a constraint imposed by the
trucks and equipment to be used in the mine and is typ-
ically in the range 15-40m. The navigability constraints
are significant factors in the optimal solution and to ac-
commodate these the decline network is modelled as a
gradient-constrained and curvature-constrained network.

Path declines are fundamental components of a mine net-
work. We concentrate on the important problem of find-
ing a least cost, navigable decline with a given path topol-

ogy. In particular, this is applicable to the case where
there is a single ore-zone for a proposed new underground
mine or an extension to an existing mine.

Access to the ore-zone from the decline is via horizontal
tunnels known as crosscuts. These connect the decline to
the given access or draw points, which lie on a sequence of
levels. Each crosscut should meet the decline at an angle
of approximately 90 degrees for geomechanical stability.
At each level of the ore body a set of nodes, representing
a discrete choice of junctions at which the crosscut can
meet the decline, is specified. We refer to this set of nodes
as a group. Each of these nodes has an associated fixed
cost that is proportional to the length of crosscut and
dependent on the tonnage of ore to be hauled along the
crosscut. There is a requirement that the path decline
goes through one node from each group. This notion of
a group of nodes adds design flexibility and optimisation
opportunities.

We can now model the optimal decline design problem as
that of finding a smooth path in 3-dimensional space of
minimum cost satisfying the following conditions:

1. It passes through one node from each of the groups
of specified nodes at each level, in a given order;
furthermore, for each node the path passes through,
the horizontal planar projection of the path at that
node has a direction within a user-specified range of
directions;

2. At each point it has gradient at most m, where m is
a given constant;

3. At each point it has radius of curvature at least
c when projected into the horizontal plane, where,
again, c is a given constant.

The cost function for this path depends both on develop-
ment and the associated haulage costs over the life of the
mine. The cost of each link is the sum of the development
cost and haulage cost, where the development cost is pro-
portional to length and the haulage cost is proportional
to the length times the tonnage. In particular, the cost
of a link can be minimised by minimising its length, since
the tonnage of ore to be hauled for each link is fixed. For
a given path the total cost is the sum of the costs of all
links in the path plus the sum of the costs of the selected
nodes (one from each group).

The problem is solved by discretising the set of possible
directions of the path at each of the intermediate nodes.
This allows us to employ a bottom-up dynamic program-
ming strategy. Suppose there are (up to) l nodes in each
group. The direction vectors at a node will have a limited
number of directions entering (or leaving) the incident
link depending on how close the node is to the ore zone.
If the maximum number of directions at any node is n,
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then at each level or stage, we keep track of the (up to) nl
minimum cost subpaths constructed so far for the nodes
at that level. Assuming we can construct a minimum cost
link with given end-point directions in constant time, the
path will be constructed in approximately O(kn2l2) time,
where k is the number of levels.

This dynamic programming framework essentially re-
duces the problem to one of efficiently minimising the
length of a single link with given positions and directions
for the start and end points.

3 Link optimisation

From Section 2, the decline optimisation problem can be
reduced to the problem of optimising a single link with
given start and finish directions, corresponding to “ap-
proach” and “departure” directions of that link in the
path. An abstract solution to the modified problem of
finding minimal paths in 3-dimensional space with given
start and finish directions and a given minimal turning
circle (but no gradient constraint) has been described in
[4]. Unfortunately, as well as violating the gradient con-
straint, this solution also has the undesirable property of
allowing a continually varying gradient. For the under-
ground mine design problem it is an industry requirement
that the gradient on each link is both bounded and un-
changing.

We approach the problem of minimising the cost of such
a link by considering the projected problem in the hor-
izontal plane. Note first that any path in the plane
can be transformed to a path with given constant gra-
dient in 3-dimensional space, by furnishing it with a suit-
able uniform gradient. The length of this transformed
3-dimensional path depends only on the length of the
planar path and the gradient. The transformed path sat-
isfies the gradient constraint if, and only if, the length
of the path in the plane reaches a certain lower bound
B dependent on the absolute vertical distance z between
the end points of the link: B = z/m.

Hence, it is clear that the problem of finding the minimum
cost link in 3-dimensional space with given approach and
departure directions and gradient and turning circle con-
straints can be solved by finding the shortest path in the
plane with these same direction and turning circle con-
straints and with a lower bound on the length, and then
transforming this path back to the 3-dimensional setting.
Dubins solved this planar problem without a lower bound
on length in [2]. Our method for the planar problem
where the lower bound is included is based on an exten-
sion of Dubins’ work.

3.1 The class of admissible paths

An appropriate mathematical setting for the study of cur-
vature constrained paths in the plane is provided by the

concept of a configuration space of paths. Given two di-
rected points p and q in R2, we shall call a path P from
p to q in R2 admissible if:

1. P has a continuous first derivative and a piecewise
continuous second derivative, i.e., P is C1 and piece-
wise C2;

2. The tangents to P at its start and end points coincide
with the directions of p and q respectively;

3. The absolute curvature of P is bounded above by a
specified positive constant (which we will take to be
1 by choosing a suitable scaling).

We denote by Apq the class of all admissible paths from
p to q.

It is useful to define the class Spq consisting of all paths in
Apq that are built using components which are either arcs
of unit circles or straight line segments, smoothly joined
together. The class Spq has the structure of a stratified
space. By this we mean that paths that have different
numbers of components and that cannot be continuously
deformed into each other within Apq belong to different
regions in Spq. Each such region is a finite dimensional
manifold called a stratum whose closure is the union of
the region itself together with lower dimensional strata in
Spq. This gives a very useful setting in which to describe
ways of building and extending paths. In the classical pa-
per of Dubins [2], it is proved that shortest paths in Apq

are formed from at most three different components. In
Subsection 3.2, we investigate ways of extending Dubins
paths using only a small number of additional compo-
nents. For these reasons, typically only a small number
of strata are important for our consideration.

3.2 Dubins paths and their extensions

In this subsection, we address the problem of determin-
ing an optimal curvature-constrained path between two
directed points p and q in the plane, with a prescribed
lower bound B on the length of the path. Specifically, we
seek a minimum length admissible path, P , from p to q
in the plane, such that the length of P is at least B.

The main result of Dubins [2] is as follows.

Theorem 3.1 Given any two directed points, p and q,
in the plane, there exists an admissible path of minimum
length from p to q. Further, any such path must take one
of the following forms:

• An arc with radius 1 and length less than 2π, followed
by a line segment, followed by an arc with radius 1
and length less than 2π;
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• A sequence of three arcs with radius 1 and with alter-
nating senses (i.e., left-right-left or right-left-right),
where the length of the middle arc is greater than π,
and the length of each arc is less than 2π.

Note that one or more of the arcs or line segments may be
degenerate, in the sense that its length is zero. We shall
refer to paths of the form given in Theorem 3.1 as Dubins
paths. For any given pair of directed points, there may
be up to six Dubins paths. Using L, S and R to denote
respectively a left turning arc, a (straight) line segment,
and a right turning arc, we can identify each Dubins path
by a unique descriptor, called its type: LSL, LSR, RSL,
RSR, LRL and RLR. For given directed points p and q,
there are always Dubins paths of types LSL and RSR, and
there may or may not be a Dubins path of each of the
other four types, depending on the geometric relationship
between p and q. Note that the Dubins paths need not all
be distinct if degenerate arcs or line segments are present.
Three of the Dubins path types are illustrated in Fig. 1.

LSL

LSR

LRL

p

p

q

q

q

p

Figure 1: Three of the six types of Dubins paths; ex-
amples of the other three can be obtained from these by
reflection.

Dubins paths are locally minimal: a small perturbation of
a Dubins path to another admissible path cannot result
in a shorter path. The converse is false; for example, a
path produced by inserting a full circle into a straight
section of a Dubins path is locally minimal but is not a
Dubins path. Given directed points p and q, a minimum
length admissible path from p to q can be found simply by
calculating the lengths of each of the Dubins paths from
p to q and selecting the shortest path. If the shortest
Dubins path has length at least B, then it is the solution
to the original problem. Suppose now that the length of
the shortest Dubins path is less than B. The approach
we take here is to try to obtain an admissible path with
length B by extending the shortest Dubins path. We
will see that this is not always possible, in which case

q

p

P

P'

Figure 2: A parallel extension.
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Figure 3: The two types of rolling extensions.

a solution, possibly with length greater than B, will be
obtained using one of the other Dubins paths.

If a Dubins path, P , contains an arc with length at least
π, then P can be extended to an admissible path P ′ of
any greater length in the manner illustrated in Fig. 2. In
particular, any Dubins path of type LRL or RLR can be
extended in this way, since the length of the middle arc
of any such path is greater than π. We refer to this type
of extension as a parallel extension.

If the lengths of the arcs of a Dubins path are all less
than π, then the situation is more complicated. Consider
a Dubins LSL or LSR path, P , from p to q. Then P
can be extended as follows. Let CL(p) and CR(p) denote
the circles with unit radius that are tangent to the di-
rected point p, on the left and right sides of p respectively.
(Thus, the first arc of P is an arc of CL(p).) Similarly,
let CL(q) and CR(q) denote the circles with unit radius
that are tangent to the directed point q, on the left and
right sides of q respectively. It is helpful to imagine P
as an elastic band fixed at p and q, and the four tan-
gent circles as barriers that restrict the region in which
P can lie. Then P can be extended either by “rolling”
CL(p) clockwise around CR(p), or by “rolling” CR(p) an-
ticlockwise around CL(p), keeping the other three circles
fixed, as shown in Fig. 3. We refer to these two types of
extensions as rolling extensions.

In the configurations depicted, P could be extended in-
definitely by rolling one circle sufficiently far around the
other. However, as far as the present application is con-
cerned, it makes more sense to extend P in this manner
only until one of the arcs achieves a length of π, at which
stage a parallel extension can be applied if necessary.
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Figure 4: An example of a path that is not infinitely
extendible.

For some configurations of p and q, a rolling extension can
be carried out only until the extended path P ′ reaches a
locally maximum path. If P ′ achieves the required length
B before this occurs, then the local maximum causes no
difficulties. However, if the length of the locally maxi-
mum path is less than B, then another strategy is needed.
Applying the other type of rolling extension may prove
successful, but this is not always the case. Fig. 4 depicts
a situation where the path P ′ “gets stuck” between the
four tangent circles. The two paths shown as broken lines
are both local maxima.

We call a path infinitely extendible if it has arbitrarily
long extensions. The configuration shown in Fig. 4 typ-
ifies the situations where there are paths that are not
infinitely extendible: the distance between the centres of
CL(p) and CL(q), and the distance between the centres
of CR(p) and CR(q), are both less than 4. If this condi-
tion is satisfied, then there are two local maximum paths
from p to q, and any admissible path that lies entirely in
the region bounded by these two paths is not infinitely
extendible. In particular, the region contains a unique
Dubins path that is not infinitely extendible.

3.3 Local Maxima

A consequence of the previous subsection is the impor-
tance of understanding local maxima.

We first note that if P is a locally maximum admissi-
ble path in the plane between two directed points then P
contains no twice differentiable points with curvature less
than 1. This follows from the observation that the length
of a segment of the path with curvature less than 1 can
be increased (while remaining admissible) by the pertur-
bation of a unit circle tangent to an interior point of such
a segment, resulting in replacing part of the segment by
three unit circle arcs.

It follows that P must be a sequence of unit circle arcs
with alternating senses, which we denote by a sequence
of C’s. So, for example, CCC represents a path of type
LRL or RLR in the notation of Subsection 3.2. The key
theorem is as follows.

Theorem 3.2 Given two directed points, p and q, in the
plane, let P be an admissible path from p to q. If P is
a local maximum then P is of the form CCC (or a de-
generacy) where the angle around each circle is less than

π and the sum of the two angles around the outer two
circles minus that around the inner circle is less than π.

The proof of the theorem involves showing that a path
of the form CCCC is not a local maximum. The result is
fairly straightforward, and the details are not given here.

Another important result is that the converse of Theo-
rem 3.2 holds, giving a complete characterisation of local
maxima. Again, details of this will appear in a future
paper.

4 A Minimal Path algorithm

We now outline an algorithm for constructing a single
minimum cost link in 3-dimensional space with given ap-
proach and departure directions and gradient and turn-
ing circle constraints, using the results of the previous
sections to confirm the correctness of the algorithm. The
final decline is built from these minimum cost links via
dynamic programming, as discussed in Section 2, and is
minimum up to the degree of discretisation of positions
and angles at the nodes.

The algorithm first solves the planar path problem with
lower bound B considered in Section 3. For a given link,
let p and q be the projections in the horizontal plane of
its two endpoints. Apart from certain degenerate config-
urations which we describe below, at most one of the Du-
bins paths from p to q can fail to be infinitely extendible.
Consequently, we can solve the problem of constructing
a minimal path as follows:

1. Identify the shortest Dubins path, P1, from p to q.

2. If the length of P1 is greater than or equal to B,
return “P1, don’t extend” and stop.

3. Calculate Lmax as follows: if there are two local max-
imum paths from p to q, then Lmax is the length of
the longer one, otherwise Lmax = ∞.

4. If Lmax > B, return “P1, extend to length B” and
stop.

5. Identify the second shortest Dubins path, P2, from
p to q.

6. If the length of P2 is greater than or equal to B,
return “P2, don’t extend” and stop.

7. Return “P2, extend to length B” and stop.

If two or more Dubins paths coincide because of the pres-
ence of degenerate arcs or line segments, then the shortest
and second shortest Dubins paths may be the same. If
this occurs, then P2 is the second shortest distinct Dubins
path in Step 5. This strategy may fail if there is a Dubins
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path from p to q that consists of just a line segment, in
which case the algorithm must be modified by taking P2

to be the path obtained by appending a circle, i.e., an
arc of length 2π, to P1. Note that the algorithm assumes
that if P1 is not infinitely extendible then P2 is infinitely
extendible. A proof of this will appear in a future paper.

Observe that no paths are actually constructed in the
course of running the algorithm; rather, the algorithm
returns a Dubins path type together with information
on whether and how the Dubins path is to be extended.
Once the length Lpq of the optimal planar path be-
tween p and q has been computed, then it is easily
seen that the length of the corresponding path in 3-
dimensional space (furnished with a constant gradient)
is

√
L2

pq + (zp − zq)2, where zp and zq are the z coordi-
nates of the two endpoints of the link. This strategy of
computing lengths and recording the type of Dubins path,
rather than constructing each path during the dynamic
programming, ensures that ultimately only the links that
are actually needed for the optimal decline path are con-
structed.

Finally, we comment briefly on the problem of construct-
ing the links in the optimal decline path. A link is repre-
sented by a list of line segments and arcs, where each line
segment is parameterized by its start and end points, and
each arc is parameterized by its centre, start angle and
turn angle. Constructing a Dubins path and a parallel
extension are straightforward, but constructing a rolling
extension is more difficult, and generally requires the use
of an iterative procedure. The details are not given here.

Once a planar path has been constructed for a given link
it is converted to a path in 3-dimensional space by giving
it the correct constant gradient: ±(zp − zq)/Lpq.

5 Case Study

DOTTM has been tested mainly in design tasks for vari-
ous Australian and New Zealand mines operated by New-
mont Australia Limited, our collaborative research part-
ner. This has been particularly valuable in refining the
features in DOTTM to match both operational and strate-
gic design needs; DOT2 incorporates many refinements
over DOT1 - mainly, the algorithm outlined in Section 4.
In June 2006 we were offered the chance to compare our
design with one developed by an experienced mine consul-
tant - though, for reasons of commercial confidentiality,
we cannot disclose the name of the mine. The design was
required to span 18 given access or draw points with a
decline maximum gradient of 1:7 and a minimum turn-
ing radius of 25 metres. We were able to compare our
DOT1 and DOT2 designs against the engineer’s design.
DOT1 took about 20 minutes at a reasonable level of ac-
curacy to find an unconstrained decline of 1883 metres
in length. DOT2, on the other hand, took a few seconds

Figure 5: A comparison of the engineer’s original design
with the declines generated by DOT1 and DOT2.

only to find a design of length 1768 metres. The engi-
neer’s original design was 1964 metres in length. Thus
DOT2 significantly outperformed DOT1 in time and to-
tal decline length but both were superior to the original
design. DOT2 saved about 10% over the original design.
Fig. 5 compares DOT1, DOT2 and the original design in
a composite representation. Since a metre of decline de-
velopment currently costs about AU$4,000, the develop-
ment savings alone are of the order of AU$784,000. Over
the life of a mine the corresponding savings in haulage,
ventilation and other operational costs are approximately
double this, leading to an overall saving of about AU$2.3
million.
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