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Abstract—A new method is presented to deal with

shape optimization problems. In this method, the ge-

ometry is parameterized by B-spline shape functions

with the control points of the B-spline curves becom-

ing the design variables in the optimization scheme.

The core idea of the method presented is to introduce

the knot insertion algorithm which can keep the ge-

ometry unchanged whilst increasing the number of

control points. Besides this core idea, the super-

reduced method and mesh refinement are also em-

ployed. The super-reduced method is used to get rid

of the equality constraints. Hence a constrained opti-

mization problem is converted into an unconstrained

optimization problem with the constraints kept un-

changed. We apply the method to two applications;

first a problem involving Poisson’s equation, and sec-

ond, an application of the method to an airfoil design

problem based on the airfoil NACA 0012. In both

of these applications, the new method is shown to

be efficient compared with ‘standard’ methods. In

particular, in the airfoil problem we obtain a CPU

saving time of about 42% compared with the EX-

TREM method. Keywords: B-spline, knot insertion

algorithm, mesh refinement, optimization

1 Introduction

Shape optimization problems can be regarded as a
problem of finding a shape which can achieve a given
performance while satisfying some constraints. Two
kinds of method are used in optimization; gradient-based
methods and global methods. The gradient-based
method is efficient in finding a local optimum while the
global method has the advantage of finding a global
optimum and does not require the objective function to
be differentiable.

With the gradient-based method, the gradient informa-
tion is necessary to minimize the objective function. In
shape design problems, to obtain the gradient of the
objective function with respect to the design variables
one usually needs the gradient of the state variables with
respect to design variables, called the sensitivity. Some
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well-known methods to compute the sensitivity are the
finite difference method [16,17], the complex variable
method [2], automatic differentiation [4,5], sensitivity
analysis [6,7], and the adjoint method [12,13,14].

In shape optimization geometry representation is
an important issue. Hicks, Henne, Vanderplaats [10,11]
use shape functions to parameterize shape changes. An-
other approach is to use the coordinates of every surface
point as design variables. The approach removes the
geometric model from the optimization loop, however,
it may lead to discontinuities in the gradient which can
be eliminated by a smoothing technique. An example
of the use of B-spline control points to parameterize the
geometry is given by Anderson and Venkatakrishnan [1].

In this paper, B-splines are chosen as shape func-
tions to parameterize the changing geometry. The knot
insertion algorithm has been incorporated into the shape
optimization. Using this technique, the initial number
of control points can be decreased. We then use the
BFGS-based gradient method to find the optimum
shape.

2 Method Description

In this method, the geometry is parameterized by
B-spline shape functions with nominal uniform knot
set. Therefore, the control points of the B-spline curves
become the design variables in the optimization scheme.
The knot insertion algorithm is introduced to keep the
geometry unchanged whilst increasing the number of
control points. The initial number of control points
can be set to a small number, potentially decreasing
the number of optimization iterations. To achieve a
suitable accuracy the final number of control points can
be very large for the value of the objective function. In
the approach taken here the knot insertion algorithm
kicks in when the solution is close to the optimum
solution. After that, a large number of design variables
will be produced as specified by the user. Since the
knot insertion algorithm does not change the geometry,
the optimization problem will be kept the same. Beside
this core idea, the super-reduced method and mesh re-
finement are also incorporated. The super-reduced idea
[19] is employed to convert the constrained problem into
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an unconstrained one (where the constraints are kept
unchanged all the time). Using this method the gradient
becomes a super-reduced gradient. Mesh refinement is
extensively used in shape optimization. This approach is
very useful when the exact gradient is difficult to obtain.
In doing so, most of iterations will be done on the coarse
grid and with relatively few on the refined grid, thus
making the method more efficient.

In the new method, the selection of the search di-
rection and the update of the approximate Hessian
matrix follows the same rule as BFGS method [9] does:

sk = −H(xk)
−1 g(xk)

Hk+1 = Hk +
qkq

T
k

qT
k pk

−
Hkpkp

T
k Hk

pT
k Hkpk

where pk = xk+1−xk, qk = g(xk+1)−g(xk), and xk,gk

denotes the point and the gradient at the k-th iteration
respectively.

2.1 Knot insertion algorithm

The knot insertion algorithm [8] allows one to insert a
knot into a B-spline curve without changing its shape.
After knot insertion, the B-spline evaluation (p(u)) func-
tion changes from

p(u) =
n

∑

i=1

diNi,k(u) , with knot set (ui)
n+k
i=1

to

n+1
∑

i=1

d1i Ni,k(u) , with knot set (u
1
i )

n+1+k
i=1 .

where k is the order, n is the dimension, u is the
parameter value, di is the i-th control point for the
B-spline curve before knot insertion and the d1i is the
i-th control point of the B-spline after knot insertion.
The new knot set differs from the original one in having
an additional knot inserted somewhere in the interval
[uk, un+1].

If a knot û is to be inserted to the knot set coin-
ciding with the knot up+1 say, which already has
multiplicity s, and the new knot set is denoted as

u1i =

{ui i ≤ p
û = up+1 i = p+ 1
ui−1 i ≥ p+ 2

,

then the number of control point increases from n to
n + 1, the knot set number increasing from n + k to
n+ k + 1.

Since B-splines have a local modification property,

only some of the control points will change. These new
control points are obtained by linear interpolation of the
previous control points according to the formula:

d1i = α1i di + (1− α1i )di−1

where α1i = (û−u1i )/(u
1
i+k−u1i ) = (û−ui)/(ui+k−1−ui)

and i = p− k+ s+2, p− k+ s+3, . . . , p. More details of
this algorithm can be found in [8]. By repeating the knot
insertion algorithm many times the number of control
points can be made to increase as required.

The knot insertion algorithm allows the user to
add additional control points, i.e. design variables in the
optimization, to the B-spline curve without changing
the geometry. Therefore, it is possible for the user to
start the optimization iteration with a small number of
control points, ending with a large number of design
variable to describe the geometry.

The purpose in using the knot insertion algorithm
is to decrease the number of optimization iterations
whilst obtaining a better value for the objective function.

3 Application to a Poisson’s problem

We take the Poisson equation,

∇
2Φ = −1.0 in Ω

with the boundary condition

Φ = 0 on ∂Ω

and find the optimum shape maximising the maximum
value in the domain (Ω):

max
∂Ω
max
Ω
Φ,

subject to a geometric constraint, which is taken here to
be the area of the domain, A(Ω) is a constant. After
reorganizing, the objective function can be chosen as:

F = −max
Ω
Φ

Two cubic B-spline curves with nominal uniform knot
sets are chosen to parameterize the geometry. After re-
organization, the area of the whole domain is given as:

A(Ω) =

n
∑

i=1

(yi

ui+4 − ui

4
)−

m
∑

j=1

(yj

uj+4 − uj

4
)

where yi, yj are the control points in the upper curve,
and lower curve respectively, n, m are the number
of control points in the upper curve, and lower curve
respectively, and ui are the knots.
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The gradient used in the optimization is computed
using the finite difference method with the super-
reduced method, given by the following equations:

∂F

∂yi

≈
F (y1, y2, . . . , yi−1, yi + ε, yi+1, . . . , yn + δ)

ε

−
F (y1, y2, y3, . . . , yn)

ε
i = 1, 2, . . . , n− 1

∂F

∂yn

= 0

where δ is given by solving the following constraints:

A(Ω (y1, y2, . . . , yi−1, yi + ε, yi+1, . . . , yn + δ)) = k

and k is a constant.

3.1 Results

With the new method, the optimizer starts from the ini-
tial shape (see Figure 1), which has about 3300 triangles,
and the number of control points for this initial geom-
etry is 22. After 37 optimization iterations it finds the
optimum shape (see Figure 2), which has about 13, 000
number of triangles because mesh refinement has been
employed. This optimum shape has 40 control points be-
cause the knot insertion algorithm has been incorporated.

The value of the objective function at the optimum ge-
ometry is −0.062333.

The software used to solve the Poisson equation is that
developed by Becker and Thompson [3].

Figure 1: Initial shape

Figure 2: optimum shape produced with the new method

The BFGS method used in the paper has been added the
following enhancements: super-reduction, the geometry
model, an algorithm to deal with self-intersection, and
mesh refinement in order to deal with the constrained
shape optimization problem. When the BFGS method
is used, we starts from the same initial shape and with
the same mesh. The optimizer takes 44 iterations to find
the optimum shape. In terms of number of iterations,
the new methods decreases the iteration counts by about
20%. The performance comparison of these two methods
are shown in Figure 3.

Figure 3: Convergence performance comparison with
BFGS method

In the above graph, in iteration 7, the value of the
objective function actually increases instead of de-
creasing because the shape is going to self-intersect,
and the algorithm produces replacement. We discuss
the algorithm to deal with self-intersecting shapes in [18].

The discretization error has also been investigated.
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Below is a table that reflects the influence of discretiza-
tion error on the PDE solution:

number of nodes error in solution rate
814 0.0002161
3169 5.318e-05 4.06

Table 1: Discretization error analysis for the solution of
Poisson’s equation

The above table shows that when the number of triangles
is increased to about 4 times, then the discretization error
will decrease to about 1/4, in agreement with theory.

4 Application for airfoil design

The purpose of this application is to find optimum shapes
to minimize the drag of transonic airfoils while keeping
the lift coefficient constant and keeping the maximum
thickness of the airfoil constant. In this application, we
follow Zhong and Qiao’s work [20] using the B-spline
method to parameterize the geometry. The shape modifi-
cations are parameterized by cubic B-splines with a nom-
inal uniform knot set. The geometry of the airfoil is given
by the following equation.

Y (Γ) = Y (Γini) +

n
∑

i=1

PiNi(X),

where Y (Γ), Y (Γini),represent the y coordinate of the
design geometry and initial geometry respectively, Pi are
the control points of the B-spline, and Ni(X) are the
B-spline basis functions.

The transonic airfoil analysis code used in this pa-
per is the NPUFOIL program, see [20]. The program is
based on a combination of the full potential equation
solver and the boundary layer flow analysis. The flow
and the aerodynamic characteristics are computed via
viscous/inviscid iteration. In this design case, the
symmetric airfoil NACA0012 is chosen as the initial
geometry. The lift coefficient CL = 0.5 , Mach number
Ma = 0.77, and the Reynolds number Re = 6.5 × 106

are kept unchanged. For comparison, both the new
method and the EXTREM [15] method are used in this
design case. For the new method, the geometry is first
parameterized by 5 free control points, and finally it
reaches the optimum solution which has 9 free control
points and the drag is reduced from 0.0182 to 0.0070.
The optimum solution of the control point is:

P1 = −0.571028 P2 = −0.70975
P3 = −0.41511 P4 = 0.13373
P5 = 0.78084 P6 = 1.3277
P7 = 0.98959 P8 = 0.56642
P9 = 0.13606

The drag coefficient has been decreased by 62% (from
0.182 to 0.0070) for both methods, but the EXTREM
method uses 408 function calls while the new method uses
only 233. The CPU time per function call for these meth-
ods, (CPU/FC) is nearly the same. The performance
comparison table for the two methods is given below:

Methods Cd iterations FC CPU/FC
EXTREM 0.0070 N/A 408 0.22246
New Method 0.0070 20 233 0.22418

Table 2: Performance comparison of the new method and
the EXTREM method

Fig. 4 shows the comparison of pressure distribution in
design case of NACA 0012, and Fig. 5 shows the com-
parison of the drag coefficient for initial and optimal ge-
ometry.

Figure 4: Initial and optimal pressure distribution for
NACA 0012

Figure 5: The comparison of drag coefficients for initial
airfoil and optimal airfoil (NACA 0012)
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5 Conclusions

In this paper, a new efficient method for shape opti-
mization using B-spline shape functions combined with
knot insertion algorithm and the super-reduced method is
given. This method has good performance for both math-
ematical problems and airfoil design applications. In the
application to a Poisson’s equation problem, the new
method uses only 37 iterations while the BFGS method
uses 44 iterations.

In the airfoil design case, the drag coefficient has been
reduced significantly, by about 62% with only 233
function calls, saving about 42% CPU time compared to
the EXTREM method. Using this technique researchers
will be able to accelerate their optimization as long as
B-spline shape functions are used to parameterize the
geometry.

In the future we will extend the range of applica-
tion to include 3-dimensional problems.
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