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Abstract—A unified technique for generat-
ing homogeneous/non-homogeneous, Gaussian/non-
Gaussian random fields defined on any subset of the
multidimensional Euclidean space is provided. This is
based on an approximate series representation valid
for spatial random fields with arbitrary covariance
function which can be readily realized. Furthermore,
its applicability as a simulation tool is examined nu-
merically by considering some examples that illus-
trate its feasibility and accuracy.
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1 Introduction

In several fields of engineering, such as soil mechanics,
hydrological engineering, mechanical engineering, earth-
quake engineering, structural engineering and many oth-
ers, it is usual to model uncertainties in physical phe-
nomena through spatial random fields (SRF) reflecting
the spatial variation of the natural process [1]-[2]. In this
sense the availability of a suitable procedure for generat-
ing realizations of the particular random model can be a
key question for the analysis of the structural properties
of the natural phenomenon under study. In fact, the sim-
ulation of SRF is a widely used tool and different methods
have already been proposed, often based on the spectral
representation of the random process, with, usually, as-
sumptions of homogeneity or Gaussianity [3]-[6]. How-
ever, a number of important physical phenomena shows
a clear deviation from the above assumptions. Therefore,
the simulation of non-Gaussian and non-homogeneous
SRF is of great importance. To accomplish this the
Karhunen-Love (KL) expansion-based simulation proce-
dure can be applied for generating both homogeneous and
non-homogeneous, Gaussian and non-Gaussian SRF [1].
This technique presents two drawbacks to being used as
a general simulation tool. For instance, its range of ap-
plication is restricted to SRF defined on compact subsets
and it also requires the computation of eigenfunctions and
eigenvalues of the correlation function which is generally
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a difficult task.

This paper presents a simulation technique based on an
approximate series representation for SRF defined on any
subset of the multidimensional Euclidean space and is
easily implementable in real situations. In Section 2 we
introduce a suitable tool to represent approximately SRF
and describe the steps involved in implementing the sim-
ulation algorithm proposed. Finally, Section 3 includes
some examples illustrating the application of the pro-
posed method to simulate some classical random models
that have great relevance in applications.

2 Numerical Representation of Random
Fields

Let T be any subset of the d−dimensional Euclidean
space Rd and X(t), t ∈ T , t = (t1, t2, . . . , td) ∈ T ,
be a second-order SRF defined on the probability space
(Ω,A,P). Without loss of generality, we will assume
X(t) has zero mean. Moreover, the correlation function
R(t, s), t, s ∈ T , is continuous. Let µ be a measure on
(T,Bd

T ) (Bd
T is the σ-algebra of d−dimensional Lebesgue

measurable subsets of T ) such that
∫

T

R(t, t)dµ(t) < ∞

Moreover, µ can be chosen to be absolutely continuous
with respect to the d−dimensional Lebesgue measure λ
of the form

dµ(t)/dλ(t) = F (t) (1)

with F a non-zero a.e. [Leb], non-negative and Lebesgue
integrable function over T [7].

Let Rµ be the Hilbert-Schmidt integral-type operator
with kernel R(t, s) defined from L2(µ) = L2(T,Bd

T , µ)
on L2(µ) by

(Rµφ) (t) =
∫

T

R(t, s)φ(s)dµ(s), t ∈ T (2)

Let λi and φi be its corresponding eigenvalues and or-
thonormal eigenfunctions in L2(µ).

Then we can state the following representation for X(t),

X(t) =
∞∑

i=1

biφi(t), t ∈ T (3)
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where the series converges in the mean square sense. The
random coefficients are given by

bi =
∫

T

X(t)φi(t)dµ(t) a.s.

with E[bibj ] = λiδij . As a consequence of (3), we obtain
a generalization of Mercer’s expansion as follows

R(t, s) =
∞∑

i=1

λiφi(t)φi(s)

for all (t, s) ∈ T × T .

The representation (3) is optimal in the sense that the
mean-square error resulting from a finite representation
of the SRF is minimized [8]. Thus, this series represen-
tation synthesizes optimally the available information.
However, from an experimental standpoint, the expan-
sion (3) presents the drawback of its explicit dependence
on eigenvalues and eigenfunctions of the operator Rµ.
In most cases, closed-form eigenfunctions and eigenval-
ues are not available. We avoid this difficulty by us-
ing approximate eigenvalues and eigenfunctions obtained
by means of a Galerkin-type numerical method to solve
the operator equation (2). Specifically, we apply the
Rayleigh-Ritz method (RR) [9] which is a projection ap-
proximation algorithm providing approximate solutions
of the operator equation.

The RR method starts from a complete orthonormal set
of functions {ϕi}i on L2(µ). By selecting k functions
{ϕi}k

i=1, the true eigenfunctions are approximated by
means of the RR eigenfunctions

φ̃i(t) =
k∑

j=1

aijϕj(t), i = 1, 2, . . . , k

where the coefficients aij and the approximate eigenval-
ues

{
λ̃i

}k

i=1
are obtained from the eigenvalue problem

Aai = λ̃iai, i = 1, 2, . . . , k, with the elements of the ma-
trix A = (Aij), i, j = 1, . . . , k, given by

Aij = 〈Rµϕi, ϕj〉2 =
∫

T

∫

T

R(t, s)ϕi(t)ϕj(s)dµ(t)dµ(s)

where 〈·, ·〉2 denotes the usual inner product in L2(µ) and
‖ · ‖2 the corresponding norm. The coefficients aij are
the coordinates of the eigenvectors ai = (ai1, . . . , aik)′,
i = 1, . . . , k. The convergence of the RR eigenfunctions
and eigenvalues to the true ones is guaranteed by the RR
method [9], λ̃i

k↑∞−−−→ λi and
∥∥φ̃i(t) − φi(t)

∥∥
2

k↑∞−−−→ 0.
Furthermore, 0 ≤ λ̃i ≤ λi,

〈
φ̃i, φ̃j

〉
2

= δij (by assum-
ing that the eigenvectors ai and aj are normalized) and〈Rµφ̃i, φ̃j

〉
2

= λ̃iδij .

The main objection to the RR eigenfunctions is that they
do not necessarily converge pointwise to the true ones.

For this reason we introduce a new class of approximate
eigenfunctions with a stronger type of convergence toward
the true ones, given by

φ̂i(t) = λ̃−1
i Rµφ̃i(t), t ∈ T

with the following convergence properties
∣∣φi(t)− φ̂i(t)

∣∣ k↑∞−−−→ 0, t ∈ T
∥∥φi(t)− φ̂i(t)

∥∥
2

k↑∞−−−→ 0, t ∈ T

Note that the sets of approximate and RR eigenfunctions,{
φ̂i

}k

i=1
and

{
φ̃i

}k

i=1
, are biorthogonal systems in L2(µ),

i.e.,
〈
φ̂i, φ̃j

〉
2

= δij .

The new approximate eigenfunctions allow us to obtain
an approximate series representation of X(t) as follows

X̂n(t) =
n∑

i=1

b̃iφ̂i(t), t ∈ T (4)

where n ≤ k and the random variables
{
b̃i

}n

i=1
are given

by

b̃i =
∫

T

X(t)φ̃i(t)dµ(t) a.s. (5)

It can be shown that these random variables are uncorre-
lated, i.e. E

[
b̃ib̃j

]
= λ̃iδij . Furthermore, the correlation

function of the approximate expansion X̂n(t) is of the
form

R̂n(t, s) =
n∑

i=1

λ̃iφ̂i(t)φ̂i(s), t, s ∈ T (6)

Both series expansions (4) and (6) converge towards X(t)
and R(t, s), respectively, as the length of the series rep-
resentations goes to infinity.

Note that it is also possible to define an approximate
expansion of the SRF by using the RR eigenfunctions,{
φ̃i

}n

i=1
, instead of

{
φ̂i

}n

i=1
as follows

X̃n(t) =
n∑

i=1

b̃iφ̃i(t), t ∈ T (7)

with b̃i the random variables in (5). However, this fi-
nite expansion provides a less accurate approximation of
the SRF, X(t), with a worse convergence than the one
obtained with (4). Actually, X̂n(t) is the projection of
X(t) onto the subspace of L2(Ω,A,P) spanned by the
random variables

{
b̃i/λ̃

1/2
i

}n

i=1
. Hence, (4) provides the

best approximation of the SRF onto such a subspace.
As a consequence, the simulation results achieved with
the approximate series expansion (4) perform better than
those obtained by applying the representation (7) as we
will illustrate by means of some numerical examples in
the next section.

Finally, the following steps are involved in implementing
the simulation technique proposed to obtain numerical
realizations of a SRF X(t):
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1. Determine the correlation model R(t, s) of the SRF,
X(t), that characterizes the spatial variability of the
natural process of interest. In some practical appli-
cations the correlation model is initially known. In
fact, it may be derived from experimental measure-
ments or mathematical models [1].

2. Obtain the approximate eigenvalues and eigenfunc-
tions corresponding to R(t, s), λ̃i and φ̃i, by means
of the RR method.

3. Generate approximate sample functions of the SRF,
X(t), using the approximate expansion (4). Note
that the precision of the simulated field clearly de-
pends on the number of terms n in the expansion
(4). This finite representation involves the n ran-
dom coefficients {b̃i}i whose variances λ̃i approach
the n largest exact eigenvalues λi of Rµ. An appro-
priate criterion for determining an adequate level of
truncation n without an unnecessary excess of com-
putation can be the following: select n in such a way
that

∑n
i=1 λ̃i represents at least 90% of the trace of

Rµ,
∑∞

i=1 λi.

3 Simulation Results

Computer simulations have been conducted to investigate
the performance of the proposed algorithm. The exam-
ples presented here are two well known SRF, the two-
parameter Ornstein-Uhlenbeck and Wiener fields, which
illustrate the implementation and the effectiveness of the
approach proposed. Specifically, to assess the validity of
the results obtained with the procedure provided and to
test their convergence properties, the correlation func-
tion of the target SRF, R(t, s), is compared with that of
the simulated functions, R̂n(t, s) and R̃n(t, s) (this is the
correlation function corresponding to X̃n(t)). It is im-
portant to point out that the examples of SRF for which
the exact eigenvalues and eigenfunctions are known are
limited.

3.1 Two-parameter Ornstein-Uhlenbeck
field

Firstly, consider the two-parameter Ornstein-Uhlenbeck
field which has been used as a benchmark model in a wide
number of applications [10]. The correlation function is
defined by

R(t, s) = exp(−|t1 − s1|) exp(−|t2 − s2|) (8)

t1, t2, s1, s2 ∈ [−0.5, 0.5]. Since the domain [−0.5, 0.5] ×
[−0.5, 0.5] is a compact subset of R2 we have selected µ as
the Lebesgue measure. Its eigenfunctions and eigenvalues
are of the form [8]

λi = νjνl

φi(t1, t2) = γj(t1)γl(t2), t1, t2 ∈ [−0.5, 0.5]
(9)

with j, l = 1, 2, . . . and i = (j, l) a two-index, νj and γj the
eigenvalues and eigenfunctions of the standard Ornstein-
Uhlenbeck process.

To apply the RR method we choose k functions in the
following set

{1,
√

2 cos(2πt1),
√

2 cos(2πt2), 2 cos(2πt1) cos(2πt2),√
2 sin(2πt1),

√
2 sin(2πt2), 2 cos(2πt1) sin(2πt2),

2 sin(2πt1) cos(2πt2), 2 sin(2πt1) sin(2πt2), . . .}

Simulation results using n = 100 shown in Figure 1 are
cross-sectional plots, obtained at s1 = 0.5 and t2 = s2 =
0, of the correlation function (8) and the simulated func-
tions R̂n(t, s) and R̃n(t, s). It can be confirmed that the
approximate function R̂n(t, s) shows excellent agreement
with the theoretical one compared with the behaviour
of R̃n(t, s). Moreover, Figure 2 shows the sample er-
rors committed with the two approaches, R̂n and R̃n,
measured by |R − R̂n| and |R − R̃n|, respectively, with
s1 = 0.5, t2 = s2 = 0 and n = 100.

As we have indicated in the previous section, an appro-
priate guideline for selecting a suitable level of trunca-
tion is the examination of the percentage of the trace of
the operator involved that is explained by the finite ex-
pansion. For instance, the approximate expansion X̂n(t)
for n = 100 can explain over 93.21% of the trace of the
operator corresponding to (8) on the interval [−0.5, 0.5]
computed as follows

∞∑

i=1

λi =
∫ 0.5

−0.5

∫ 0.5

−0.5

R(t, t)dt = 1

3.2 Two-parameter Wiener field

The second example considered corresponds to the
Wiener field which is a well known example of non-
homogeneous SRF. It is also called Brownian sheet [11]
or Cameron-Yeh process in engineering applications [12].
The standard two-parameter Wiener process W (t), t =
(t1, t2), defined on the domain [0,∞) × [0,∞) has the
following correlation function

R(t, s) = min(t1, s1) min(t2, s2), t1, t2, s1, s2 ∈ [0,∞)
(10)

Moreover, by (1) let µ be a measure such that F (t1, t2) =
1

(1+t1)4(1+t2)4
. Computation of eigenvalues and eigen-

functions corresponding to the Wiener field is similar to
(9) where now νj and γj are the eigenvalues and eigen-
functions of the standard Wiener process.

To apply the RR method we select k functions in the
following set of trigonometric functions
{

2(1 + t1)(1 + t2) cos
(

(2i− 1)πt1
2(1 + t1)

)
cos

(
(2j − 1)πt2
2(1 + t2)

)}

(i,j)
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with i, j = 1, 2, . . .

Let us observe that the approximate expansion X̂n(t) ex-
plains over 92.06%, with n = 225, of the trace of the op-
erator corresponding to the two-parameter Wiener field
on the interval [0,∞) which is given by

∞∑

i=1

λi =
∫ ∞

0

∫ ∞

0

R(t, t)dµ(t) =
1
36

Simulation results using n = 225 are shown in Figure 3
which are cross-sectional plots (obtained at s1 = s2 =
t2 = 10) of the correlation function (10) and the simu-
lated correlation function R̂n(t, s). Finally, note that the
process is defined on [0,∞), but we plot the functions
in the interval [0, 30] because it is sufficient to assess the
accuracy achieved with the proposed approach.
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Figure 1: Comparison of R of the Ornstein-Uhlenbeck field (solid line), R̃100 (dotted line) and R̂100 (dashed line).
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Figure 2: Comparison of sample errors with R̂100 (dashed line) and R̃100 (dotted line) for the Ornstein-Uhlenbeck
field.
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Figure 3: Comparison of R of the Wiener field (solid line) and R̂225 (dashed line).
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