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Abstract - The design of intelligent controllers for 
nonlinear systems continues to be a challenging 
problem, particularly when the system is uncertain or 
the environment noisy. A nonparametric approach 
which has gained success is to employ a neural 
network to learn about the unknown plant and fuzzy 
inference to compensate for the uncertainty (GANFIS 
control). Inherent in the design of such controllers is 
the need to tune the weights of the GANFIS controller. 
Evolutionary learning has been suggested to tune the 
GANFIS parameters but a difficulty is selecting the 
parameters for tuning. Further, it is well known that 
proper selection of the fitness function has an 
important effect on system performance. In this paper, 
we integrate two design techniques that we have 
previously developed into a single generalized ANFIS 
controller: adaptive tuners to select critical 
evolutionary parameters and a predictive fitness 
function for measuring system performance. The 
adaptive tuners also employ this predictive fitness as 
part of selection process which is a new approach. 
Results show that this approach is a feasible method in 
designing GANFIS controllers using evolutionary 
tuning and predictive fitness. 
 
Keywords – Evolutionary algorithms, fuzzy controllers, 
neural networks. 
 

I. INTRODUCTION 
 Many approaches have been suggested for nonlinear 
system control; the problem becomes more complex when 
uncertainties and noise are considered. One approach that 
has gained success when the system model is complex or 
uncertain relies on a non-parametric philosophy whereby 
a fuzzy block is used to handle uncertainties and 
imperfections while a neural network block addresses the 
underlying   model   dynamics.   The   classical    adaptive  
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neural-network based fuzzy inference system (ANFIS) 
approach [1] is such an architecture and generally 
provides good overall system performance; however, this 
approach may require the dynamics of the plant to be 
known, which may not always be available. 

The advantage of using the ANFIS blocks is that the 
controller can be trained off-line to tune the premise and 
consequent control parameters and then used on-line for 
adaptive learning should there be changes in the plant.  

One  can  employ  a  set  of  ANFIS  blocks  to  form  
a generalized ANFIS that can approximate a nonlinear 
structure [2]. The generalized ANFIS (GANFIS) 
controller for the three membership case is shown in 
Figure 1. 

In the GANFIS design, the idea is to represent the 
desired control action by a transfer function 
approximation as: 
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where m is the order of the numerator and n is the order 
of the denominator of the transfer function approximation 
to a nonlinear function f(e).  
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Figure 1: The Generalized ANFIS Controller 

One can show that the control law is: 
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where pi,j  are the consequent parameters of the ANFIS 
blocks.  
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An important operation in designing the GANFIS 
controller as well as other versions of an ANFIS-based 
architecture is selecting the consequent and premise 
parameters. Gradient techniques and/or estimation are 
traditionally employed to find these parameters for off-
line or on-line implementation but may lead to unstable 
solutions or slow convergence. Instead we employ 
evolutionary algorithms in selecting the GANFIS 
parameters; the claim is that by using the evolutionary 
process, the GANFIS parameters can be tuned on-line 
through a more stable structure [3]. The design issue then 
is to select the evolutionary parameters and in particular 
the mutation and crossover probabilities which have an 
impact on the evolutionary process. In this paper, methods 
previously developed by the authors are modified and 
enhanced in tuning these key parameters.  

One can show that the selection of the fitness 
function also plays an important role in the convergence 
properties of an evolutionary controller [4]. While 
traditional approaches rely only on current state or output 
information in assessing the performance metric for each 
chromosome, the approach here is to employ prediction 
so that past and current information may be used in 
assessing the fitness of each chromosome. The predictive 
fitness function for each chromosome is then integrated 
into the tuning process for the mutation and crossover 
probabilities. 

Section II provides a summary of the tuning process 
while Section III describes the predictive fitness function. 
By integrating the two methods, we show the 
attractiveness of the resulting control algorithm through 
several examples. Section IV presents a nonlinear system 
example, subjected to noise and parameter variation. 
Results show the feasibility of employing the GANFIS 
controller to nonlinear systems with noise or system 
variation. 
 

II.  TUNING THE EVOLUTIONARY PARAMETERS 
Consider the generalized ANFIS (GANFIS) 

controller of Figure 1. In order to design the controller, 
premise and consequent parameters must be selected for 
the fuzzy component and the neural network part. In this 
paper, we use evolutionary methods in selecting these 
parameters as shown in Figure 2. 

In most evolutionary approaches, genetic searching is 
used which consists of a finite repetition of three steps at 
each generation: selection of the parent chromosomes for 
the next generation (usually an elitist selection for a 
percentage of the next generation), recombination using 
crossover and mutation operations [5], and a fitness 
function that describes the goodness of individual 
members of each generation.  
 In [6], Rajapakse and others employ evolutionary 
algorithms to tune fuzzy logic controllers, but then use  an 
on-line neural network model of the process as a separate 
block.  We use the evolutionary learning as part of the 
adaptive neural network fuzzy inference controller, rather 

than separate each operation (evolutionary tuning, fuzzy 
logic controller, neural network model of the plant) in the 
design process. Further, the parameters of the 
evolutionary learning operation (population size, mutation 
operator, cross-over operator and fitness function) are 
adaptively changed based upon the overall system 
performance measure.  
 

 
Figure 2: GANFIS with Evolutionary Tuner 
 

The evolutionary module runs several generations of 
candidate premise and consequence parameter 
chromosomes and selects the best set, according to a 
fitness function of the form: 
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where the error is the difference between the desired 
output and the actual output.  

The mutation and crossover rates are two important 
evolutionary parameters and are typically statically set 
through trial-and-error in classical evolutionary 
algorithms [7]. However, a parameter that is optimal 
during the initial stages of a search may not be effective 
in later stages of the evolutionary process [8]. Hence, 
adaptively tuning the parameters during a search process 
would enhance the convergence properties of the 
evolutionary algorithm and therefore should improve 
control performance. Pedrycz [9] states that the mutation 
rate and the crossover rate can be experimentally adjusted 
from results from a series of observations of past 
simulation and provides a method using Fuzzy meta-rules.         
 In [10], the effects of the crossover rate Pc and 
mutation rate Pm to the maximum fitness and average 
fitness values are discussed. We know that the larger the 
error is between the fitness values of two individuals, the 
stronger is the degree of the mutation rate and crossover 
rate. Hence we have developed a tuning process for 
adaptively changing the mutation and crossover rates. 

In [11] and [12], the mutation and crossover rate are 
tuned using different functions of the current fitness 
values. For example, one may select:   
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where fi(n) is the current fitness function associated with 
the chromosome that requires the crossover or mutation 
operation and (n)f  is the maximum fitness function for 
generation n. Notice that (4)-(5) do not require any a 
priori knowledge in selecting the probabilistic rates; 
rather the estimators simply use current fitness values at 
each generation. In this paper, we extend the idea to 
include past fitness function values in the tuning 
mechanism which is discussed in the next section. 
 

III. MODIFYING THE FITNESS FUNCTION 
Classical evolutionary algorithms construct a fitness 

function as in (2) based upon current information, in 
order to assess the performance of each chromosome in a 
population. This assessment is then used in selecting the 
next generation of chromosomes, thereby improving the 
performance of a system over time. Note that this fitness 
function is static in that the value of the present fitness is 
dependent only upon present information. In order to 
improve the fitness value, a fitness function based upon 
current and past values is employed here.  

Sankar [10] considers modifying (2) as:  

                   (6) iaiβg(n)0βf(n) ⋅∑+⋅=

where g(n) is the standard fitness of an individual based 
upon current information, ai is the fitness function of its n 
ancestors, e.g., ai = f(n-i) and βi are weighting factors, 
β0>βj  for j=1…M. In [13] a heuristic fitness function is 
developed that is not only based upon past and current 
information but also on future knowledge: 
 
                       f(n)= g(n) + h(n) + q(n)                       (7) 
 
where h(n) is the fitness function component based upon 
some historical information related to a predicted target  
and q(n) is a heuristic function based upon expected 
future knowledge. We differentiate between prediction, 
based upon deterministic historical data and future 
heuristics, based upon probabilistic information.  

In [13], we show improvements in the performance 
of the fitness function values over time, when selecting a 
forward predictor and heuristic function based upon 
expected future knowledge. That is, let: 
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where n is the current generation,  is the 
predicted fitness function value, based upon n-1 past data 
sets, 

)F|(nf̂ 1-n

δ and λ are weights, and  is the heuristic part, 
based upon a future expectation of the fitness function 
values.  

(n)f̂c

One can show that a linear forward predictor can be used 
in generating h(n) while a probabilistic model based upon 
hypothesis testing and Bayesian approximation can be 
used to generate q(n) [13].  Thus the heuristic fitness 
function becomes: 

(n)cf̂λ/)}1nF|(nf̂-δ{g(n)g(n)q(n)h(n)g(n)f(n) +−−=++=  

      (9) 
Results in [13] using a Khepera robot model show 
improvements in the fitness function values over time 
when compared to classical fitness functions. 
 In this paper, we wish to improve the performance of 
the evolutionary tuners for the mutation and crossover 
rates. To do this, we propose to integrate the first two 
components of the fitness function (9) into (4) and (5). 
Employing future heuristics into the tuning process is an 
area of future research.  Thus, the fitness function that we 
employ in (4) and (5) is: 
                          (10) }
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 In summary then, the parameters for the GANFIS 
controller (premise and consequent variables) in Figure 2 
are tuned using evolutionary methods. The mutation and 
crossover rates for the evolutionary algorithms are 
selected adaptively using (4) and (5) but with the fitness 
function of (10) which captures past and current 
information in the tuning process. We claim that this 
modification of the selection of pc and pm improves 
system performance, even under noise and parameter 
variation.  This is illustrated in an example. 
 

IV.  EXAMPLE 
Consider the nonlinear system [14]: 
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where y(t) is the output and u(t) is the control input. It is 
desired that the output track the function: 
                                                    (12) t5.1

d e*t2sin)t(y −=
Results using the GANFIS controller with a gradient 

method for selecting the premise parameters and the 
Kalman Filter method for choosing the consequent 
parameters are detailed in [2]. Further, employing 
evolutionary learning, i.e., (4) and (5), in the tuning of the 
GANFIS parameters is investigated in [12] where only 
current fitness function values are employed. 

The parameters were tuned at each generation using 
an elitism selection, recombination and fitness evaluation.  
The control parameters for our tests were selected as 
follows: the population size of 20, six membership 
functions in the ANFIS block,  four bits for each 
chromosome and an elitist selection saving half the 
population. 
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The crossover and mutation probability rates have a 
large influence on the performance of the evolutionary 
algorithms. Mutation is used to create diversity in the 
population and thus avoid trapping in local minima. Too 
high a value can cause the evolutionary algorithm into a 
random search while too low a value can cause it to be 
trapped in local minima. Crossover on the other hand is 
used to create two individuals (children) from two 
existing individuals (parents) picked from the current 
population based on selection criteria. This becomes more 
evident when we have noise in the system or parameter 
variation [15]. 

Hence we wish to evaluate the proposed algorithm 
(EVGANFIS) for several cases of the nonlinear system. 
First we tested the case when the system is subjected to 
20db noise (but no parameter variation). Using the 
proposed algorithm results in the trajectory shown in 
Figure 3. We note that the controller compensates for the 
noise and follows the desired trajectory. 

In order to investigate the effects of noise on the 
proposed approach, we increased the noise to 40db. The 
results are shown in Figure 4. While there are relatively 
large initial deviations as expected, the response begins to 
track the desired output after 1.5 seconds and reaches the 
desired steady state value. 

Next we wish to investigate the effects of plant 
parameter variation using EVGANFIS.  Eight case have 
been studied as summarized in Table I. 

 
Table I: Case Studies in Parameter Variation 

 
Case # Coefficient Time of Change 

1 0.1 2sec 
2 0.01 2 sec 
3 10 2 sec 
4 100 2 sec 
5 0.1 0.5 sec 
6 0.01 0.5 sec 
7 10 0.5 sec 
8 100 0.5 sec 

 
The coefficient represents the new value of the 

coefficient associated with the nonlinear state in the 
dynamics (11), i.e., from unity while the third column 
defines when the variation occurred. The input noise 
remains at 20 db. Figures 5-12 provide the results which 
illustrate that even with plant parameter variation, the 
EVGANFIS can compensate for this effect and track the 
desired output trajectory. 
 

V. CONCLUSIONS 
The crossover probability determines the frequency 

of the crossover operation which in turn helps to find 
candidate solutions. A low value can slow down the rate 
of convergence while a high value can make the search 
rotate around one solution. The mutation  probability 

controls the diversity in the population and hence a high 
number brings diversity but at the same time causes 
instability while a low value causes the search to be 
trapped in local minima. 

Further the selection of the fitness function 
determines what chromosomes are kept for the next 
generation, how the new population is produced based 
upon given parent pairs and thus impacts convergence of 
the overall algorithm. 

In this paper, evolutionary tuning using adaptive 
mutation and crossover rates, based upon a fitness 
function that employs past and present values, show 
promising results, even when the system is subjected to 
noise and plant parameter variation. In the future, we plan 
to extend the approach to tuners which contain past and 
current and future fitness function information. These 
extensions may enhance the adaptivity feature of the 
evolutionary tuner for the GANFIS controller. 
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Figure 3: Desired Output versus Actual Output using 
EVGANFIS for 20 db Input Noise 
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Figure 4: Desired Output versus Actual Output using 
EVGANFIS for 40 db Input Noise 
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Figure 5: Desired Output versus Actual Output using 
EVGANFIS for Plant Variation Case 1  

Proceedings of the World Congress on Engineering 2007 Vol I
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-5-7 WCE 2007



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 
Figure 6: Desired Output versus Actual Output using 
EVGANFIS for Plant Variation Case 2 
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Figure 7: Desired Output versus Actual Output using 
EVGANFIS for Plant Variation Case 3 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

 
Figure 8: Desired Output versus Actual Output using 
EVGANFIS for Plant Variation Case 4 
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Figure 9: Desired Output versus Actual Output using 
EVGANFIS for Plant Variation Case 5 
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Figure 10: Desired Output versus Actual Output using 
EVGANFIS for Plant Variation Case 6 
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Figure 11: Desired Output versus Actual Output using 
EVGANFIS for Plant Variation Case 7 
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Figure 12: Desired Output versus Actual Output using 
EVGANFIS for Plant Variation Case 8 
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