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Abstract— In this paper, we bring three theorems
that enable us to approximate the solution of Ferd-
holm integral equations of the second kind. Then we
use the Coifman wavelets or Coiflets as scaling func-
tions for projection that satisfied the conditions of
theorems for approximation. Also we use this pro-
jection to convert the integral equation to a Galerkin
system, which is the most important of the expansion
methods for solving linear integral equations. Finally,
by using numerical examples we show that our esti-
mation have a good degree of accuracy
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1 Introduction

This section provide an overview of the topics that we
need in this paper. A wave is usually defined as an os-
cillating function of time or space, such as a sinusoid.
Fourier analysis is wave analysis, it expands a signal or
function in term of sinusoid. A wavelet is a ”small
wave”, which has its energy concentrated in time to give a
tool for the analysis of transient, nonstationary, or time-
varying phenomena([1, 2]).

We will take wavelets and use them in series expansion of
signals or functions as the same way a Fourier series uses
the wave or sinusiod to represent a signal or function,
([3, 4]).

1.1 Wavelet and Wavelets Expansion Sys-
tems

A signal or function f(t) can be often better analyzed,
described, or processed if expressed as a linear decompo-
sition by

f(t) =
∑

l

alψl(t) (1)
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where l is an integer index for the finite or infinite sum,
al are the real valued expansion coefficients, and ψl(t) are
a set of real valued functions of t called expansion set. if
the expansion (1) is unique, the set is called a basis for
the class of function that can be so expressed. If the basis
is orthogonal, meaning

< ψk(t), ψl(t) > =
∫
ψk(t)ψl(t) dt = 0, k 6= l, (2)

then the coefficients can be calculated by the inner prod-
uct

ak = < f(t), ψk(t) > =
∫
f(t)ψk(t) dt. (3)

For the Wavelet expansion, a two parameter system is
constructed such that (1) becomes

f(t) =
∑

k

∑
j

aj,kψj,k(t) (4)

where both j and k are integer indices and the ψj,k(t)are
the wavelet expansion functions that usually form an or-
thogonal basis. The set of expansion coefficients aj,k are
called the discrete wavelet transform (DWT) of f(t)
and (4) is the inverse transform ([2]).

1.2 The Discrete Wavelet Transform

Our goal is to generate a set of expansion functions such
that any signal in L2(R) ( the space of square integral
functions) can be represented by the series

f(t) =
∑
j,k

aj,k2j/2ψ(2jt− k), (5)

now let ψj,k(t) = 2j/2ψ(2jt− k), j, k ∈ Z, then

f(t) =
∑
j,k

aj,kψj,k(t), (6)

A more specific form indicating how the aj,k are calcu-
lated can be written using inner products if the ψj,k(t)
form an orthonormal basis for the space of signals of in-
terest, we can write

f(t) =
∑
j,k

< ψj,k(t), f(t) > ψj,k(t), (7)

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007



1.3 The Scaling Function

In order to use the idea of multiresolution, we will start by
defining the scaling function and then define the wavelet
in terms of it, ([3]). As we described for the wavelet in
previous section, we define a set of scaling functions in
terms of integer translates of the basic scaling function
by

φk(t) = φ(t− k), k ∈ Z, φ ∈ L2. (8)

The subspace of L2(R) spanned by these functions is de-
fined as

V0 = Spank∈Z{φk(t)}. (9)

The over-bar denotes closure. This means that

f(t) =
∑

k

ak φk(t), ∀f(t) ∈ V0. (10)

One can generally increase the size of the subspace by
changing the time scale of the scaling functions. A two
dimentsional family of function is generated from the ba-
sic scaling function by scaling and translation by

φj,k = 2j/2φ(2jt− k) (11)

whose span over k is

Vj = Spank{φk(2jt)} = Spank{φj,k(t)}, ∀k ∈ Z.
(12)

This means that if f(t) ∈ Vj , then it can be expressed as

f(t) =
∑

k

akφ(2jt+ k). (13)

2 Approximation of Signals by Scaling
Function Projection

We define the kth moments of φ(t) and ψ(t) as

m(k) =
∫
tkφ(t) dt, m1(k) =

∫
tkψ(t) dt, (14)

and the discrete kth moments of h(n) and h1(n) as

µ(k) =
∑

n

nkh(n), µ1(k) =
∑

n

nkh1(n). (15)

The orthogonal projection of a signal f(t) on the scaling
function subspace Vj is given and denoted by

P j{f(t)} =
∑

k

< f(t), φj,k(t) > φj,k(t), (16)

which gives the component of f(t) which is in Vj and
which is the best least squares approximation to f(t) in
Vj . We now state an important relation of the projection
(16) as an approximation to f(t) in terms of the number
of zero wavelet moments and the scale, ([1]).

Theorem 1. . If m1(l) = 0 for l = 0, 1, . . . , L then the
L2 error is

ε1 = ‖f(t)− P j{f(t)}‖2 ≤ C12−j(L+1), (17)

where C1 is a constant independent of j and L, but depend
on f(t) and the wavelet system, ([1]).

This theorem states, ([1, 2]): A second approximation
involves using the samples of f(t) as the inner product
coefficients in the wavelet expansion of f(t) in (16). We
denotes this sampling approximation by

Sj{f(t)} =
∑

k

2−j/2f(k/2j)φj,k(t). (18)

Theorem 2. . If m(l) = 0 for l = 1, . . . , L then the L2

error is

ε2 = ‖f(t)− Sj{f(t)}‖2 ≤ C22−j(L+1), (19)

where C2 is a constant independent of j and L, but depend
on f(t) and the wavelet system, ([1]).

This is a similar approximation or converges to the pre-
vious theorem results, but relates the projection of f(t)
on j-scale subspace to the sampling approximation in that
same subspace. This ”vector space” shows the nature and
relationship of the two types of approximations. The use
of samples as inner products is an approximation within
the expansion subspace Vj . The use of a finite expan-
sion to represent a signal f(t) is an approximation from
L2 onto subspace Vj . Theorems (1) and (2) shows the
nature of those approximations, which is very good for
wavelet.

If we consider a wavelet system where the number of scal-
ing functions and wavelets are set zero and this number
is as large as possible, then the following results is true
([1]):

Theorem 3. . If m1(l) = m(l) = 0 for l = 1, . . . , L, and
m1(0) = 0, then the L2 error is

ε3 = ‖f(t)− Sj{f(t)}‖2 ≤ C32−j(L+1), (20)

where C3 is a constant independent of j and L, but depend
on f(t) and the wavelet system.
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3 Coifman Wavelet-Galerkin Method by
Scaling Function Projection

In this section, we make Galerkin system, that its projec-
tion uses Coifman wavelet as basis. We first describe gen-
eral scaling function projection, and then, discuss about
special case, where say it Coifman wavelet.

Consider a linear Fredholm integral equation of second
kind:

x(s) = y(s) +
∫ b

a

k(s, t)x(t) dt, (21)

where k ∈ L2([a, b]× [a, b]), x ∈ L2([a, b]), and s ∈ [a, b].
Set operator K as below, ([6]):

(Kx)(s) =
∫ b

a

k(s, t)x(t) dt.

By this notation, we can write (21), as

(I −K)x = y. (22)

3.1 Wavelet-Galerkin Method

Now we approximate solution (signal) x(s), and kernel
k(s, t) by wavelet in m scale,([7, 8]):

x(s) =
∑
i∈Z

x̃i2m/2φ(2ms− i) (23)

k(s, t) =
∑
i∈Z

∑
l∈Z

k̃i,l2m/2φ(2ms− i)2m/2φ(2mt− l) (24)

and
y(s) =

∑
i∈Z

ỹi2m/2φ(2ms− i) (25)

where x̃i, ỹi and k̃i,l are the wavelet coefficient of
x(s), y(s) and k(s, t), respectively. By setting u =
2ms, v = 2mt, xi = x̃i2m/2, yi = ỹi2m/2 and ki,l =
k̃i,l2m, from (23), (24) and (25), we have ([7, 8, 9]):

x(s) =
∑
i∈Z

xiφ(u− i) (26)

k(s, t) =
∑
i∈Z

∑
l∈Z

ki,lφ(u− i)φ(v − l) (27)

and
y(s) =

∑
i∈Z

yiφ(u− i). (28)

By applying equations (26), (27), and (28) in integral
equation (21),we have ([9]):∑

i∈Z
xiφ(u− i) =

∑
i∈Z

yiφ(u− i)+ (29)

∫ b

a

∑
i∈Z

∑
l∈Z

ki,lφ(u− i)φ(v − l)
∑
i∈Z

xiφ(v − i) dv (30)

Now by orthonormality of bases, we have ([2, 4]):∫ b

a

φ(u− i)φ(u− l) du = δi,l, (31)

and therefore by taking the inner product of both sides
of equation (30) with φ(u− i), we have, ([2]):

xi −
∑
l∈Z

ki,lxl = yi, i ∈ Z. (32)

We can write this system in compact form as bellow:

(I−K)x = y (33)

where

I = [δi,l], K = [ki,l], x = [xi], and y = [yi].

4 Numerical performances

For showing efficiency of numerical method, we consider
the following examples. We note that, ([6]):

‖ eN ‖=
(∫ 1

−1

e2N (t) dt
) 1

2

≈

(
1
N

N∑
i=0

e2N (xi)

) 1
2

,

where

e(si) = x(si)− xN (si), i = 0, 1, . . . , N.

Such that xN (si) and x(si) are, respectively the approx-
imate and exact solutions of the integral equations.

Notation 1. In the following examples, we consider
Coiflet scaling function and coefficient by N = 6, ([1, 5]).

4.1 Examples

Example 1 : Consider x(s) = sin s− s+
∫ π/2

0
st x(t) dt

with exact solution x(s) = sin s.

Example 2 : Consider x(s) = es − es+1−1
s+1 +∫ 1

0
est x(t) dt with exact solution x(s) = es.

Example 3 : Consider x(s) = s +∫ 1

0
K(s, t)x(t) dt,K(s, t) =

{
s, s ≤ t

t, s ≥ t
with exact

solution x(s) = sec 1 sin s.
The following table shows the computed error ‖ eN ‖ for
the before examples.
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Table 1 : Errors ‖eN‖ at scale m=4
N Example 1 Example 2 Example 3
2 3.2× 10−2 4.1× 10−2 5.7×10−2

3 5.2× 10−3 3.7× 10−3 3.7× 10−3

4 4.7× 10−6 6.3×10−5 5.9× 10−4

5 1.3× 10−9 9.4× 10−7 4.3× 10−7

6 2.1× 10−12 2.7× 10−10 8.1× 10−9

5 Conclusion

We know that, the choice of basis is always important
in determining the conditioning of the linear equations
and hence the stability of the calculation against both
quadrature and round-off errors ([6]).

Therefore we use scaling function projection with Coif-
man wavelet to obtain orthonormal basis, which is very
useful for projection methods, since an orthonormal basis
has the advantage that it guarantees the stability of the
matrix equations in Galerkin Method ([4, 5, 7, 8]).
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