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Abstract—We consider in this work the initial
value problem for the one dimensional cubic non-
linear Schrödinger equation. In order to integrate
it numerically, one option frequently used, is to im-
pose local absorbing boundary conditions. A finite
element discretization in space of the cubic nonlin-
ear Schrödinger equation is considered along with the
absorbing boundary conditions obtained for an analo-
gous discretization of the linear equation. For the im-
plementation of these boundary conditions, an adap-
tive strategy is proposed, so that the boundary con-
ditions change at each time step, depending on the
numerical solution that is arriving to the boundary at
that moment. The numerical experiments are satis-
factory, obtaining a good absorption at the boundary.
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ger equation.

1 Introduction

Let us consider the initial value problem for the cubic
nonlinear Schrödinger equation,




∂tu(x, t) = i(∂xxu(x, t) + ν|u(x, t)|2u(x, t)),
x ∈ R, t ≥ 0,

u(x, 0) = u0(x), x ∈ R,
(1)

with ν a real constant. In order to integrate numerically
this problem, that is defined in an unbounded domain, it
is necessary to consider a finite subdomain [xl, xr] (where
the support of u0(x) is included) and to impose artificial
boundary conditions. When the solution of the new prob-
lem, defined for x ∈ [xl, xr], is just the restriction of the
original solution to the bounded subdomain, the bound-
ary conditions are called transparent (TBCs). Neverthe-
less, the TBCs have the disadvantage of being usually
nonlocal. That is why in many cases, for a practical pur-
pose, local absorbing boundary conditions (ABCs) are
preferred. The ABCs are constructed as an approxima-
tion to the TBCs and they only allow small reflections of
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the numerical solution at the boundary. There are many
works about this subject. We remark the pioneer paper
of Engquist and Majda [6] for the wave equation.

There are also works where ABCs are developed for the
linear Schrödinger equation [1, 2, 3, 7]. In the previous
references, finite differences discretizations in space are
considered. Moreover, in [2, 3] the ABCs are specific for
the finite differences discretization. On the other hand,
in [4] a linear finite element discretization in space is con-
sidered and ABCs are obtained which are specific for it.
These ABCs have the advantage of being suitable with a
higher order finite element discretization in the interior
domain (see [4] for details).

For the nonlinear Schrödinger equation there are fewer
works in the literature. One option (see for example [8])
is to modify the original equation in (1), including an
absorbing potential. Nevertheless this technique requires
an artificial change in the equation. Another option is to
use the ABCs obtained for the linear Schrödinger equa-
tion. This is the idea followed by [5] and [9]. However,
the results in [9] are not very optimistic.

In this work we have considered a linear finite element dis-
cretization in space for the cubic nonlinear Schrödinger
equation and we have fitted, in an adaptive way, the
ABCs obtained in [4] for the linear equation. Moreover
the implementation of the ABCs is also adaptive in a
similar way to [3]. Let us see these questions with more
detail in Section 2.

2 Discretization of the problem and ab-
sorbing boundary conditions

Let us take a positive parameter h = (xr − xl)/N > 0,
and consider the grid of [xl, xr] given by xj = xl + jh,
j = 0, . . . , N . As we have already said, we are going
to use linear finite elements to discretize in space the
one dimensional cubic nonlinear Schrödinger equation. In
this way, we obtain the following discretization for the
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interior domain,

1
6

(
d

dt
uj−1 + 4

d

dt
uj +

d

dt
uj+1

)
= (2)

i

h2

(
uj−1 − 2uj + uj+1

)
+ ϕj(uh),

for j = 1, . . . , N − 1, where

uh(t) =
N∑

i=1

ui(t)ρi

with ρi the shape functions and ϕj(uh) denotes the non-
linear term.

The ABC for the analogous discretization of the linear
equation is given by

δ0u
N−1 + δ1

d

dt
uN−1 = δ2u

N + δ3v
N + δ4

d

dt
vN , (3)

for the right boundary (a similar expression is obtained
for the left boundary), where vN is such that

d

dt
uN = vN . (4)

The coefficients δj depend on the constant potential V
of the linear equation. In order to use these ABCs for
the nonlinear equation, at each time step we are going
to choose V = ν|uJ |2, for a fixed J closed to N . On
the other hand, the coefficients δj also depend on certain
nodes which are chosen in an adaptive way, similarly to
[3] for the linear case. In this way, we can obtain good
absorption results without using a priori information of
the solution.

Finally, the result of (2), (3) and (4) is a system of ordi-
nary differential equations

R d
dtu(t) = Mu(t) + φ(u(t))
u(0) = u0

(5)

where

u(t) = [v0(t), u0(t), u1(t), . . . , uN (t), vN (t)]T ,

u0 = [0, u0
0, u

1
0, . . . , u

N
0 , 0]T ,

which we integrate with the implicit mid point rule.

Next, we are going to see how the numerical results are
satisfactory and we obtain a good absorption of the nu-
merical solution at the boundary. Let us see, for example,
the result when we consider the following initial condition

u0(x) =

√
2α

ν
exp(iUx/2) sech(

√
αx), x ∈ [−L,L],

where, we will take α = 1, ν = 1 and U = 5. We will con-
sider L = 35 so that the computational domain [−L,L]
is big enough to contain the support of the initial con-
dition. In Figures 1 and 2 we can observe the modulus

of the numerical solution at four different fixed times. It
travels to the right and when it arrives to the boundary,
it is absorbed by the ABCs. Notice the good results of
absorption that we obtain with the adaptive strategy we
propose.
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Figure 1: Modulus of the numerical solution for t = 0 and t ≈ 3.5.
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Figure 2: Modulus of the numerical solution for t ≈ 7.5 and t ≈ 19.5.

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007


