Towards A Flamelet Library Using Bi-orthogonal Interpolating Wavelets

A. J. Lowe* and R. Prosser†

Abstract—The use of wavelets within a multiresolution framework provides an adaptive Large Eddy Simulation for the investigation of multi-scale phenomena such as premixed turbulent combustion. Within such an approach, we use the flamelet method and model the structure of infinitely thin flames separating the reactants from the product gases. Here we ask the question; how does the selection of a bi-orthogonal wavelet basis affect the structure of a flamelet for both adaptive and non-adaptive simulations? We show the results of expressing a laminar flame profile in terms of a set of wavelet coefficients, and show how the removal of information using two alternative strategies leads to errors. We use bi-orthogonal interpolating wavelets of fourth order. We demonstrate the effect of the removal of individual sub-spaces in a non-adaptive setting and the removal of information based on a simple thresholding strategy typical of an adaptive simulation. We show that both methods can adequately represent the profile to within a specified level of accuracy. Furthermore, the thresholding strategy requires less grid points to attain the same level of accuracy.

Index Terms—biorthogonal, flamelets, interpolating wavelets, thresholding.

I INTRODUCTION

This paper is concerned with the construction of a flamelet library within the framework of multiresolution Large Eddy Simulation using wavelets. Wavelets offer significant benefits in reducing the computational burden of turbulent combustion simulations [11]. Furthermore, fast transforms are available that allow efficient computations in an adaptive setting [14] & [12]. Wavelets have long been used in image processing and are well established as a tool for both the analysis and simulation of physical phenomena, [7],[8],[9],[10] & [11]. For this investigation we use second generation biorthogonal interpolating wavelets [18]. Other types of wavelets are detailed in the more general background reference for wavelets, [5]. Although they do not obey the admissibility condition, they nevertheless provide a useful numerical tool because of their inherent versatility, [6]. With biorthogonal interpolating wavelets we can control the order of interpolation and boundary constructions. The admissibility condition can be satisfied if the wavelets are lifted [15], although this property is not exploited here.

We investigate a laminar diffusion flame on a grid of 512 points. We take the fixed point in the flame and position it at intermediary grid points separating the coarse scaling function points of the grid. Wavelets are not translational invariant, which implies that each grid point is associated with a unique subspace. We use a subtraction based fast wavelet transform to decompose the flame into a coarse resolution scaling function space and detailed wavelet subspaces. We then investigate two strategies for information removal; these are associated with a non-adaptive and an adaptive simulation. In the first instance, information removal is governed by subspace removal, and in the other case by a simple thresholding strategy. The flame is then reconstructed based on the reduced information contained in the subspaces, and the error is measured. We are interested in the special case of where the length scale of the flame approaches that of the LES and indeed where the flame may span more than two coarse scaling function grid points. We do not consider the case of a flame length-scale much less than the LES grid spacing.

II WAVELETS

In bi-orthogonal wavelet systems [13], two scaling function subspaces, \(\mathcal{V} \) and \(\mathcal{V}^\prime \), combine to form an approximation of a function. A cascade of spaces, each made up of a primal (\(\phi(x) \)) and a dual (\(\phi'(x) \)) basis function, form a hierarchy:

\[
\mathcal{V}_{j+1} \subset \mathcal{V}_j \subset \mathcal{V}_{j-1},
\]

and \(\mathcal{V}_{j+1} \subset \mathcal{V}_j \subset \mathcal{V}_{j-1}. \)

\(j \) represents a resolution of \(2^j \) grid points, with an associated length-scale of \(\sim 2^j \). The detail spaces (or wavelet spaces) \(\mathcal{W} \) and \(\mathcal{W}^\prime \) complete the bi-orthogonal set. A Primal wavelet \(\phi(x) \) and a dual wavelet \(\phi'(x) \) function form the basis of the hierarchy of wavelet spaces. Spaces are combined such that,

\[
\mathcal{V}_{j+1} = \mathcal{V}_j \oplus \mathcal{W}_j,
\]

and \(\mathcal{V}_{j+1} = \mathcal{V}_j \oplus \mathcal{W}_j. \)

Also, \(\mathcal{W} \) is orthogonal to \(\mathcal{V} \),

\[
\mathcal{V}_j \perp \mathcal{W}_j,
\]

and \(\mathcal{W} \) is orthogonal to \(\mathcal{W}^\prime \),

\[
\mathcal{V} \perp \mathcal{W}^\prime.
\]

The Authors are grateful to the UK Engineering and Physical Sciences Research Council for funding.

* University of Manchester, MACE, Manchester, M60 1QD, UK, a.lowe-3@manchester.ac.uk
† University of Manchester, MACE, Manchester, M60 1QD, UK, robert.prosser@manchester.ac.uk
Prosser [12], shows a fast wavelet transform that provides a coarse scale, at the resolution of J to m, $m>0$, and 'detail' wavelet coefficients at resolutions J to $J+1$. Here, J is the finest scale resolution with 2^{J+1} grid points. Both sets of coefficients reconstruct the original function via the inverse transform. The projection of a function onto the coarse and detail spaces follows from,

$$P_J(f(x)) = \sum_k \langle f(u), \varphi_{J,k}(u) \rangle \varphi_{J,k}(x),$$

$$Q_J(f(x)) = \sum_{k} \langle f(u), \tilde{\psi}_{J,k}(u) \rangle \psi_{J,k}(x),$$

with $\langle ., . \rangle$ the inner product.

Second Generation wavelets form a more general framework for the construction of wavelets, [15], [16] & [17]. Here, we adopt the biorthogonal interpolating wavelets of [18]. In contrast to the filtering approach of LES, wavelet based multiresolution LES, for example, decomposes the velocity such that,

$$u(x) = P_{J,m}(u) \oplus \sum_{j \geq m} Q_J(u),$$

where the coarse resolved and retained scale is projected onto $V_{J,m}$. In both the adaptive and non adaptive setting, we retain the coarse scale projection ($P_{J,m}$) and remove some if not all of the wavelet subspaces, W_j. All unresolved and removed spaces would be modeled based on a statistical approach. The statistical modeling is analogous to a sub grid scale model. We note here that we would expect a particular flame to be significantly smaller than the resolution of the coarsest scale. However, our investigation looks at a flame that spans the coarsest resolution, J to m. In doing so, we establish the need for the flame thickness to be significantly smaller than the finest resolved scale and highlight the need for adequate resolutions should the LES approach a DNS (where the flame is fully resolved). The wavelet transforms and their use in the investigation of turbulence is covered in [17], [18] & [19]. In LES, wavelets have been used for adaptive simulations in [10].

III. GOVERNING EQUATIONS

The governing equations for a typical combustion problem are continuity, momentum, energy and progress variable (c) are in Cartesian form:

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u_j)}{\partial x_j} = 0,$$

$$\frac{\partial \rho u_i}{\partial t} + \frac{\partial (\rho u_i u_j + p)}{\partial x_j} = \frac{\partial (\tau_{ij})}{\partial x_j},$$

$$\frac{\partial \rho E}{\partial t} + \frac{\partial (\rho E u_j + p)}{\partial x_j} = - \frac{\partial q_j}{\partial x_j} + \frac{\partial (u_i \tau_{ij})}{\partial x_j},$$

$$\frac{\partial (\rho c)}{\partial t} + \frac{\partial (\rho u_j c)}{\partial x_j} = \dot{\omega} + \frac{\partial}{\partial x_j} \left(\rho D \frac{\partial c}{\partial x_j} \right),$$

where, ρ is density, u is velocity, p is pressure, q is heat flux, Y is the species mass fraction, D is the mass diffusion coefficient and E the energy. In premixed combustion analysis, we use a progress variable c to track the chemical reactions between reactants and products. c is defined via,

$$c = \frac{Y_p - Y_{po}}{Y_{po} - Y_p},$$

with Y_p, the mass fraction of product species, and the subscripts o and ∞ represents the fresh and product gases respectively. Typically, we adopt a simple Arrhenius reaction mechanism based on the Arrhenius reaction rate, $\dot{\omega}$,

$$\dot{\omega} = B^c \rho (1-c) \exp \left[\frac{\beta (1-\tilde{T})}{1 - \alpha (1-\tilde{T})} \right].$$

Here, B is the Zel'Dovich number, ρ the density, B^c the normalised preexponential factor and α the heat release parameter. The non-dimensional temperature is defined as

$$\tilde{T} = \frac{T - T_o}{T_{\infty} - T_o}.$$

Numerical simulations investigating the progress variable can be found for Direct Numerical Simulations (DNS) in [1], [21] and [3] and Large Eddy Simulations (LES) in [19] and [20].

The flamelet approach used in modeling combustion is well established, [2]. It assumes that combustion takes place in a laminar, infinitely thin strip or infinitely thin surface in 3D. Conveniently, our assumption dissociates the direct effects of turbulence on the combustion but retains the turbulent deformation of the flamelet layer or surface. At this point, we draw on the flamelet library to describe the profile of the progress variable. Our library would typically include profiles based on, for example, radius of curvature K_{cm} or tangential strain rate α_r, etc. A mathematical description of surfaces in turbulent flows can be found in, [4]. Investigation of progress variable iso-surfaces can be found in, [23], with specific numerical investigations in [11] & [3] and experimental investigation in [22]. A comprehensive review of flamelets in non-premixed combustion can be found in [2].

Our paper is not concerned with construction of the library itself; instead, we are faced with the question of how the interpolating bi-orthogonal wavelet representation of the flamelet introduces errors. We define a progress variable value of c^*, an iso-surface where the infinitely thin flamelet is assumed to be located.

Fig. 1 shows the 1D laminar flame solution profile of c on a 512 node grid, for a domain of 1.8mm, with a Zel'Dovich number of 6, heat release parameter of 0.6 and preexponential factor of 285100s$^{-1}$. We note here that this is a typical form of the profile, [24].
IV. Method

From the profile defined in III, we shall apply a 1D wavelet transform via successive subtraction to give,

\[P_j(c(x)) = P_{j-m}(c(x)) \oplus \sum_{i=-m}^{j-1} \frac{1}{2^i} Q_i(c(x)), \]

and remove coefficients based on one of the following strategies:

1. successively removing entire wavelet subspaces, \(W_i(c(x)) \).
2. setting wavelet coefficients less than a particular threshold, \(\xi \) (see Table I), to zero.

We then perform an inverse transform on the subset of coefficients and analyse the new profile, \(c' \).

In doing so, we shall measure the maximum error, \(e \), defined as

\[e = \sum_{i=0}^{n} |c_i - c_i'|, \]

where \(n \) is the retained set of points after removal of points. We repeat this exercise by translating the progress variable profiles across two coarse scale grid points by placing the profiles at a grid point associated with each wavelet subspace, \(4 \leq j \leq 8 \). Table II shows the range of subspaces and locations over which the progress variable profile is translated. Again, we note that the wavelets are not translational invariant and each grid point is associated with a wavelet subspace. We see in Table II that each point is associated with a wavelet subspace. When the flame profile is placed on that grid point, the wavelet coefficient will be relatively large compared to that when the flame is translated onto another grid point associated with another wavelet subspace. This example highlights one of the non-linear errors that a strategy for wavelet coefficient removal must address.

Table I: Threshold values.

<table>
<thead>
<tr>
<th>Ref.</th>
<th>(\xi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>i)</td>
<td>10^3</td>
</tr>
<tr>
<td>ii)</td>
<td>10^3</td>
</tr>
<tr>
<td>iii)</td>
<td>10^3</td>
</tr>
<tr>
<td>iv)</td>
<td>10^4</td>
</tr>
<tr>
<td>v)</td>
<td>10^5</td>
</tr>
<tr>
<td>vi)</td>
<td>10^5</td>
</tr>
</tbody>
</table>
Table III: Error norm for wavelet removal strategy using subspace removal.

<table>
<thead>
<tr>
<th>Subspaces retained (Grid Points retained in brackets)</th>
<th>a)</th>
<th>b)</th>
<th>c)</th>
<th>d)</th>
<th>e)</th>
<th>f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_4) (17)</td>
<td>5.0454</td>
<td>0.7902</td>
<td>3.4763</td>
<td>4.6006</td>
<td>4.9147</td>
<td>5.0033</td>
</tr>
<tr>
<td>(V_4 \ominus W_4) (33)</td>
<td>0.3623</td>
<td>0.3623</td>
<td>0.4268</td>
<td>0.4862</td>
<td>0.4425</td>
<td>0.4043</td>
</tr>
<tr>
<td>(V_4 \ominus W_4 \ominus W_5) (65)</td>
<td>0.295</td>
<td>0.0295</td>
<td>0.0295</td>
<td>0.0342</td>
<td>0.0305</td>
<td>0.0283</td>
</tr>
<tr>
<td>(V_4 \oplus \sum_{i=1}^{129} W_i)</td>
<td>0.022</td>
<td>0.0022</td>
<td>0.0022</td>
<td>0.0022</td>
<td>0.0022</td>
<td>0.0022</td>
</tr>
<tr>
<td>(V_4 \ominus \sum_{i=1}^{257} W_i)</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>(V_4 \ominus \sum_{i=1}^{513} W_i)</td>
<td>7.36 \times 10^{-15}</td>
<td>1.27 \times 10^{-14}</td>
<td>1.11 \times 10^{-14}</td>
<td>7.43 \times 10^{-15}</td>
<td>8.97 \times 10^{-14}</td>
<td>1.11 \times 10^{-14}</td>
</tr>
</tbody>
</table>

Table IV: Error norm for wavelet removal strategy using thresholds i) – vi).

Error norm, profile location, \(a) - f) \). (Grid Points retained in brackets)

<table>
<thead>
<tr>
<th>Threshold</th>
<th>a)</th>
<th>b)</th>
<th>c)</th>
<th>d)</th>
<th>e)</th>
<th>f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>i)</td>
<td>3.0142(18)</td>
<td>0.7902(17)</td>
<td>3.4763(17)</td>
<td>4.6006(17)</td>
<td>4.9147(17)</td>
<td>3.0457(18)</td>
</tr>
<tr>
<td>ii)</td>
<td>0.2600(22)</td>
<td>0.5935(19)</td>
<td>0.3216(22)</td>
<td>0.3311(22)</td>
<td>0.2995(22)</td>
<td>0.2764(22)</td>
</tr>
<tr>
<td>iii)</td>
<td>0.0577(27)</td>
<td>0.0325(28)</td>
<td>0.0262(30)</td>
<td>0.0261(32)</td>
<td>0.0362(30)</td>
<td>0.0461(28)</td>
</tr>
<tr>
<td>iv)</td>
<td>0.0031(44)</td>
<td>0.0053(43)</td>
<td>0.0028(45)</td>
<td>0.0035(44)</td>
<td>0.0038(43)</td>
<td>0.0040(42)</td>
</tr>
<tr>
<td>v)</td>
<td>0.0005(71)</td>
<td>0.0003(72)</td>
<td>0.0003(73)</td>
<td>0.0004(72)</td>
<td>0.0006(69)</td>
<td>0.0005(71)</td>
</tr>
<tr>
<td>vi)</td>
<td>0.000041(116)</td>
<td>0.000062(115)</td>
<td>0.000044(117)</td>
<td>0.000044(118)</td>
<td>0.000040(117)</td>
<td>0.000043(118)</td>
</tr>
</tbody>
</table>

Fig 2: The profiles of progress variable, \(c \), from the thresholding reduction strategy with \(\xi=10^{-1} \) and \(\xi=10^{-8} \). The profile is located on grid point 256, here the progress variable focal point is \(c \approx -0.5 \).
Fig 3 and Fig 4 show the decay of error against threshold and retained subspaces for progress variable profiles (c~0.25, c~0.30 & c~0.75) located on grid point 256.

![Graph showing error plotted against threshold, \(\xi \). With c~0.25 (solid), c~0.30 (dash dash) and c~0.75 (solid +).](image)

\[E = V_{j,m}(c(x)) \oplus \sum_{j,m} W_j(c(x)) \]

With c~0.25 (solid), c~0.30 (dash dash) and c~0.75 (solid +).

Fig 4: Error plotted against subspaces retained, \(j \), such that

VI. CONCLUSION

The conclusion of this paper is that both subspace removal and thresholding are viable strategies for the removal of biorthogonal interpolating wavelet coefficients. In addition, the thresholding strategy requires less grid points. Future work will develop a wavelet based library extracted from DNS databases taking into account turbulent physical characteristics. This work has highlighted the need for care when developing LES simulations where the resolution of the grid is approaching that of a DNS simulation and the flame spans the coarse grid resolution.

REFERENCES